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What are heavy flavors?

* Matter comes in three generations of quarks 3  QUARK MASSES
and three of leptons, that we order in mass. A ol
guark (or lepton) type (for quarks: u,d,c,s,t,b) ==
Is called flavor, to distinguish it from color. "

* The heaviest quark is the top, so heavy that it 50
decays before forming bound states. b and ¢ okz = = & b W&
are the heaviest to form mesons and baryons EEEED

Quarks Leptons
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Why Interesting: Heavy Quark
Effective Theory

* Quantum ChromoDynamics has an intrinsic scale, Aqoco ~ 200 MeV,
above which perturbative expansion can be applied, and below
which (soft QCD) only empirical models can be used.

* For quark masses mqg >>/\qcp Perturbative expansions can be used,
and calculations easier

* For states with two heavy quarks (J/W, Y), Non-Relativistic QCD is
used.

* No time to describe HQET here; refer to e.g. A.V. Manohar and M.B.
Wise, Heavy Quark Physics, Cambridge University Press (2000)



Symmetries in Physics

* An operator can be applied to a Lagrangian representing a physical
system; if the Lagrangian is invariant under this transformation, the
operator corresponds to a conserved guantity (Noether's theorem).

* EX. Invariance of Lagrangian under translation
X — X+a leads to momentum conservation

* |f the Lagrangian is not conserved under an operator, thesymmetry
IS broken, and the physics will be different. In some cases,
symmetry breaking is subtle and can be treated as a perturbation



Discrete symmetries

Three discrete symmetries can be applied to a Lagrangian:

* Parity
« Charge conjugation
* Time reversal

In classical physics, all these symmetries are conserved at microscopic level,
macroscopically, the concept of entropy breaks T-symmetry.

Things are more complicated in guantum mechanics



Partity: P

® Reflection through a mirror, followed by a rotation of ® around
an axis defined by the mirror plane. :
O Space is isotropic, so we care if physics |_. ‘_|
oy

Is invariant under a mirror reflection. :
r—-r

@® “Pis violated in weak interactions: p——p
[P, Hu] £ 0 L->L

@® Vectors change sign under a ? transformation, pseudo-
vectors or axial-vectors do not.

@ P is a unitary operator: P ?=1.

T.D. Lee & G. C. Wick Phys. Rev. 148 p1385
(1966) showed that there is no operator P that
adequately represents the parity operator in QM.



Charge Conjugation: C

& Change a quantum field ¢ into ¢’, where ¢* has opposite U(1)
charges:

e baryon number, electric charge, lepton number, flavour
quantum numbers like strangeness & beauty efc.

& Change particle into antiparticle. O o

& the choice of particle and antiparticle e > e
is just a convention. y >y

@ (is violated in weak interactions, so matter and antimatter
behave differently, and:

[C, Ha]# 0

& (Cis a unitary operator: C %=1.



Combining Charge and Parity: CP

The fundamental point is that CP symmetry is broken in any theory that
has complex coupling constants in the Lagrangian which cannot be
removed by any choice of phase redefinition of the fields in the theory.

m Weak interactions are left-right asymmetric.

W /t is not sufficient to consider  and ‘P violation

separately in order to distinguish between matter and
antimatter.

m /.e. if helicity is negative (left) or positive (right).

m CP is a unitary operator: (P *=1



Time Reversal: T

Not to be confused with the
classical consideration of the
entropy of a macroscopic system.

d ‘Flips the arrow of time’

O Reverse all ime dependent quantities of a particle
(momentum/spin).

O Complex scalars (couplings) 0‘
transform to their complex conjugate. (®) \

O It is believe that weak decays violate ‘I, A
but EM interactions do not.

QO 7 is an anti-unitary operator: T 2=-1.



Combining all symmetries: CPT

@ All locally invariant Quantum Field Theories conserve (“P1
® (CP7 is anti-unitary: C*PT 2=-1.

