ML & Particle Physics

Eilam Gross

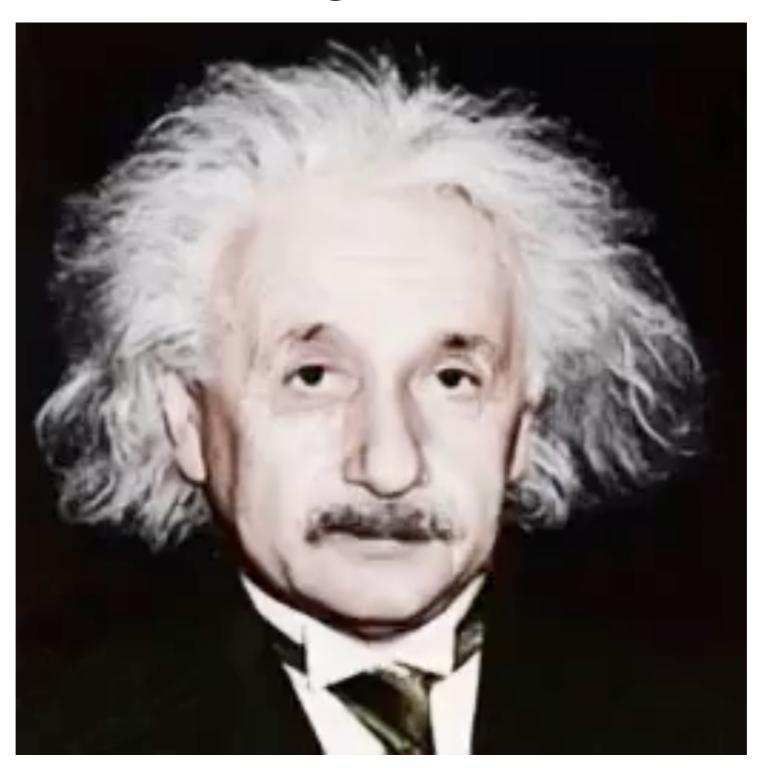
ASP 2021

Outline

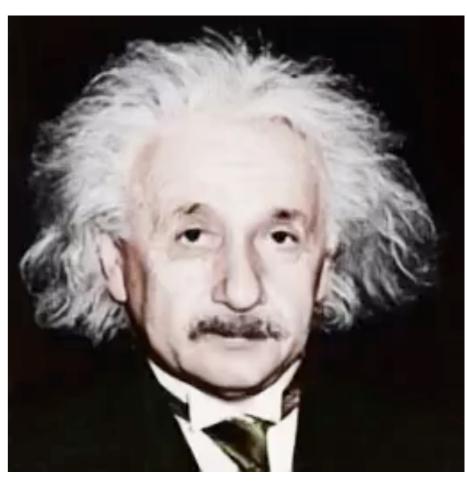
- What is a Neural Net
- Supervised Learning
- What is CNN
- Unsupervised Learning and Auto Encoder The role of Hidden Layers
- Graph Neural Net
- Some Applications

Practical Deep Learning 2021

Practical Deep Learning 2021



Practical Deep Learning 2021



- What is intelligence?
- What is artificial intelligence?
- What is Deep learning

From Intelligence to Deep Learning

What is intelligence?

 Intelligence is the ability to process information so it can be used to infer on decisions for the future

What is artificial intelligence?

Use the computer to mimic human intelligence

What is Machine learning

Learning from experience without being explicitly programmed

What is Deep Learning?

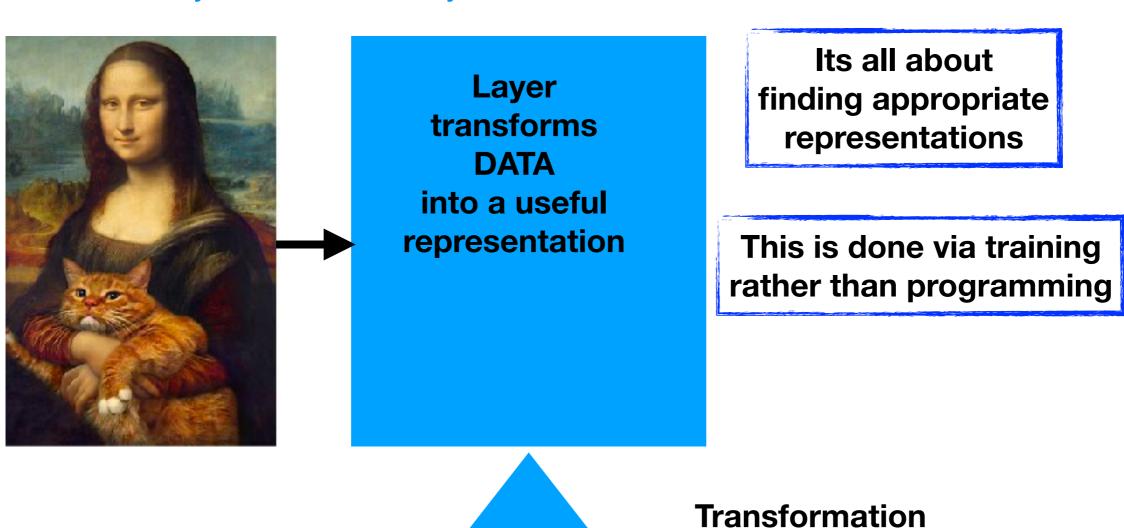
 Using NN to automatically extract patterns from DATA and use it for inferring and make decisions

Why DL is a Boom Now?

- ML started in the 1950s
- Deep Convolutional Nets since the 1990s
- Autonomous driving is now a multi billion dollars business... TESLA is already there... Why only now?
 - Big DATA Cheap Storage, easy access, and lots of Big Data
 - GPUs are changing the face of the computer hardware (Parallelizable tasks)
 - Sophisticated software/firmware tools for Deep Learning Models implementation

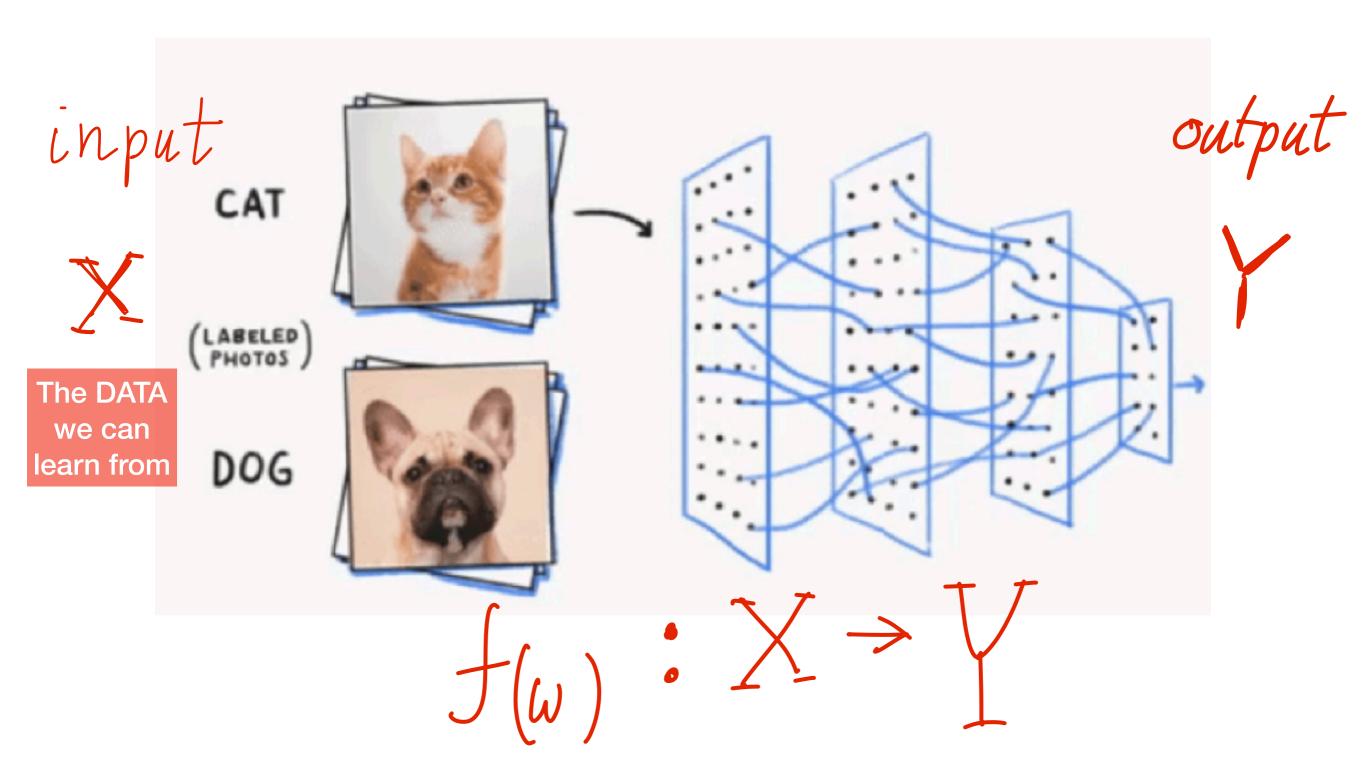
Machine Learning Example

- Map inputs (such as images) to targets (such as labels: Cat, Dog, Woman)
- BUT let your mind flies by

