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A typical result from a measurement

* “The fit yields a measured cross section
ott=803%2 (stat) £25 (syst) £20 (lumi) pb

In agreement with the expectation from the standard model
calculation at next-to-next-to-leading order...”

* Uncertainties are an integral part of each measurement, as
much as the central value

* Without uncertainty, a measurement is meaningless

e But what do (stat) (syst) (lumi) (theory) uncertainties mean
and how are they calculated?



Statistical uncertainties

Come for limited size of sample used to make the
measurement

* Quantum processes follow Poisson statistics, that
approximate to a Gaussian for

A>10, and o?=A

This is why for a counting experiment with large
statistics the stat. unc. is YN and relative uncertainty
is 1WN (we run experiments for years)

- With BG, uncertainty is higher
- With small statistics need to use asymmetric errors

- For more complicated cases, use toy experiments
to estimate statistical uncertainties
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Measuring luminosity at the LHC
* Need to divide by Lumi to obtain a Xsec
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In standard physics data-taking,
the luminosity is measured indirectly:
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Main solution at the LHC

O, is the cross section fora ~
suitable reference process

Measured by the accelerator
instrumentation
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Luminometers: stability and uncertainties

« Small forward detectors calibrated during VdM scan, and
provide instantaneous luminosity through the year
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Systematic uncertainties from theory

If experimental result compared to theory (with its uncertainties),
why theory uncertainties in an experimental result?

Theory enters our measurement in many ways:
* Background subtraction

* Signal efficiency

* Models for fits

* UE corrections



Determination of PDFs

Cross-sections at the LHC are convolutions of a hard matrix element and
the Parton Distribution Functions of the colliding parton
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PDFs (and their uncertainties) determined by
several groups by performing global fits of several ,

measurements, including those from ep collider 0.1 0.1
(HERA), Tevatron, LHC, neutrino scattering etc. 0E sl vl

LHC measurements useful for PDFs determination:
e Jet production

* Top Xsection

* Vector boson production and asymmetries



Uncertainties on PDFs: eigenvalues

Most PDFs are sets of parameters of an analytical formula like

Parameters for various partons strongly correlated since
coming from same measurements  f(x)=qa x“ (1— x)“ """

Uncertainty matrix diagonalised in a series of eigenvectors
and eigenvalues

PDF bands obtained by simultaneously varying the
eigenvalues and obtaining 1sigma variations



Uncertainties on scale variation

* Theory calculations for hard scattering performed with a
given renormalisation and factorisation scale, set at a
relevant scale for the process like jet pT

* Choice of scale and cut value can strongly influence Xsec

* Usually uncertainty evaluated by multiplying and dividing
scale by 2
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Uncertainties from MC tunes



Experimental uncertainties



Trigger turn-on

» Trigger never fully efficient .%104;@|L|<C§_’9p'Pb’ Fow=002TeV
* Efficiency determined by fit %1"3% N
to data %102? 1:+++0-20% ZN energy _i

. Some times use trigger in 5 Lo . T e ror ]
rising part of efficiency curve & '| ... -
1071 L s

- large uncertainties
E (GeV)



Efficiency In particle identification

* Depending on isolation cuts, efficiency

to identify electrons, photons, muons N
etc. can be significantly lower than 1 Boosf ot e Tt
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Uncertainties in background subtraction

T T E

Even when data-drive, background B
subtraction Is not perfect: e i 3
: : C == i

- Correlation assumptions 10¢ —+ -

- Method used i ]

— Statistics of sample used for predictior | _

- Templates or forms used for fitting :

pt6 (GeV)



Jet Energy Scale

* Main uncertainty for jet measurement. Jet calibration steps:

Reconstructed pr-density-based | Residual pile-up Absolute MC-based
jets pile-up correction correction calibration

Jet finding applied to Applied as a function of Removes residual pile-up Corrects jet 4-momentum
tracking- and/or event pile-up p; density dependence, as a to the particle-level energy
calorimeter-based inputs. and jet area. function of u and Np,. scale. Both the energy and

direction are calibrated.

Global sequential Residual in situ

calibration calibration

Reduces flavour dependence A residual calibration
and energy leakage effects is applied only to data
using calorimeter, track, and to correct for data/MC

muon-segment variables. differences.
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* They impact effect of pT cuts and dijet

e Quite well known, but still need to

Jet Energy and Angular Resolution

mass reconstruction.

account for them
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* The detector will distort “truth-level” distributions,
the ones we want to publish and compare to theory
and the other experiments

* Truth x detector x fluctuations - measurement

* Truth — unfolding -« measurement

* For binned distributions detector is a matrix:
R=MT

* Just inverting the matrix leads to large fluctuations

e Often Iterative methods are used where we start

from a truth distribution hypothesis, and correct |t

until we get to the reconstructed distribution
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Uncertainties associated with Unfolding

* Choice of prior (usually from MC)

 Non-closure

- If you unfold the same MC used to build the
transfer matrix you should get the same

result
E 80 amias pp 2015, 25 pb”
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Conclusions

* Systematics uncertainties are the heart of your
measurement

* Can be very subtle, and touch every aspect of the analysis

* While statistical uncertainties will automatically decrease
with more data, reducing systematics requires hard work
from experts in detector, reconstruction, analysis and even
theory!
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