® (PI can be violated by non-local theories like quantum gravity.
These are hard to construct.
© see work by Mavromatos, Ellis, Kostelecky etc. for more
detall.

® If C"PT is conserved, a particle and its antiparticle will have
@ The same mass and lifetime .
® Symmelric electric charges.
@ Opposite magnetic dipole moments (or gyromagnetic ratio for
point-like leptons).



Applying CP to physical states

CPlu)=| u)

CP|n°)=—|7n")

CPln=)=—|7")

The u quark has J* = V2%, so the P operator
acting on u has an eigenvalue of +1. The C
operator changes particle to antiparticle.

The ©° has J° = 0 *, so the minus sign comes
from the parity operator acting on the n® meson.
The ( operator changes particle to antiparticle.

A n? is its own antiparticle.

The n+ has J" = 0, so the minus sign
comes from the parity operator acting on
the m meson. The ( operator changes the
particle to antiparticle.



Flavour interactions Iin the SM: the CKM matrix

* In the SM Lagrangian, charged-current interactions,
mediated by the W boson, allow interactions between
U-like and D-like quarks

Loc = —% (f’L’Y”W:VﬁL + 5LW”W;V‘L(}L) .

* Where V Is a non-diagonal mixing matrix

Vud Vus Vub
V= Ifcd Vm L::ab
Via Vis Vi




How many parameters in the matrix?

in general, an n x n unitary matrix has n? real and independent parameters:
» an x n matrix would have 2n? parameters

» the unitary condition imposes n normalization constraints
» n(n - 1) conditions from the orthogonality between each pair of columns:
thus 2n*-n-n(n-1) =n“

In the CKM matrix, not all of these parameters have a physical meaning:
» given n quark generations, 2n - 1 phases can be absorbed by the freedom to
select the phases of the quark fields

= Each u, c or t phase allows for multiplying a row of the CKM matrix by a phase, while
each d, s or b phase allows for multiplying a column by a phase.

thus: n*-(2n-1)=(n— 1)~

Among the n? real independent parameters of a generic unitary matrix:
» 2 n(n - 1) of these parameters can be associated to real rotation angles,
so the number of independent phases in the CKM matrix case is:

n“-%nn-1)-2n=1) =% (N =1)(N - 2) [gumiis | Totl iniep: params. | Real rot. sngics | Commplex phacs faciors
(n—-1)? sa{n—1) g(n —1){n —2)

1 1 (]

M.Bona - CP violation — lecture 1 : S 6 3




The matrix in terms of angles

* There are many ways of writing the matrix as a function of 4
parameters, but the most common (from PDG) uses 4 angles:

C12C13 812C13 S13¢”"
_ .5 s
V= —s13c03 — 12923513€"° C12C23 — S12523513€" $23C13
i5 6
512893 — C12C23513€" —C128923 — S12C23513€"  Ca3C13

* Where c; = cos6j, sj = sing;, with all angles real

* The only complex part of the matrix comes from the e terms,
and that is responsible for CP violation!

* Indeed, the CP swapping on the Lagrangian gives a different
result if the matrix has one or more complex terms



Approximate parametrisation

* Experimentally, mixing is larger for nearby generations, 1
>> 01, >> 0,3 >> 0,3, Wolfenstein expanded in A = sin 6,

1—X2/2 +A AX3(p —in)
V=| - 1—22/2 +AX +0(X%)
AN (1 —p—in) —AN? 1

e Diagonal terms ~1, Vi2,V21 ~ A, V23,Va2 ~ A2, V13,Va1 ~ A?
* At second order,use p=p (1 -2A%2),n=n(1-2A%2)

* Now the complex component is only in Vi3 and Vs
(third family!)