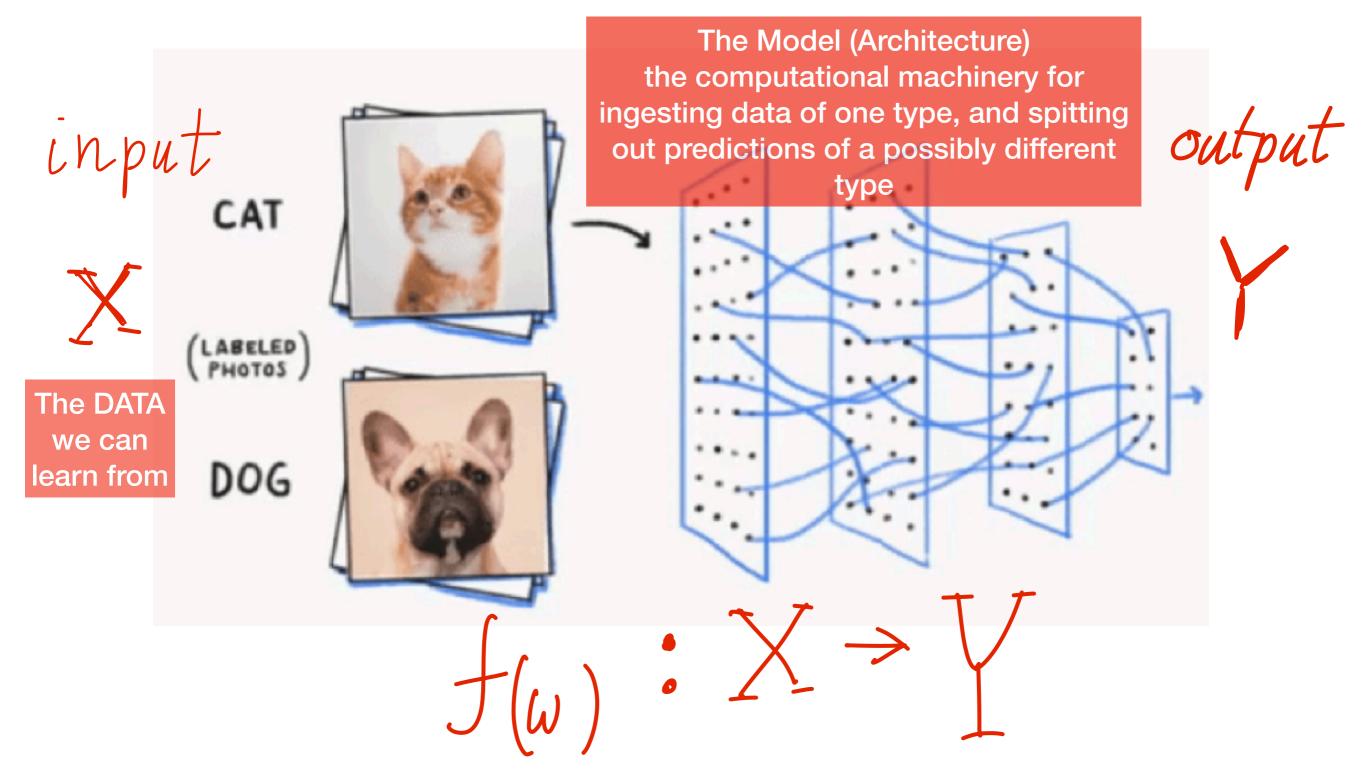


is controlled by weights

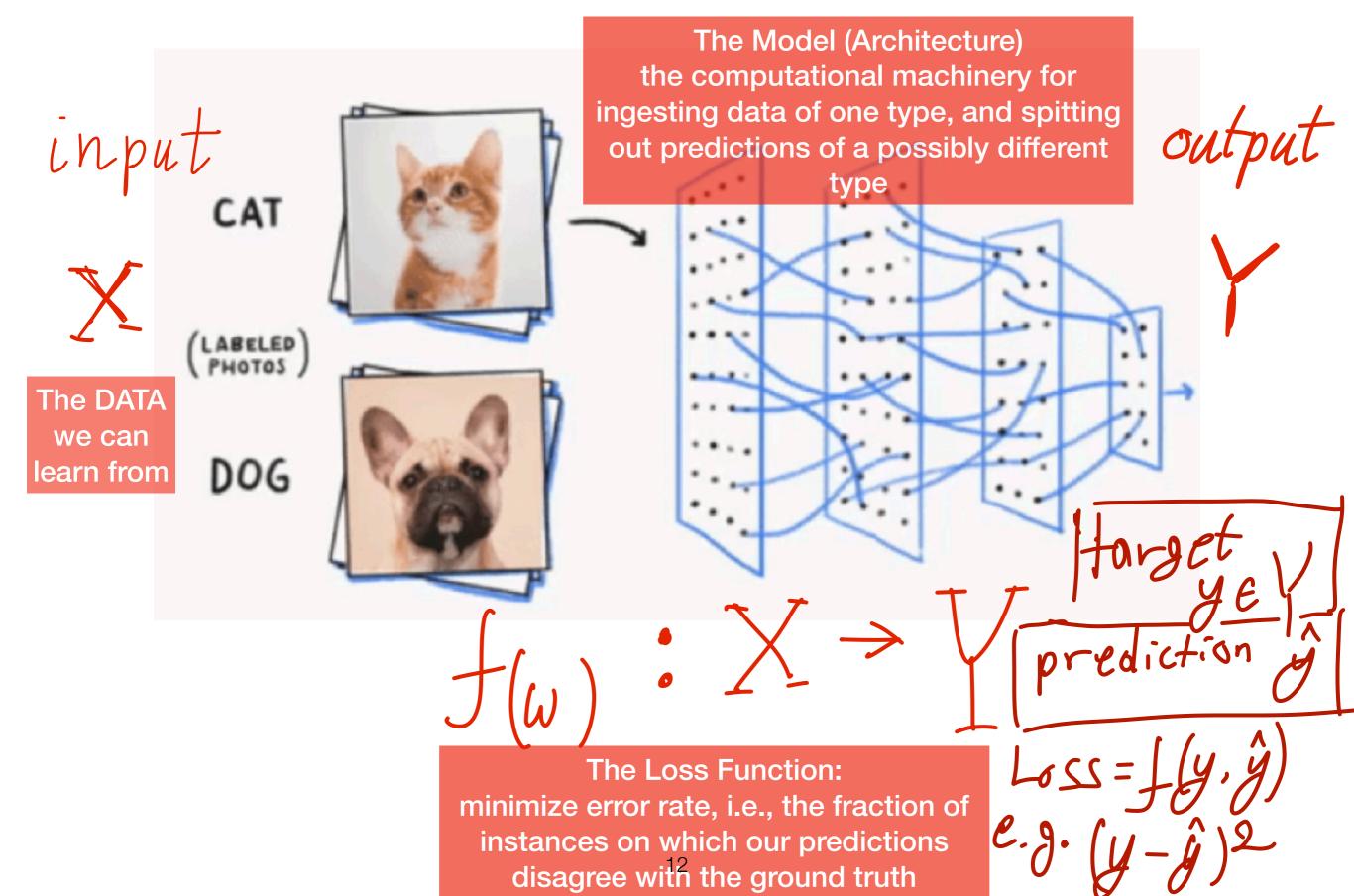
Example: Classification Dog vs Cat



Example: Classification Dog vs Cat



Example: Classification Dog vs Cat



Artificial Intelligence Philosophy

Artificial Intelligence

- The Task: Recognise a Cat
- Easy for people to perform. hard to describ formally

- Recognition of an object, or a spoken word, is many times intuitive, almost automatic, but hard to describe "how do I do it".
- Let computers do what we do, learn from experience

Hierarchy of Concepts

- Chess is a very simple DATA set of objects and rules, yet the play is conceptually extremely complicated and difficult...
- Let the computer understand the world as a hierarchy of concepts, each defined in terms of its relation to a simpler concept
- Concepts are built on top of each other; complicated concepts are built on top of simpler ones... —> DEEP LEARNING approach to Al

DATA representations

- Much of our knowledge is subjective and intuitive
- Computers need to capture this knowledge in order to make intelligent decisions
- The capability to acquire knowledge by extracting patterns from raw DATA is what Machine Learning is all about

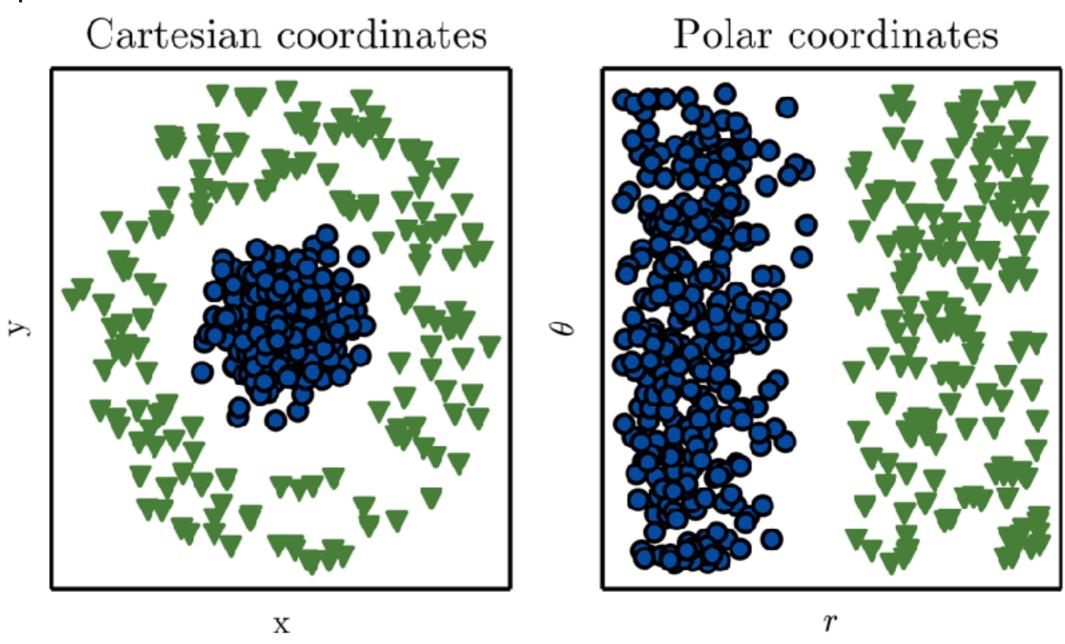
label: DOG

label: CAT

- The performance of a ML algorithm depends heavily on the representation of the DATA they are given.
- Each piece of information given in the representation is called a feature.

DATA representations

Example:



• Choosing the right set of features can make a huge difference in solving a task

DATA representations

- Sometimes its difficult to know which features should be extracted....
- One solution is representation learning, learn the mapping from a representation to a representation... even to itself
- DEEP LEARNING is about expressing representations in terms of simpler ones... The computer builds complex concepts out of simpler concepts
- An Autoencoder encodes a representation of the DATA to a different representation, while the decoder, converts it back to the original representation

Deep "representation" Learning

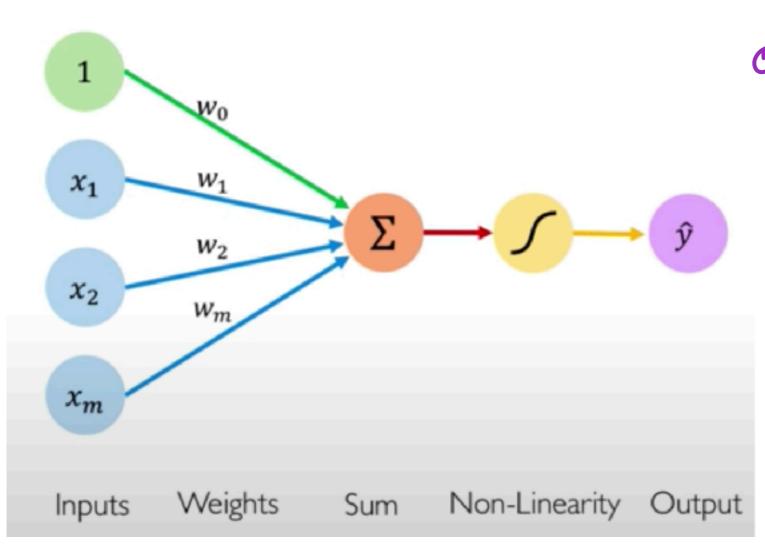
Break the complex presentation into a series of simpler

nested ones Output CAR PERSON (object identity) 3rd hidden layer (object parts) 2nd hidden layer (corners and contours) 1st hidden layer (edges) Visible layer (input pixels)

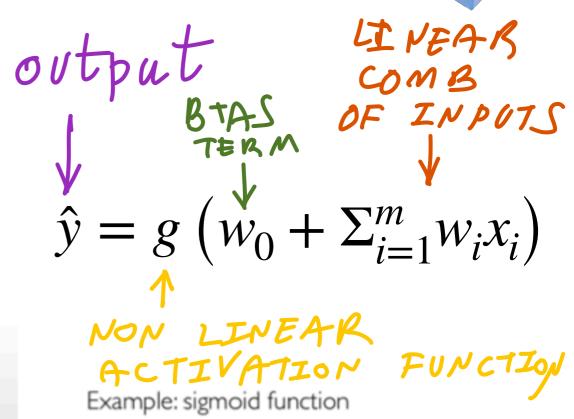
Based on Zeiler and Fergus, 2014

Perceptron

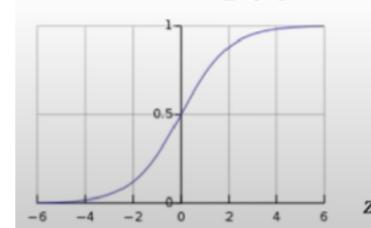
The basic unit of Deep Learning is the Perceptron



