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Effects of pairing through the intermediary continuum in a 2n transfer process
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�Background

• Direct transfer reactions: convenient tools to study ex-

otic nuclei because of simple mechanisms that probe internal

structure of participating nuclei with sufficient accuracy.

• Two-neutron or 2n transfer reactions enable an understanding

of halo phenomenon in two neutron halos.

• Also provide information about correlations between valence

neutrons.

• 2n transfers involving 6He also vital nuclear astrophysics and

stellar nucleosynthesis.
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�Motivation

• For any 2n transfer process, couplings between energy states of

intermediate nucleus strongly enhance transfer.

• Pairing enhancement could originate from coherent inter-

ferences of different paths through states in the (A+ 1) inter-

mediate nuclei.

• Taking 4He as our nucleus A and adding two neutron to it via
18O(4He,6He)16O reaction , we try and study effect of pairing

through the continuum of 5He.

• Ground state of intermediate 17O taken to be made up entirely

of 1d5/2 at -4.14 MeV.

• Actual case of 5He being unbound (resonance at 0.79 MeV) com-

pared with hypothetically bound cases with Sn = 1 MeV and Sn

= 0.1 MeV to see the role of pairing in the continuum.

• Spectra of 5He generated and discretized using Transformed

Harmonic Oscillator (THO) wave functions.
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�Objective

• To study the effect of pairing enhancement due to the continuum

of an intermediate nucleus in a 2n transfer.

• To investigate the effect of couplings between intermediate con-

tinuum states during such a process.

• To compare any such effects with the presence of a bound state

in the intermediate system, if any.
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�Transformed Harmonic Oscillator basis

Why THO?!

• Good substitution for continuum wave functions that oscillate

asymptotically.

• Can discretize the continuum; easy to control the density of

pseudostates near the threshold; convert the Gaussian nature

of harmonic oscillator functions to exponential mode.

• The transformation parameters, γ and b were adjusted

for the three cases to values 1.8, 2.0 and 2.0, and 1.0, 1.0 and

1.2, respectively.
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• The THO wave functions generated for the spectra of 5He for

the three cases under consideration.

• As expected, the wave functions in the cases when 5He is sup-

posedly bound die out quicker than in the natural, unbound

case.

J.-A. Lay, A. M. Moro, J. M. Arias, and J. Gómez-Camacho, Phys. Rev C 82, 024605 (2010); G. Singh, Jagjit Singh,

J. Casal, and L. Fortunato Phys Rev C 105, 014328 (2022).
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�The theory

For an A(a, a− 2)A + 2 reaction, we have the probability

amplitude for a pair transfer from an initial state α to a final state

β2 given at the lowest order by:

A(2)(b) =g
∑
β

Bi(a)Bj(A)

×
∫ ∞
−∞

dt′fβ2β(r) exp

(
i

~
[(Qβ2βt

′ + γβ2β(t′)) + iµφ(t′)]

)
×
∫ t′

−∞
dtfβα(r) exp

(
i

~
[(Qβαt + γβα(t))− iµφ(t)]

)
,

where β’s are 1 particle transfer channels, Bi(a) and Bj(A) are 2 particle Spectroscopic amplitudes (in projectile

and target states). fβα(r) and fβ2β(r) are single particle transfer form factors for the first and second steps, Q’s are

the Q-values, while γβα(t) and γβ2β(t) are the time-dependent phases evaluated in parabolic approximation. g is the

geometrical factors containing details of angular momenta, angular integrations in wave functions and dimensional

factors [R. A. Broglia and A. Winther, Heavy Ion Reactions, Addison-Wesley Publishing Co., 1991].
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�Form Factors

• One particle transfer Form factors, computed in the prior

form using the Transformed Form Factors (TFF) code, show

expected behaviour. L. Fortunato, I. Inci, J.-A. Lay and A. Vitturi, Computation 5(3) (2017).
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• The form factors for the resonance state of 5He obviously are

larger than other states, but smaller than bound cases.
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�One-neutron transfer cross-sections

• σ1n (in mb) for each basis state of each case plotted.

• Computations at beam energy 100 MeV enabled population of higher lying

energy states and neglect any effects of Q-value that may play a role.

• Higher lying states contribute lesser and lesser.A small basis up to ∼ 6 MeV

is sufficient for convergence.
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�Possibilities for two-neutron transfers

• Three possibilities:

→ Both particles in ground state

(|1, 1〉).
→ One particle in ground state,

the other in any of the continuum

states (|1, j〉; j 6= 1).

→ Both particles in any of the

continuum states (|i, j〉; i, j 6= 1).
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�Probability contribution
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• Probability contribution of each of the configurations through

their respective bases.

• Evidently, the continuum contributes more in the unbound case

and the couplings amongst the neutrons enhance that contribu-

tion.

• States closest to the resonance clearly contribute more, both in

|i, i〉 and |i, j〉 configurations.

• The zero spins of our A, (A + 2) nuclei ensured there were no contributions from the

non-orthogonality and simultaneous transfer terms.

�
�

�
�Two-neutron transfer cross-sections

• A contact Delta interaction −gδ(~r1−~r2) used in modified TFF

code for attractive pairing between transferred neutrons. ∴,

neglect bound 5He with Sn = 1 MeV case.

Parameters:

• (a) Coupling constant, g (for Sn =

0.1 MeV case)= -1037 @ El=21 MeV, -992 @

El=100 MeV, respectively.

• (b) Coupling constant, g (for unbound
5He)= -10430 @ El=21 MeV, -7827 @

El=100 MeV, respectively.

• Pairing interaction, ∆ was adjusted so as to reproduce the

ground state energy of 6He at -0.975 MeV.

Variation of the 2n transfer cross-section (in mb) for different cases at the two different beam energies considered in

the study. The ratio of the perturbed σ2n to unperturbed cross-sections σ2n (u) is especially important.

Case ∆ El=21 MeV El=100 MeV

(MeV) σ2n σ2n (u) σ2n/σ2n(u) σ2n σ2n (u) σ2n/σ2n(u)

Sn = 0.1 MeV 0.775 6.95 6.89 1.01 147 125 1.18

Continuum 2.356 0.94 0.51 1.84 44 8.6 5.12

I Pairing enhances the transfer probability in the con-

tinuum much more than for the bound states. G. Singh, L.

Fortunato, and A. Vitturi arXiv:2204.11739v1 [nucl-th].
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�Conclusions

• For a weakly bound (A + 2) system near the drip lines, the

inclusion of continuum states of the intermediate nucleus is vital

for a 2n transfer process.

• The highly correlated case (unbound 5He) offers many paths

where 2n transfer can occur via constructive interference.

• Such pairing correlations, present more in the unbound inter-

mediate system, enhance 2n transfer cross-sections considerably.
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