The CKM triangle

* The Wolfenstein parametrisation is graphycally
represented as a triangle with base at (0,0) and (1,0)
and apex at (p,n).

normalized:

— p —if




Measuring triangle angles

b — ¢ interfering with b — 7
B— DYK® —uild B—ar
B' 5 D K'z* Bt Boap
B" > D"'x B—>pr B-bnr
B' - D"p Bo>pp Bobp
+ charmless i (_ B ) B - a,q,
P1 .
LA Via Vis
Vrud ! /o V V*

b —cTs
B’ —»J/yK]
B’ = J /yK{
B’ 5>y (28)K;
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B’ = 7K
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Measuring triangle sides

b — ulv - Use theory to relate partial branching
fractions to V , for a given region of
B — rlv phase space.
B— X Iv | |
« Several theoretical schemes available.
B — plv
B — wlv

‘V _vtd  Ytb tb

LG/
ud = \( \Ll‘.l

> cd

(0,0) (10

b — civ

B — DUy
B — DXlv
B—-D'lv



Current constraints on triangle (from
WWW. pdg.org)
pjussannanspyp Ay 0 GRREE » Several ways to

aimg & A i independently measure
1 sides and angles

L ; &md i
I:EK %\(\ :
DD-— i B

ST ViV A © * All point to a coherent

b N ) " picture: CP violation well

understood in the SM

-1.0 N €k ]
Y sol. w/ cos 2
1Lt 1 Lovovv bvv o b v by v By 4y
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
ipure 12.2: Constraints on the j, i plane. The shaded areas have 99% CL.



Producing B mesons

e The “clean” way: e+e- =
collisions at the Y(4S) peak, 2" |, o= o ‘f(‘l‘s)
followed by decay into B'B-or "+ /i . |
B°B° (Babar, BELLE) R wml» e

L=

* The “dirty” way: proton
collisions followed by b-tagging
(CDF, DO, LHCb, ATLAS, CMS)

- Advantages: large rates, can
produce Bs, Bc etc.

- Disadvantages: large BG




Osclllations of neutral mesons in QM

® We have flavour eigenstates M{J and M°:
@ M° can be K° (sd), D° (cu), Bs° (bd) or B,® (bs)

flavour states # H_. eigenstates:
(defined flavour) (defined m,, and I', ,)

@ If we consider only strong or electromagnetic interactions only,
these tlavour eigenstates would correspond to the physical ones

@ However due to the weak interaction, the physical eigenstates are
different from the flavour ones. This means that they can mix into

each other: F—i—t—— %
® via short-distance or long-distance processes g yi iy g
@ and then the flavour superposition decays s T b
M=pM’+q M°

M.Bona — CP violation - lecture 1



Schroedinger equation for oscillation

@ We have flavour eigenstates M° and M°:
@ M° can be K° (sd), D° (cu), B® (bd) or B.° (bs)

flavour states =  H, eigenstates:
(defined flavour) (defined m, , and I, ,)

@ Time-dependent Schrodinger eqgn. describes the

evolution of the system:
1O M\ M\ _ | ar 1| M
Ot\ M M 2 \M
® H is the hamiltonian; M and I" are 2x2 hermitian matrices ( g,
M= (H+H") and I" = i(H-HT)

@ CPT theorem M11 = Mgz and r11 = rgz
@ particle and antiparticle have equal masses and lifetimes

a)



Solutions for physical states

© Physical states: eigenstates of eﬁective Hamiltonian:
Mg, (or ML) =p M®+ q M°

p & q complex coefficients
label can be either S,L (short-, long-lived) or L,H that satisfy |p|* + |q|* = 1

(light, heavy) depending on values of Am & Al
(labels 1,2 usually reserved for CP eigenstates)

@ CP conserved if physical states = CP eigenstates (|q/p| =1)

© Eigenvalues (1) and mass (Am) and lifetime (AI') differences
can be derived with this formalism:

Wiw = Mus— /2 T = (My — /2 Trr) £ (Q/p) (Mez — /2 Tr2)
Am=my-m, and AI'=T-I",
(AM)? - ¥a (AT)? = 4 ( [Muf2 + ¥4 [Tual?) other useful
AMAT = 4 Re (M,;T'2*) definitions:

X = Am/T’
p)? = 12* - 12* / 12 = I/ 12
(q/p)” = (M /2 T2")/(My2 — 1/2 T 12) |y =Arj2r




Oscillation probablllty

* Bd and Bs oscillations formally
identical, frequency very different

: <X’ X°(t)>F  x=18, y=0
U'B_I <X PR~ B
0.6
ﬂ.li:
D.2}b
% 1 2 3 iu,rs % 1 2 3 4‘ms

probab. to observe an initially produced X° as X° after time t
probab. to observe an initially produced X° as X° after time t



Osclillations In e*e” collisions

Fully reconstruct
decay to state or
admixture under
study (Bgeco)

*at 4_-';‘“_.*-
Asymmetric energies :

produce boosted ’qﬂz=(Bvc)&t \ K-
Y(4S), decaying into
coherent BB pair "“:I"---._..---"E"" ! I-

Determine time K,‘—I;
» By = 0.56 (BaBar) between decays

from vertices : Determine flavour and vertex

= 0.425 (Belle)  position of other B decay (B,,)
-t =, corresponds to the , 5
time that B, decays. t=t, t=t,

. tg-t1 - ﬂ-t




Bd oscillations

HFAG, http:/iwww.slac.stanford. edu/xorg/hfag/
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Bs oscillations

T CDF2 abservation (2006)

datz £ 1045 o
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Events / GeV

ATLAS and CMS: production of
heavy quark-antiquark systems

Prom pt Sketch by Qipeng Hu
@ For both ATLAS and CMS experiments, dimuon decays : :- S~
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Prompt-non prompt quarkonia

#® Also, to measure prompt and non-prompt yields simultaneously and disentangle the two contributions both
CMS & ATLAS exploit a 2D mass and pseudo-proper time fit.
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Observations of bottomium

Events per 10 MeV

Candidates /10 May/

Candidates /10 My

systems
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Mesons with beauty and charm: Bc

® B'(B’)is the b-quark meson with the largest production rate composed of ub(itb). B/ (B, ) meson is a ground state of
be(bé) system and contains two heavy quarks of different flavours and its production is then much rarer [bb + cc).
CMS has reported the inclusive and differential (y &p,;) o - B

B.*— Jip (—up) Bt — Jp (upwkK-

Theoretical prediction uncertainties up to 40%: renormalization, factorization scales and the m, dependencies.

® Results from 4.77 fb™ Run | pp collisions @ 7 TeV : event selection based on displaced dimuon triggers.
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B jets at the LHC
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g — bb splitting with both b In a single jet
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+ Study composition of jets by
fitting separately each binanc %% 5
compare to theory




Finding Z-Dbb in a smgle jet

> C
» Apply double b-tag photon + jet & [ams o o
© 10001 antik, AR=1.0LCjets I et
events — [ Trimmed: £, = 5%, Ay, = 02 = W
42 800 PZ™ > 200 GeV pL>175 GeV ;n:l “”5223”3
. . - Two btagged | 70% WP - uneertain
* Jet trimmed to remove piluep & =T

and underlying event A

400

* Require two-prong structure

200

* Z peak visible in the jet mass
despite huge background

Data / Fit
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Conclusions

 Heavy quarks a fundamental “laboratory” due to large mass
(perturbative calculations) and long lifetime (reconstruction of
secondary vertex)

Also, CP-violating effects particularly relevant in third family

* Dedicated experiments (and accelerators!) built to extensively
study the CKM matrix, all coherent with SM picture

* b and c production in jets studied in general-purpose LHC
experiments

More detalls on the dedicated experiment (LHCDb) and its
Intriguing anomalies in Monica Pepe-Altarelli’s talk next week!


https://indico.cern.ch/event/812393/contributions/4362136/
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