http://introtodeeplearning.com/slides/6S191 MIT DeepLearning L1.pdf

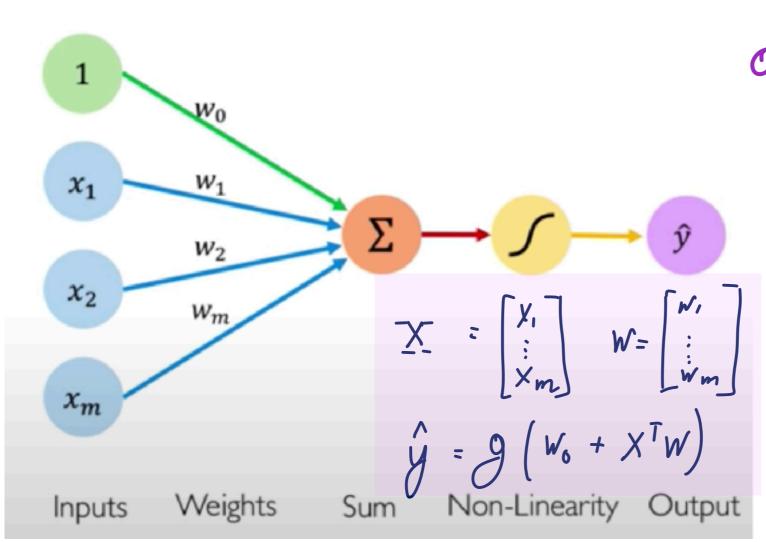


$$g(z) = \sigma(z) = \frac{1}{1 + e^{-z}}$$

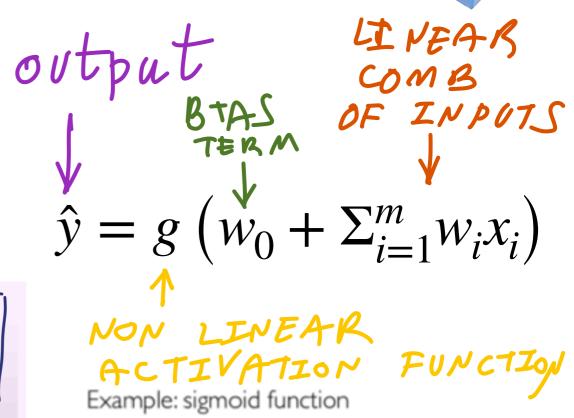


Perceptron

The basic unit of Deep Learning is the Perceptron

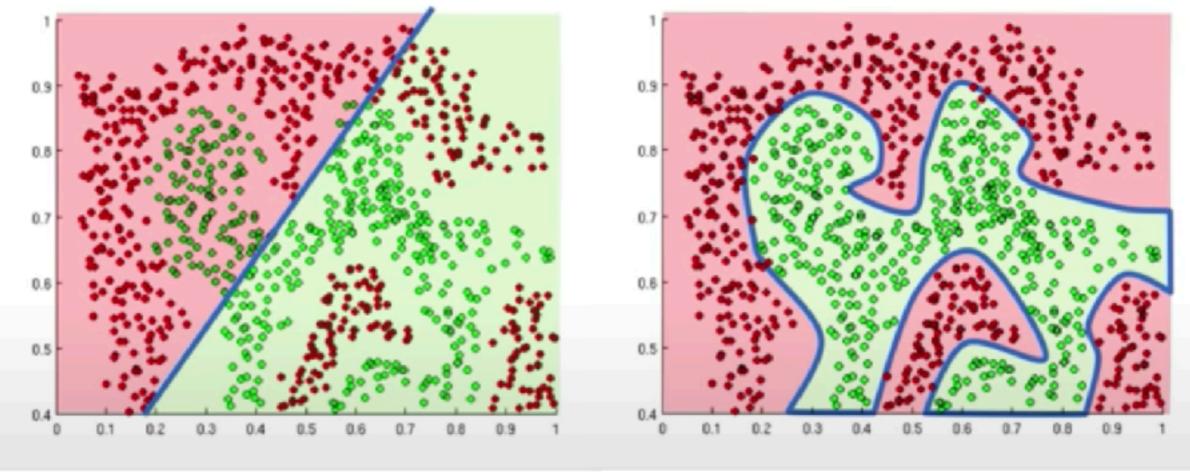


http://introtodeeplearning.com/slides/6S191 MIT DeepLearning L1.pdf



 $g(z) = \sigma(z) = \frac{1}{1 + e^{-z}}$

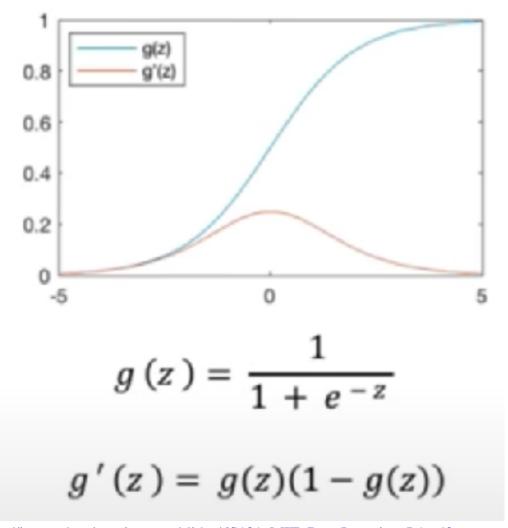
Why non-linearity?



http://introtodeeplearning.com/slides/6S191_MIT_DeepLearning_L1.pdf

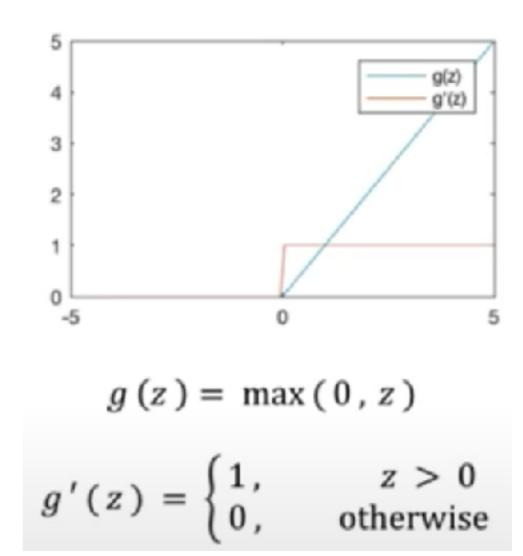
- Linear —> Linear decision boundary
- Non-linear—>Non-linear (complex) decision boundary

Non-Linear Activation Functions



http://introtodeeplearning.com/slides/6S191_MIT_DeepLearning_L1.pdf

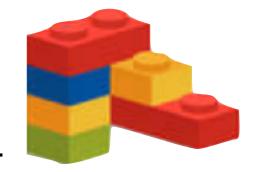
Sigmoid Saturates and kill Gradients



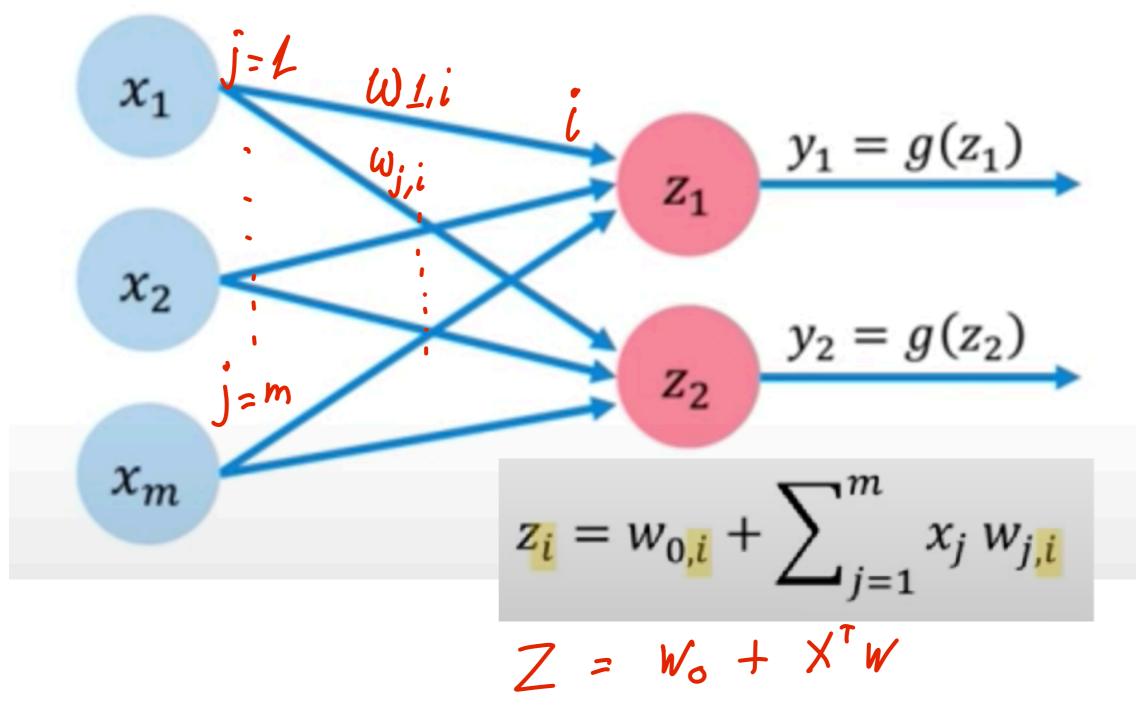
ReLu-Rectified Linear units

Many times you use ReLu for all Hidden Layers and Sigmoid in the final layer as to output a probability (a score between 0 and 1)

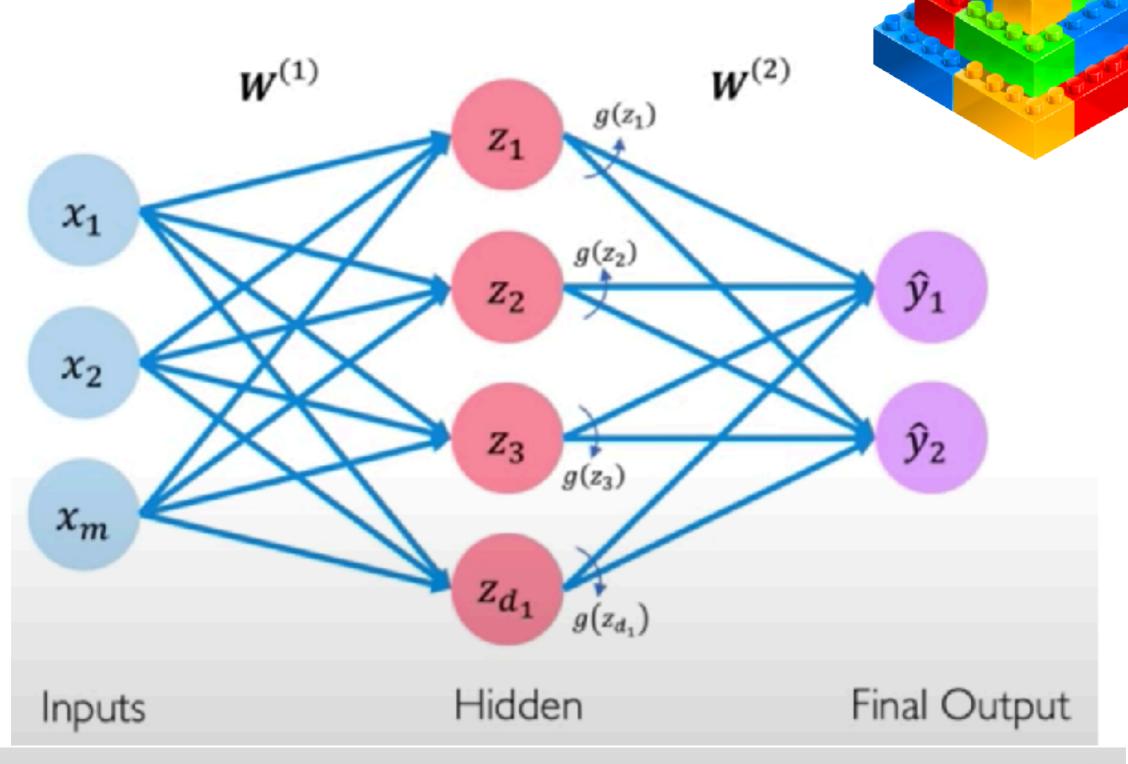
Multi-out Perceptron



 Since all inputs connected to all outputs, we call It DENSED layer



Single Layer Perceptron (NN)

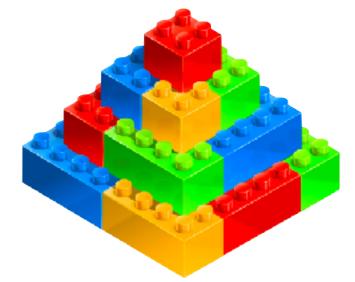


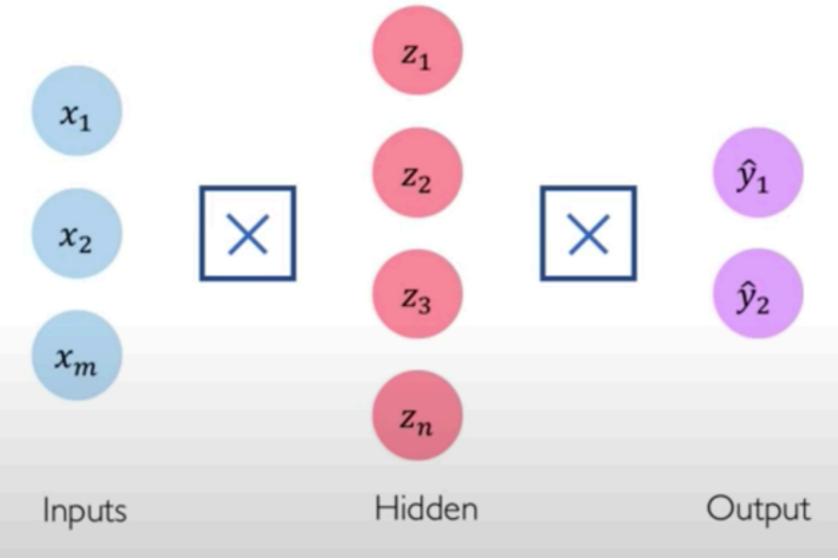
$$z_{i} = w_{0,i}^{(1)} + \sum_{j=1}^{m} x_{j} w_{j,i}^{(1)} \quad \hat{y}_{i} = g \left(w_{0,i}^{(2)} + \sum_{j=1}^{d_{1}} z_{j} w_{j,i}^{(2)} \right)$$

Single Layer Perceptron (NN) $W^{(1)}$ $W^{(2)}$ $g(z_1)$ $g(z_2)$ x_2 Z_3 $g(z_3)$ x_m Z_{d_1} $g(z_{d_1})$

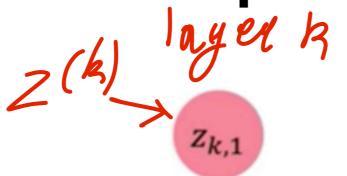
$$Z^{(1)} = w_0^{(1)} + X^{T} W^{(1)}$$

Simplified Drawing





Multi Layer Perceptron (MLP)



 x_1

$$z_{k,3}$$

$$\hat{y}_1$$

$$\hat{y}_2$$

 x_m

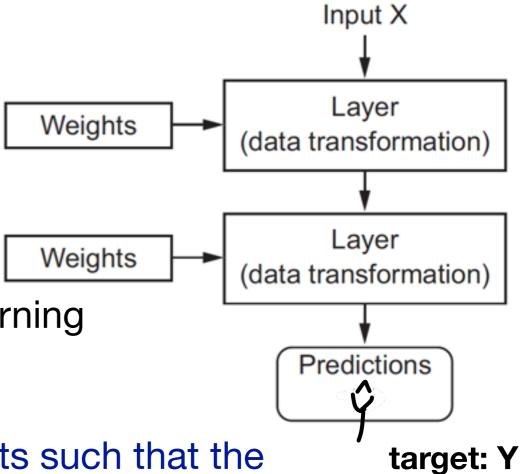
Inputs

$$Z^{(1)} = V_0^{(1)} + X^T W^{(1)}$$

$$Z^{(k)} = W_0^{(k)} + 9(Z^{(k-1)}) \cdot W^{(k)}$$

Summary: Layers & Weights

- Layers extract representation of the DATA fed into them, which are supposed to be more meaningful for decoding the DATA
- Some DATA goes in, and comes out in a more useful form
- Weights control what the layer is doing to it's input DATA
- The depth of the model is the number of layers contribute to the learning process
- GOAL: Find right values for the weights such that the network maps the input to its right target



Loss Optimization

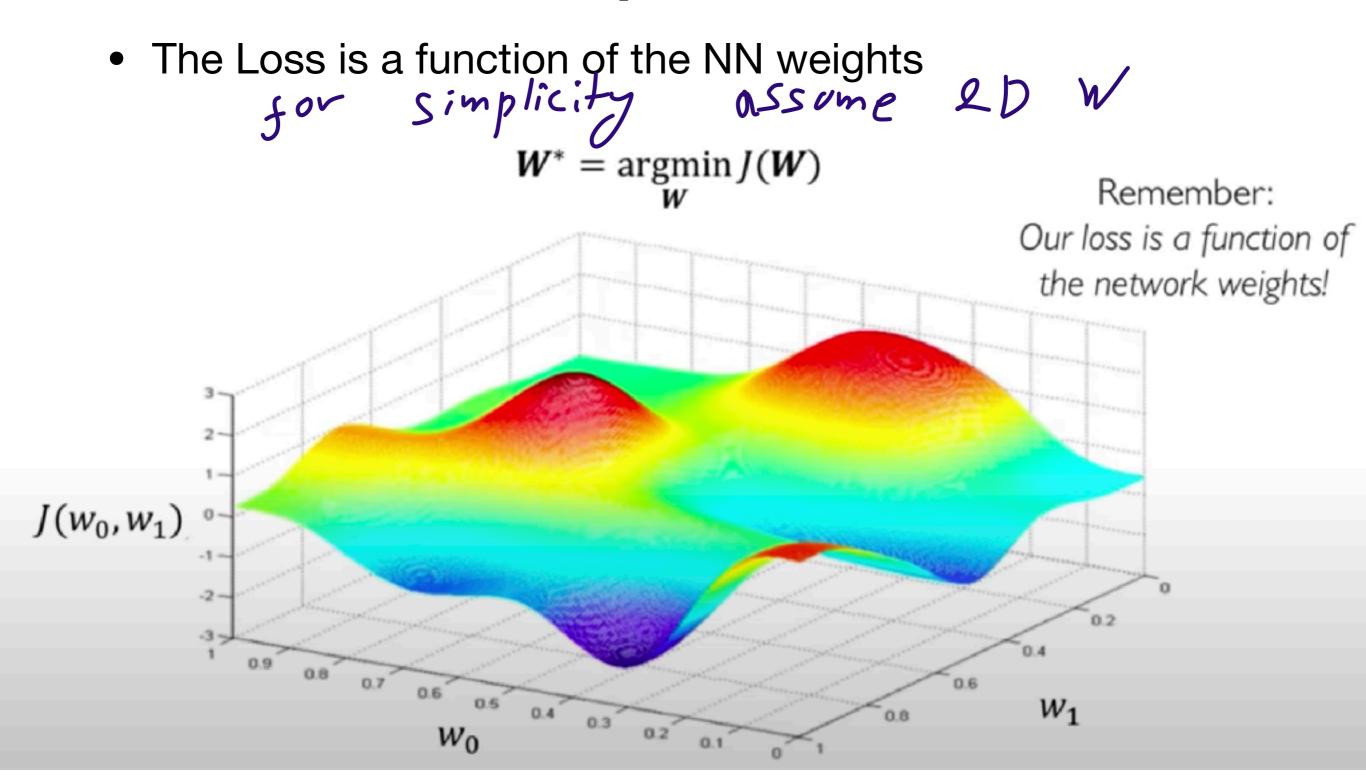
Find the NN weights that give the minimus loss

$$\mathbf{W}^* = \underset{\mathbf{W}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(f(x^{(i)}; \mathbf{W}), y^{(i)})$$

$$\mathbf{W}^* = \underset{\mathbf{W}}{\operatorname{argmin}} J(\mathbf{W})$$

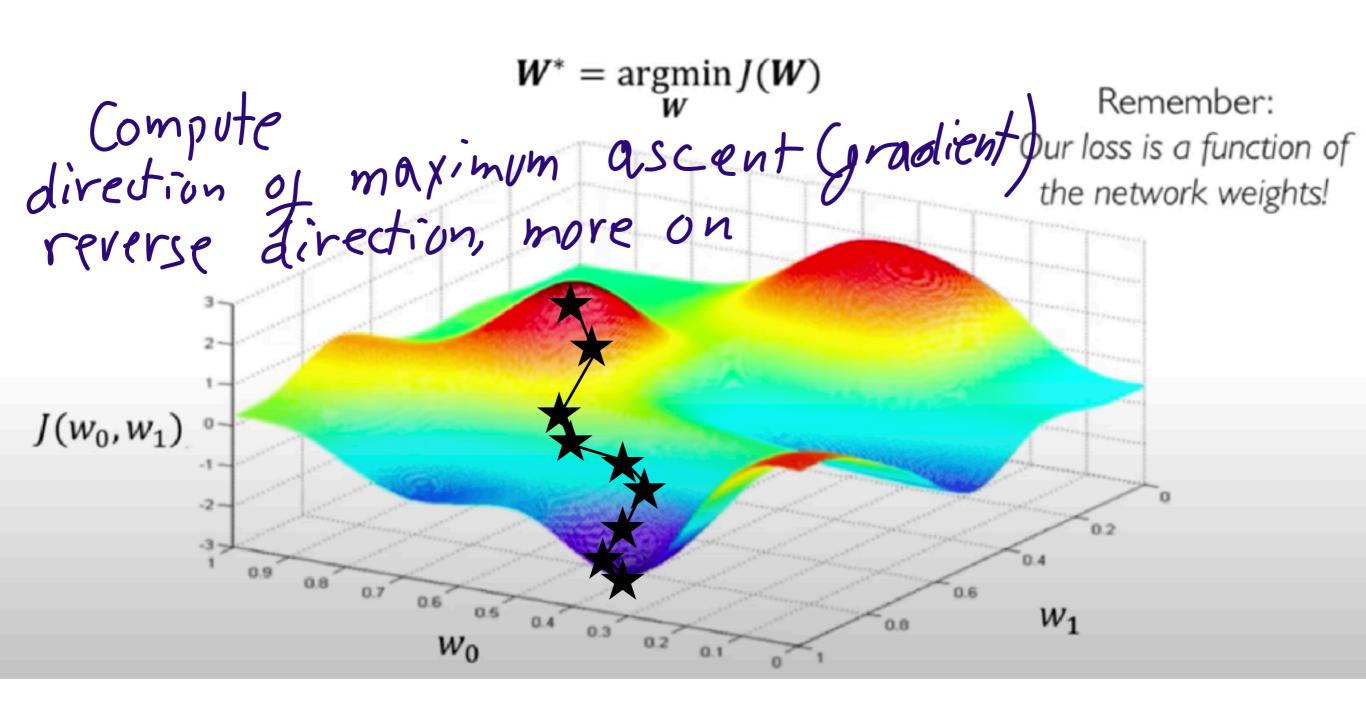
$$\mathbf{W} = \begin{cases} \mathbf{W}^{(i)}, \mathbf{W}^{(i)} \end{cases}$$

Loss Optimization



Loss Optimization: Gradient Descent

The Loss is a function of the NN weights



Gradient Descent

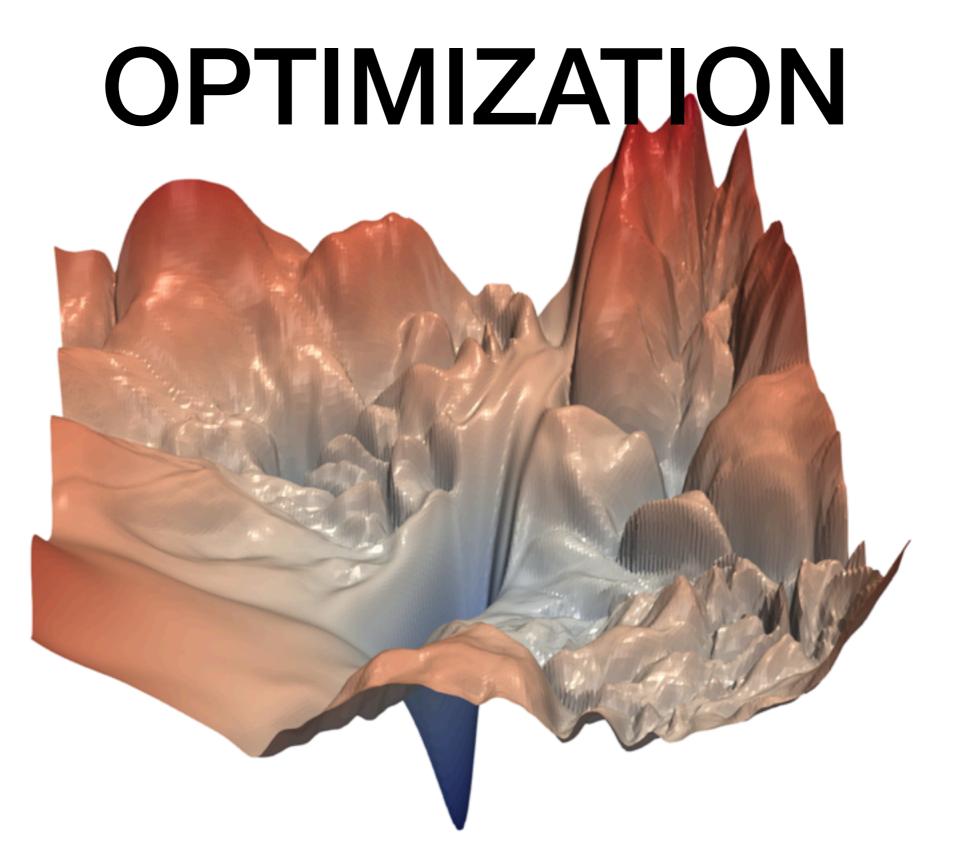
- Algorithm
 - Initialize weights randomly
 - Loop until convergence:

Compute Gradient
$$\frac{\partial J(W)}{\partial W}$$

- Take a step η (the learning rate how fast you want to achieve the goal)
- Update weights in the opposite direction $W \rightarrow W^{-1} \frac{\partial J(W)}{\partial J(W)}$
- Return weights

BACKPROPAGATION

- Backpropagation is the algorithm that computes the gradient of a loss function with respect to the weights of the NN in an efficient way
- It is essential to do so in an efficient way in order to cope with Multi Layer Networks.
- Backpropagation is calculating the gradient iterating backwards from the last layer to the network input
- ->next lecture



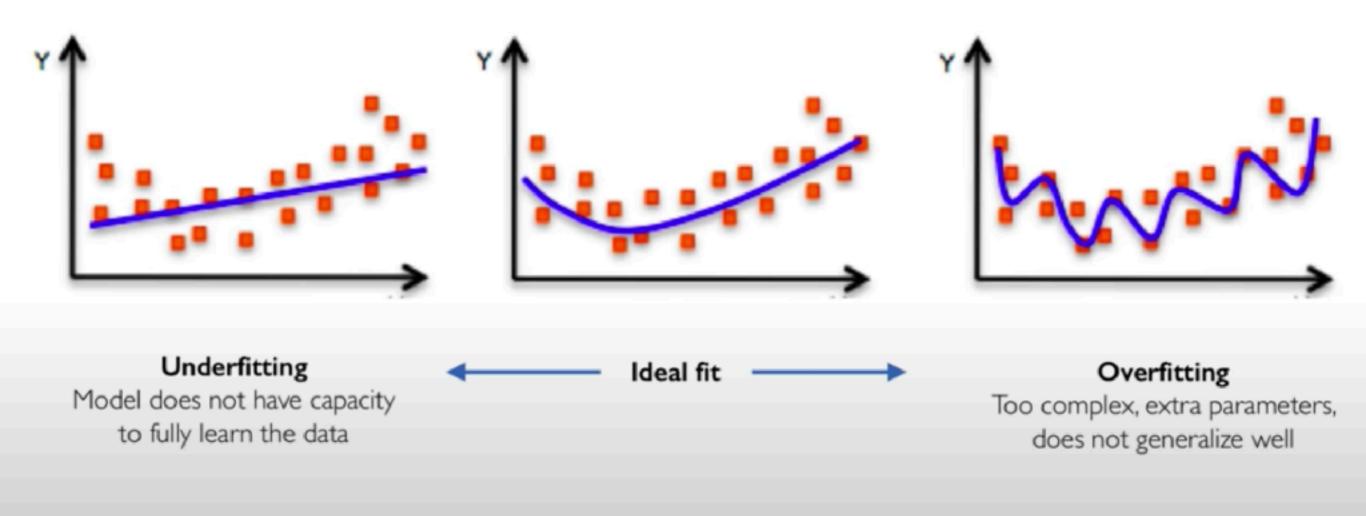
https://papers.nips.cc/paper/7875-visualizing-the-loss-landscape-of-neural-nets.pdf

Optimization of NN

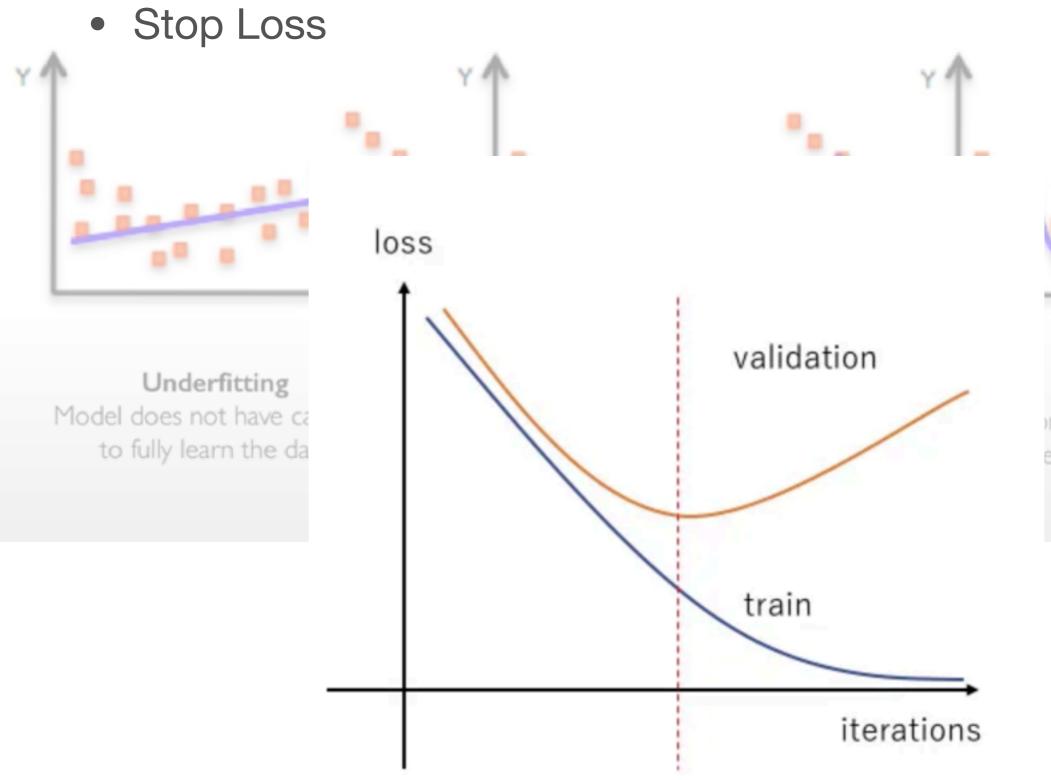
Optimization through gradient descent

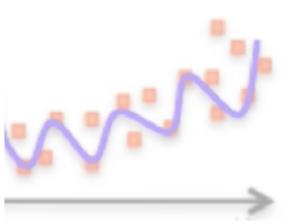
$$W \leftarrow W - \frac{\partial J(W)}{\partial W}$$
How can we set the learning rate?

Overfitting



Overfitting





Overfitting emplex, extra parameters, es not generalize well

Training

 We divide our labeled DATA into~80% training and 20% validation (sometimes also keep some DATA for test)

- In each epoch we run
 on a batch (1000s of
 samples) and adjust the weights
- Our success is measured by the accuracy of our predictions
- This gap between training accuracy and test accuracy is overfitting:
 Overfitting is a central issue

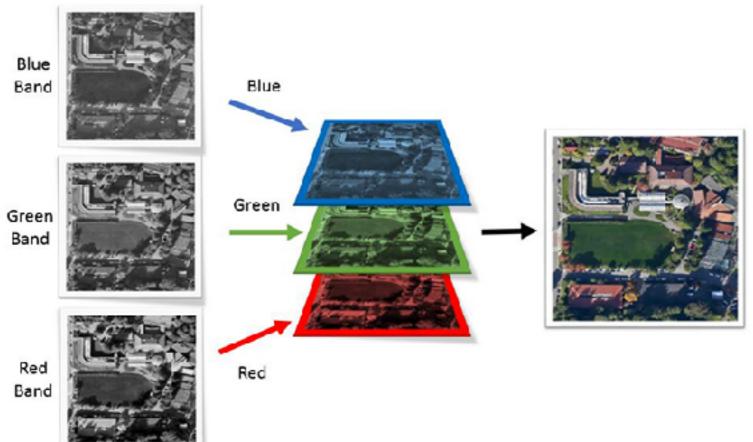
DEEP NN

- A shallow network (a few layers) can do the work but it might require an enormous number of units (neurons) per layer
- Deep Networks seem to suffer from the problem of vanishing gradient as you back propagate deeper and deeper
- Some argue that the most important innovation in deep learning applied to image processing is the CNN (Convolutional NN)

Convolutional NN CNN

Vision

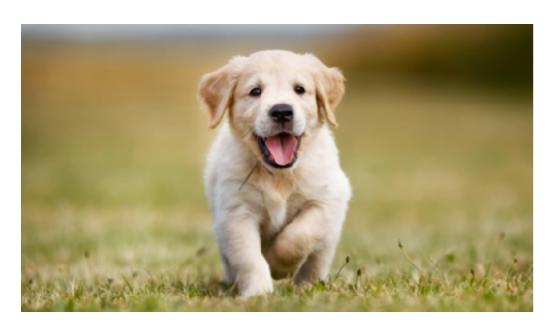
- Vision is an essential part of our lives
- How does a computer process an image...
- For a computer an image is coded pixels

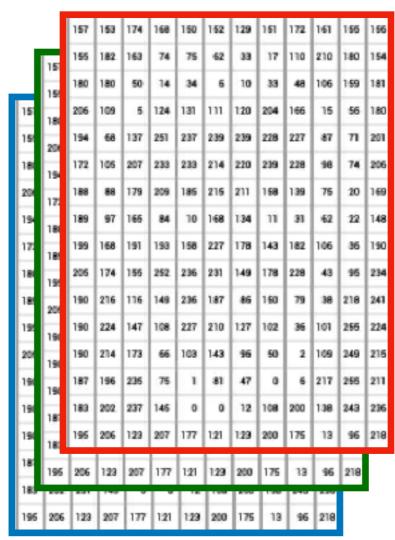


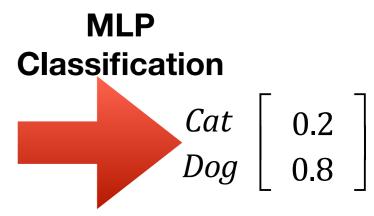
157	153	174	168	150	152	129	151	172	161	155	166
155	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	106	159	181
206	109	5	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	n	201
172	106	207	233	233	214	220	239	228	98	74	206
188	88	179	209	186	216	211	158	139	76	20	166
189	97	166	84	10	168	134	n	31	62	22	148
199	168	191	193	158	227	178	143	182	106	36	190
205	174	155	252	236	231	149	178	228	43	95	234
190	216	116	149	236	187	86	160	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	96	50	2	109	249	216
187	196	235	75	1	81	47	0	6	217	255	211
183	202	237	146	0	0	12	108	200	138	243	236
196	206	123	207	177	121	123	200	175	13	96	216

An image is a matrix of numbers [0,255]

Classification

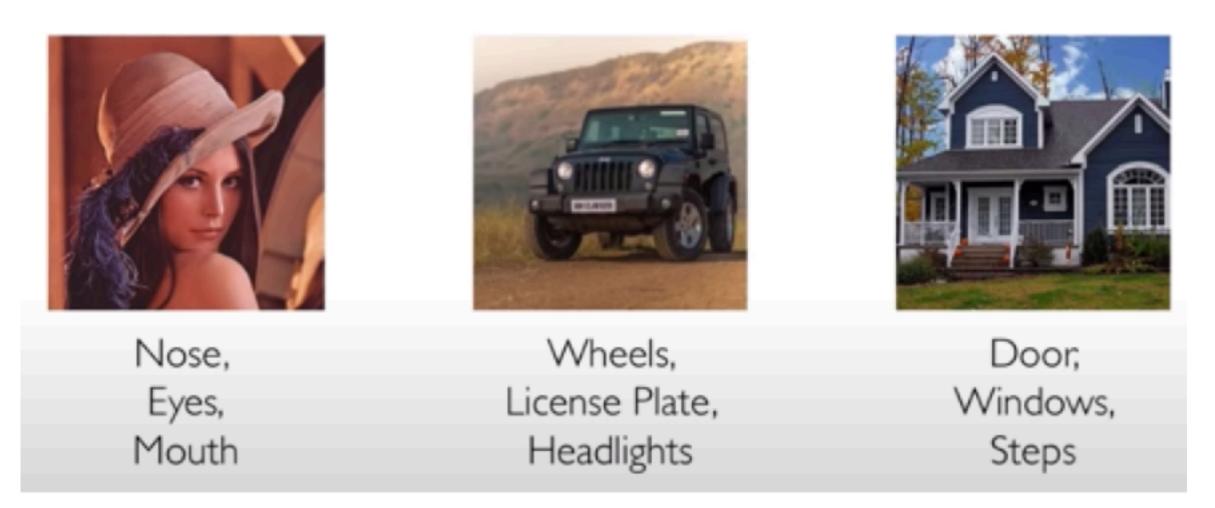






High Level Features

- How do we do it?
- Detect specific characteristic features



 We could tell the computer what are the features to look for but this is extremely difficult due to variations of images

Image Variations

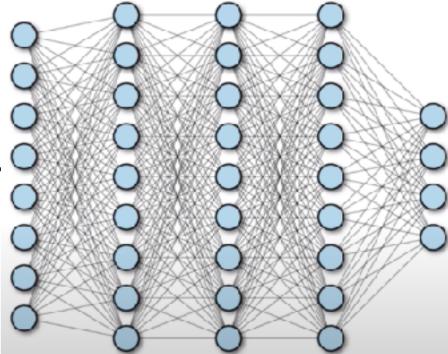
• Different angle, rotations, translations

Scale

Intra class variations

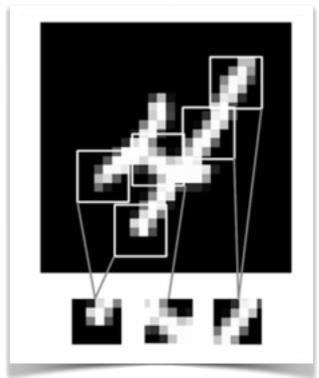
Learning Features, How?

- We are looking for a way to extract features automatically in an hierarchical fashion.
- We want to learn features directly from DATA, without pre define the features...
- NN allow to do the above....
- But will a fully connected NN sufficient?
- The 2D image will be mapped to a vector All spatial information will be LOST!
- How can we use the spatial information and introduce scale and translation invariance?

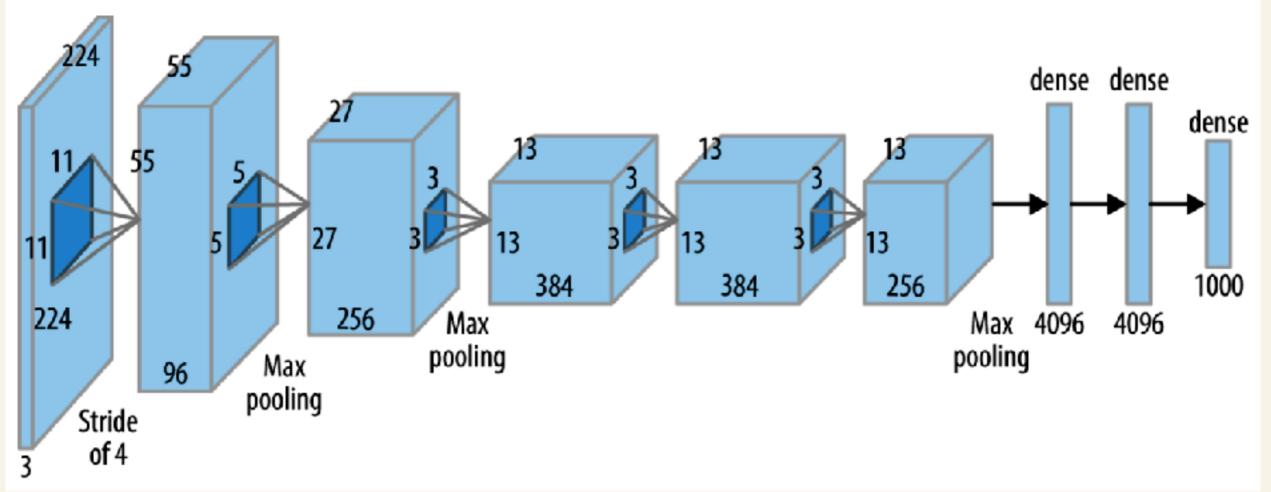


A CNN

- CNN (Convolutional Neural Network -CONVNET) is made of layers that preserve the spatial characteristics of an image
- Dense Layers (CL) learn global patterns, CNN learn local patterns
- It is translational invariant,
 highly data efficient on perceptual problems



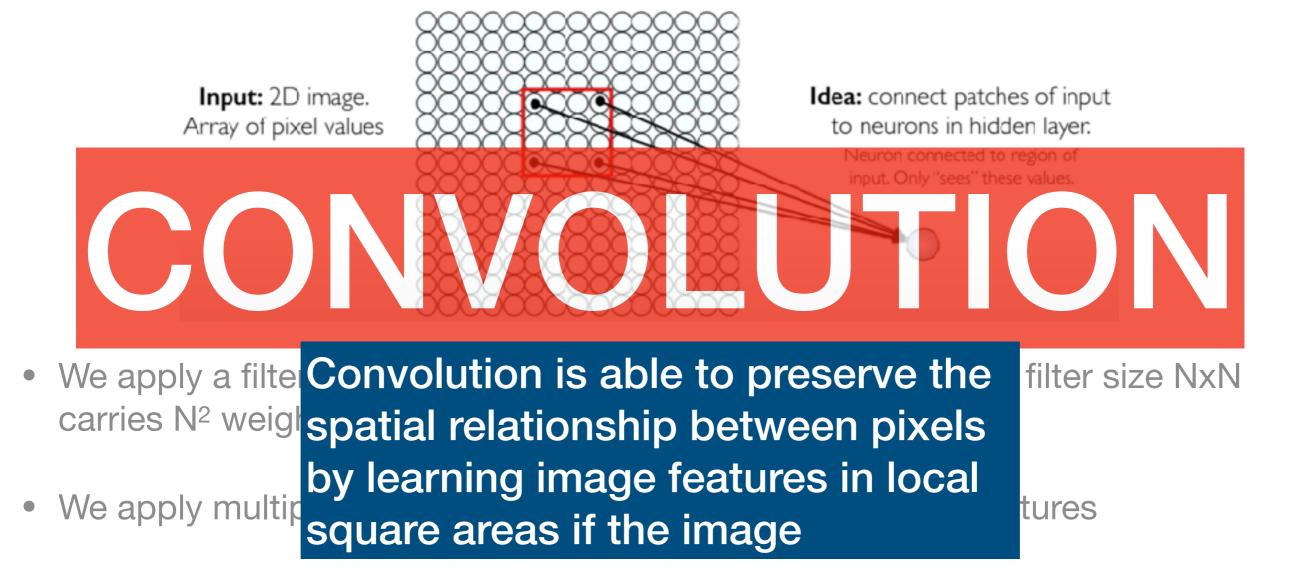
Convolutional NN (CNN)



- A Fully Connected dense layers NN learn global patterns, CNN learn local patterns
- CNN (Convolutional Neural Network CONVNET) is made of layers that
 preserve the spatial characteristics of an image
- CNN is based on SHARED WEIGHTS, which reduces the dimensionality of the problem and introduces translation invariance, highly data efficient on perceptual problems

Visual Reception Field

• A neuron in the hidden layer sees only a patch of the image: Number of weights is reduced, and the spatial relation between pixels is kept.



• The same filter is used via a sliding window all over the image, weights are shared, so it does not care where in the image a feature appears.... (invariance)

Introducing Convolution

Image

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

Kernel

1	0	1
0	1	0
1	0	1

Kernel is a feature detector of the input layer Kernel is also called a **filter**

$(f*g)(x) = \sum^{+\infty} f(u)g(x-u)$
$u=-\infty$

1,	1 _{×0}	1,	0	0
0 ×0	1,	1,0	1	0
0,	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

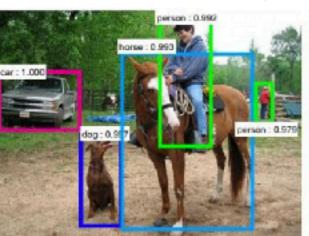
4	

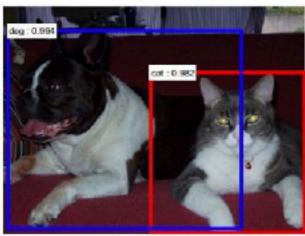
Image

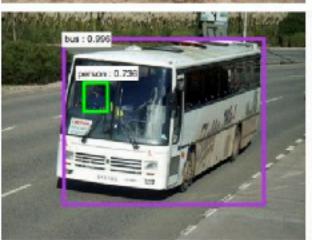
Convolved Feature

The convolved image is also called a **Feature Map** or **Activation Map**

 Detection (Self Driving Cars) & Segmentation (pixel by pixel probability for objects)







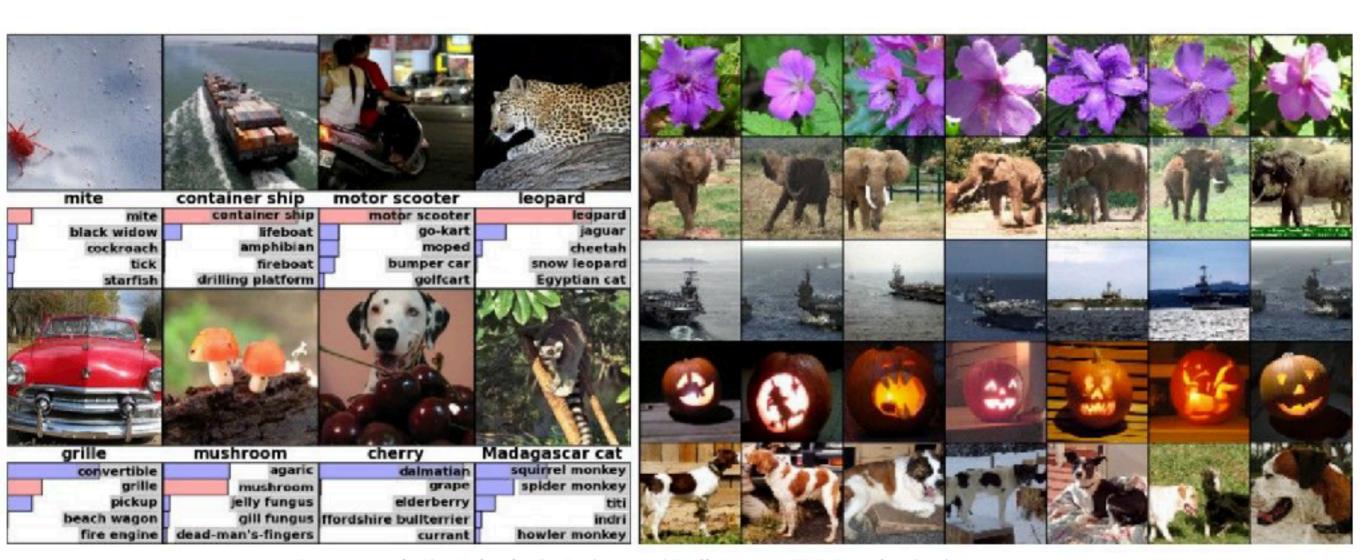
Figures copyright Shaoqing Ren, Kaiming He, Ross Girschick, Jian Sun, 2015. Reproduced with permission.

[Faster R-CNN: Ren, He, Girshick, Sun 2015]

Figures copyright Clement Farabet, 2012. Reproduced with permission.

[Farabet et al., 2012]

Classification & Retrieval (Similarity Matching, Google Images)



Figures copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

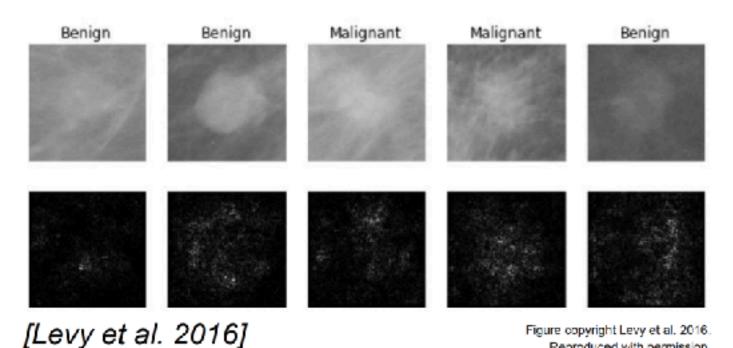
Face Recognition

Pose Recognition

Images are examples of pose estimation, not actually from Toshev & Szegedy 2014. Copyright Lane McIntosh.

[Toshev, Szegedy 2014]

 Medical Images, Street Sign Recognition, Classification of Galaxies



[Dieleman et al. 2014]

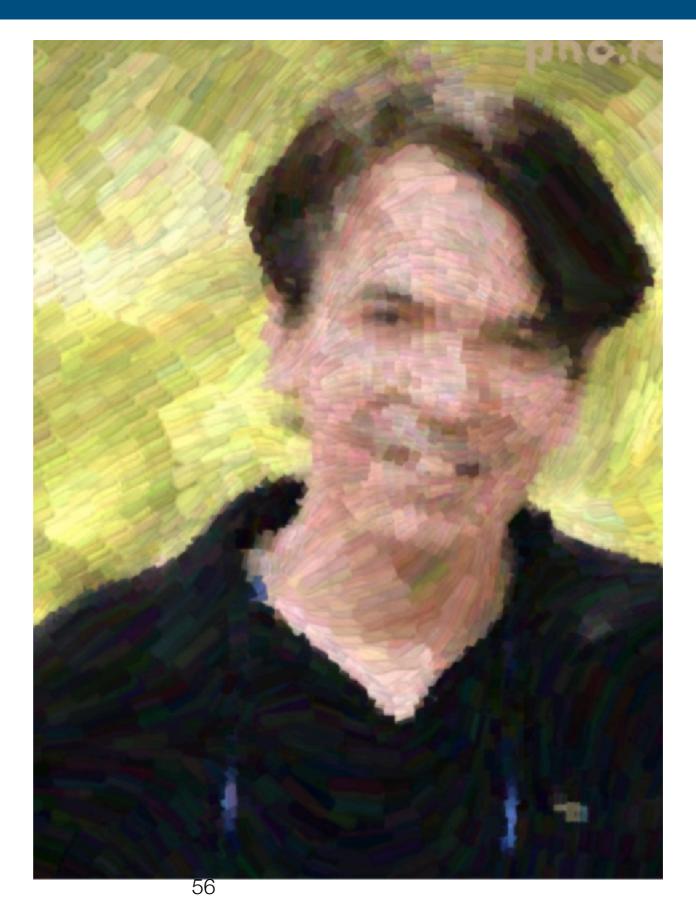
From left to right: <u>public domain by NASA</u>, usage <u>permitted</u> by ESA/Hubble, public domain by NASA, and public domain.

Reproduced with permission.

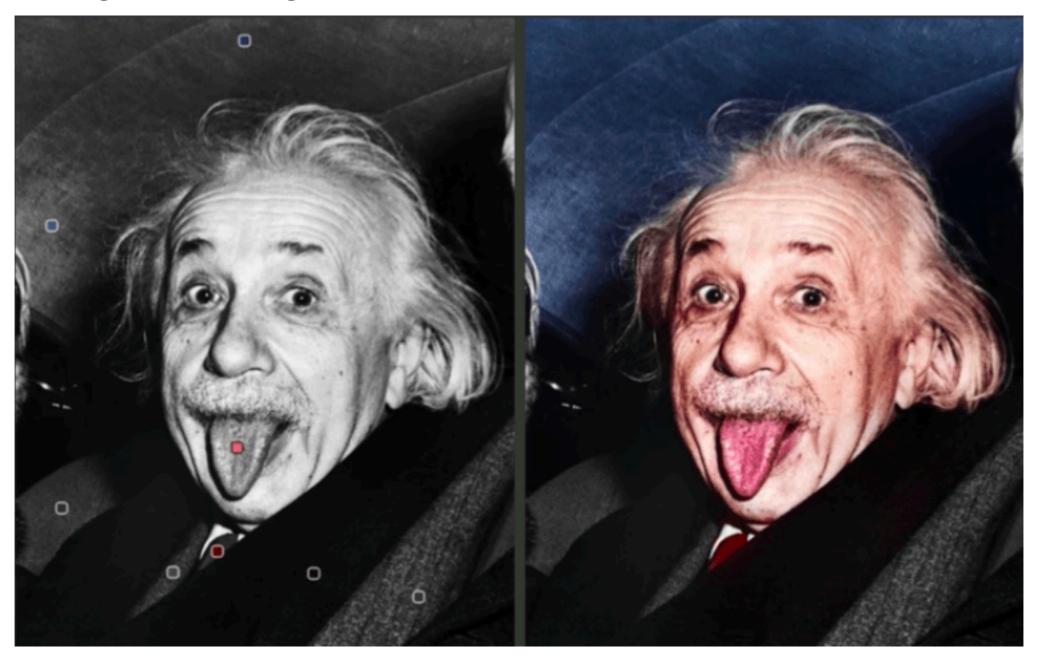
[Sermanet et al. 2011] [Ciresan et al.]

Photos by Lane Mointosh. Copyright CS231n 2017.

Rendering Images
 Van Gogh style



Colorizing BW Images



Richard Zhang, Adobe Research

 Let the computer recognize scenes and suggest a relevant caption

a soccer player is kicking a soccer ball

a street sign on a pole in front of a building

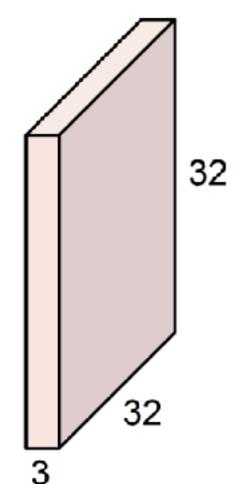
a couple of giraffe standing next to each other

Here we want

Convolution Layer
A set of learnable filters that

produce activation maps

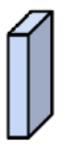
32x32x3 image



Filters always extend the full depth of the input volume

preserve spotial,

5x5x3 filter



Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

We can put as many filters as we like The number of filters define the DEPTH of the resulting layer

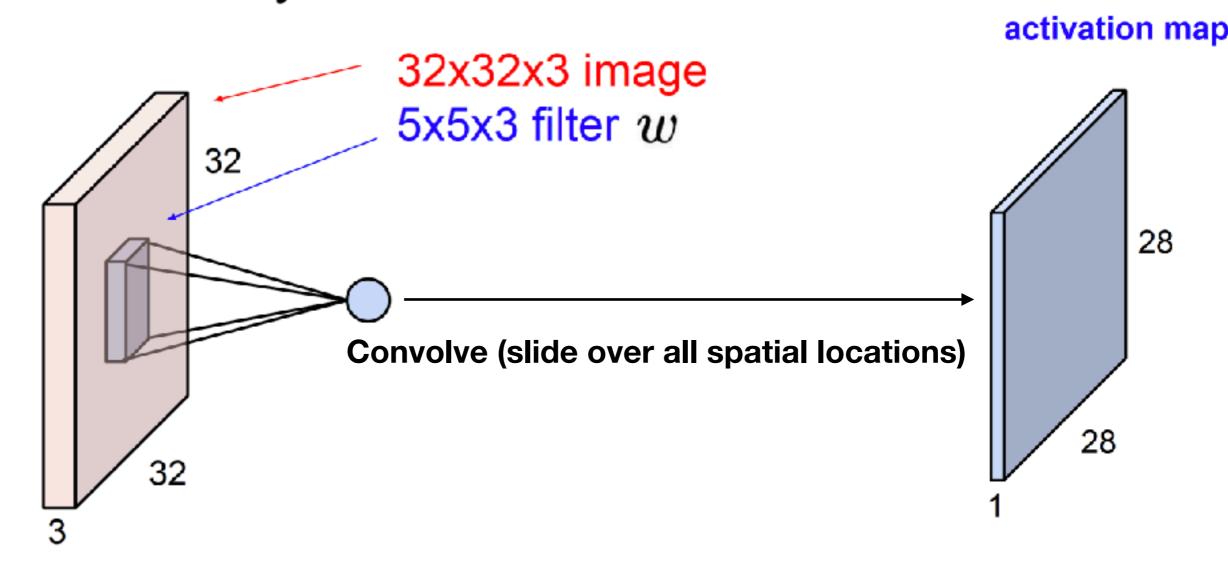
 The weights are shared, and a feature map is represented by 5x5x3+1=76 parameters

Convolution Layer



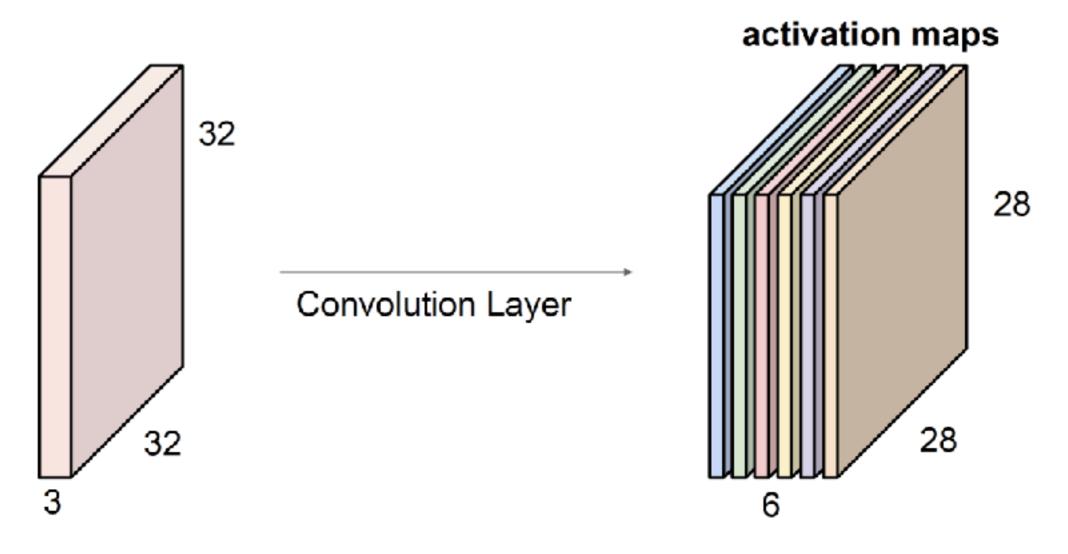
 The weights are shared, and a feature map is represented by 5x5x3+1=76 parameters

Convolution Layer



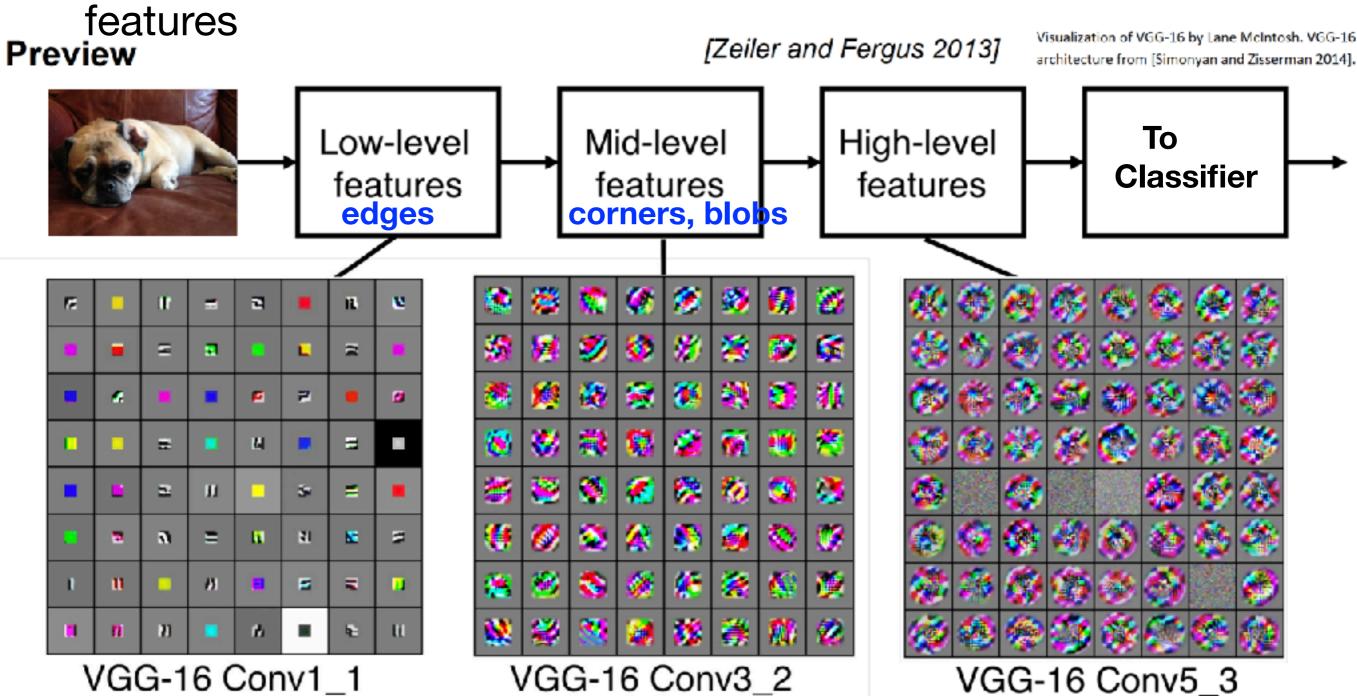
Stacking activation maps, each learns different features

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:



We stack these up to get a "new image" of size 28x28x6!

 As we go deeper in the net we strat to probe higher level features



Unsupervised Learning Auto Encoders

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y) x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

Unsupervised Learning

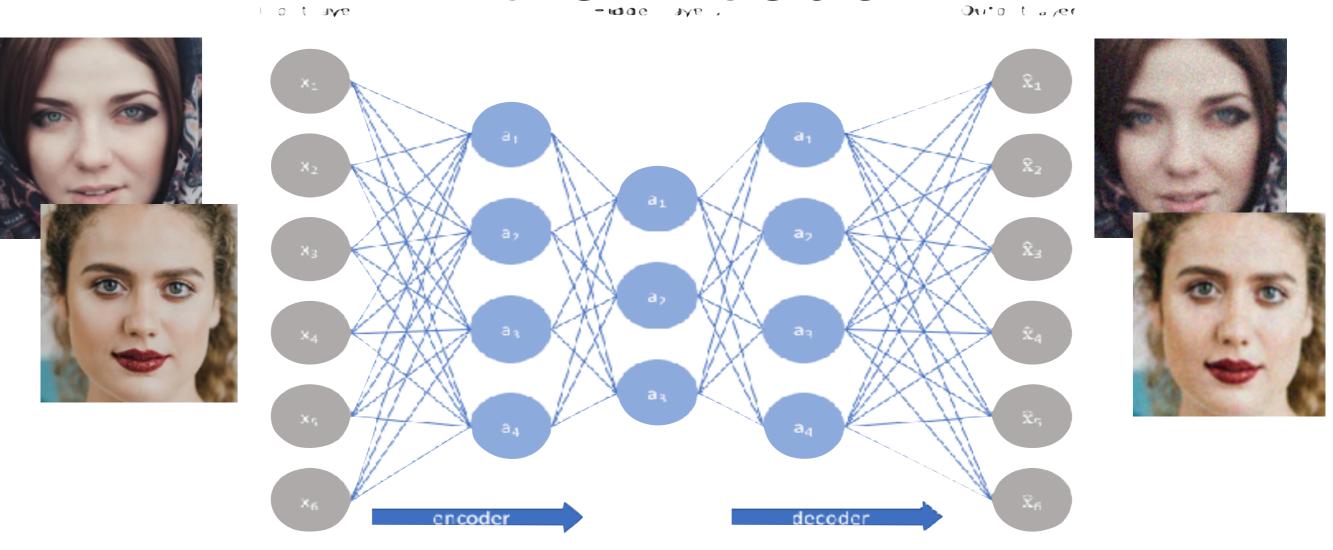
Data: x
Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

No need for annotation
 Examples: Clustering,
 dimensionality reduction, feature
 learning, density estimation, etc.

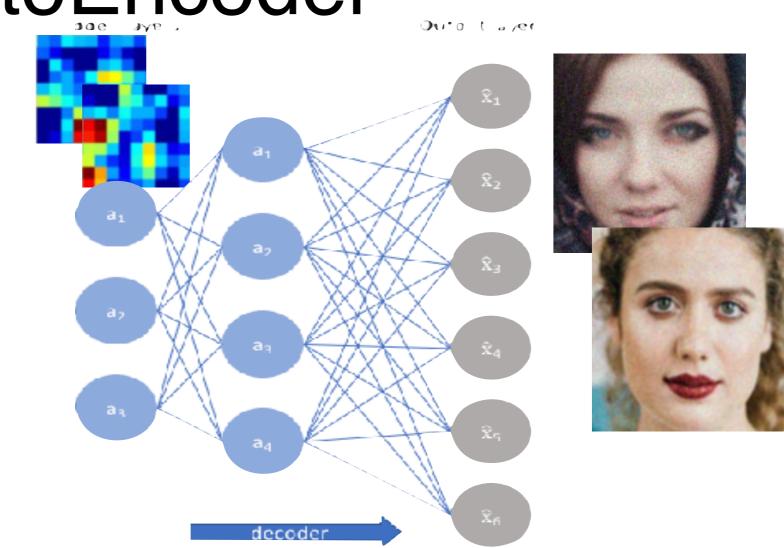
 If we manage to understand the underlying features of our DATA, it's a huge step towards understanding the visual world around us

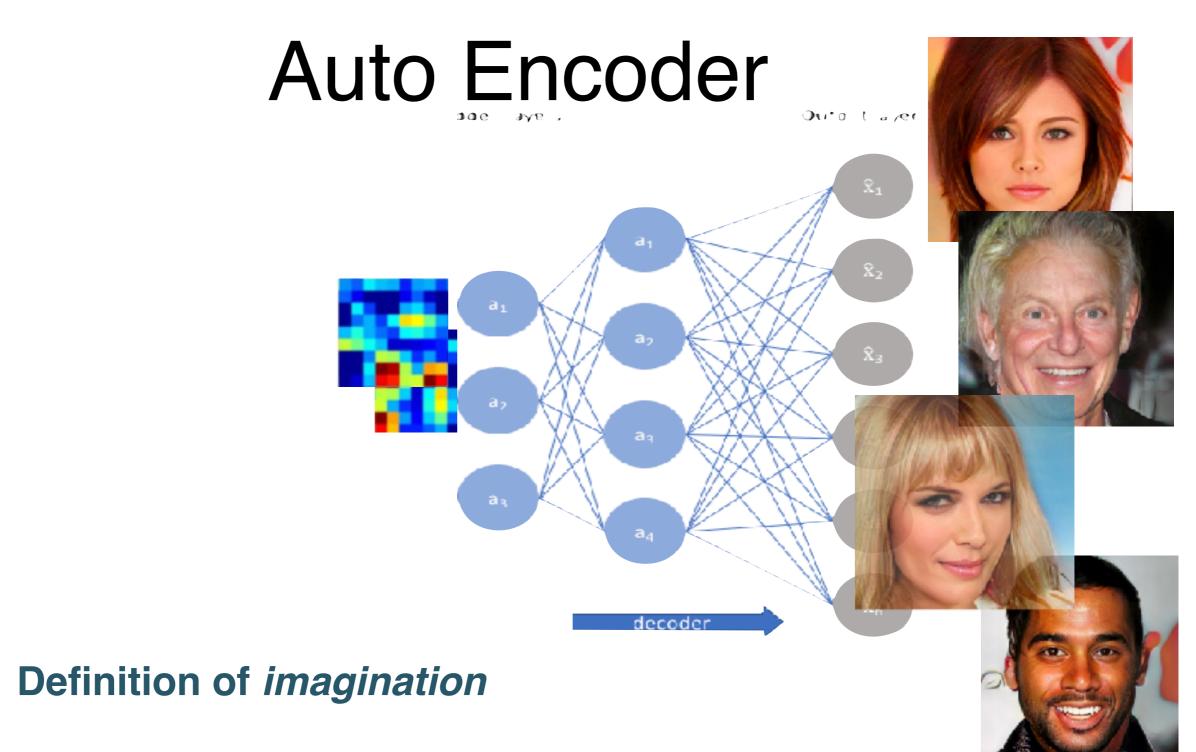
AutoEncoder



AutoEncoder Duro 1 0/81 1 0 1 JVB encoder

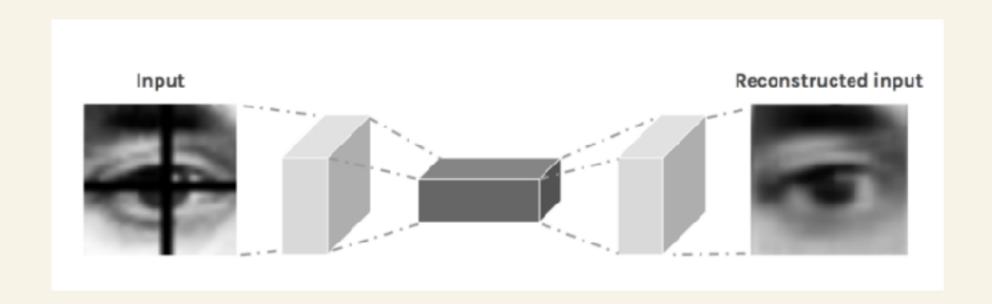
AutoEncoder



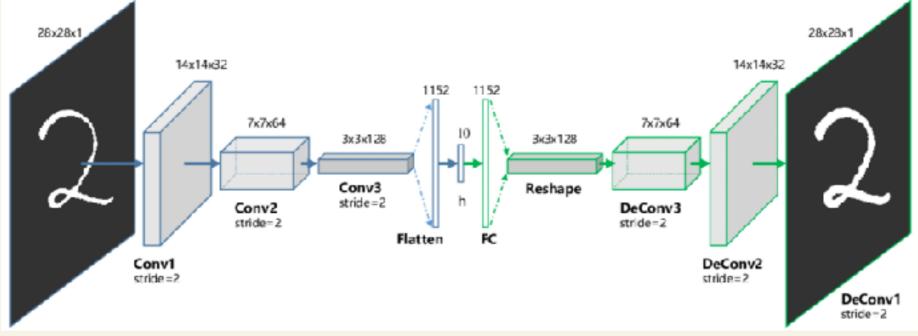


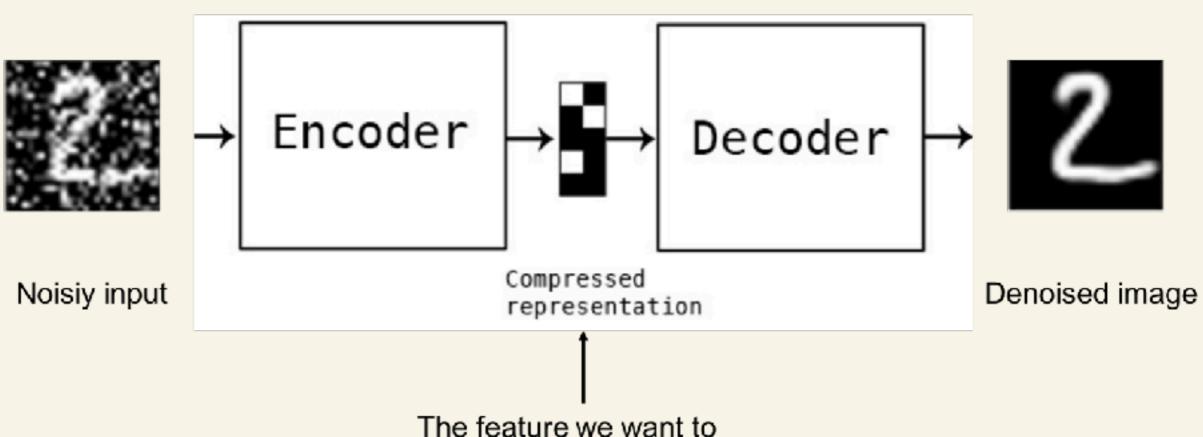
the act or power of forming a mental image of something not present to the senses or never before wholly perceived in reality

Traditional Autoencoders



Denoisina Autoencoder

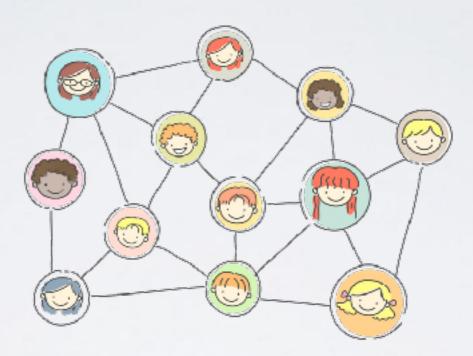




extract from the image

Graph Neural Nets

Data can often be represented as a graph



https://edorado93.github.io/2017/12/10/Deep-Dive-Into-Graph-Traversals-227a90c6a261/

Social networks, molecules, planets in a solar system, particles in a gas, road networks, computer networks, covid-19 patients, etc.

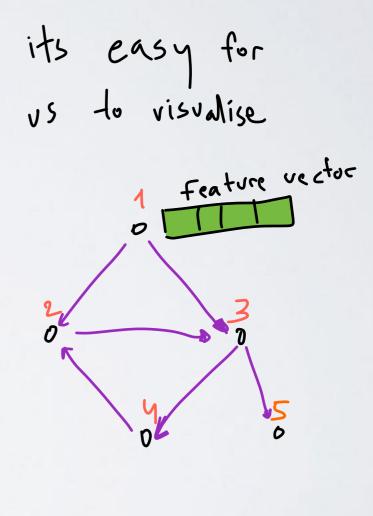
a graph

It's a data structure. It's made from nodes and edges. Nodes and edges have "features" or "attributes"

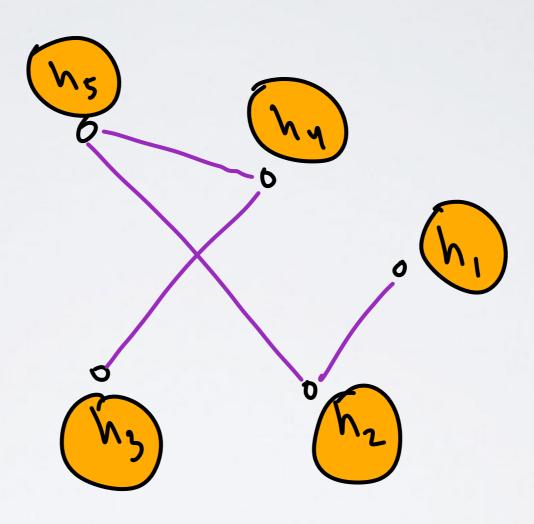
The order of the nodes/edges in this table is arbitrary

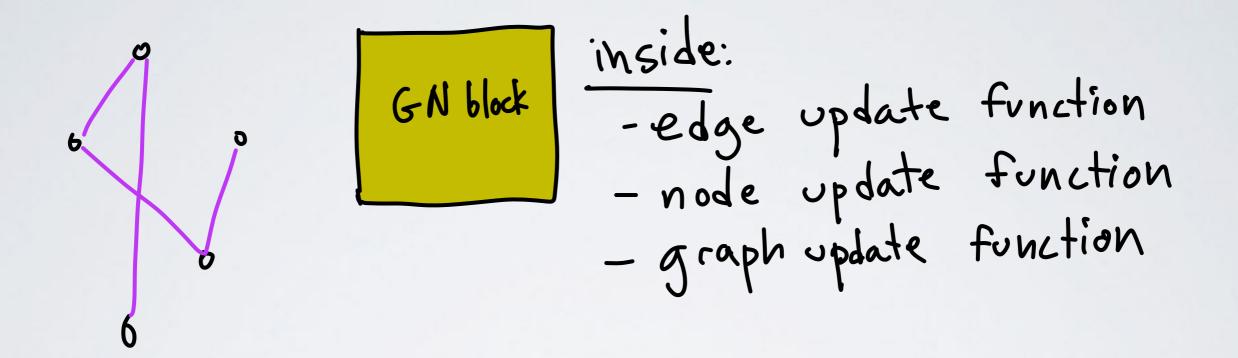
no de	5
index	Features
1	
2	
3	
4	
5	

edges		
index	start/end	features
1	3 -> 4	
2	1->2	
3	4 → 2	
٩	1 -> 3	
5	2 ->3	
6	$3 \rightarrow 5$	

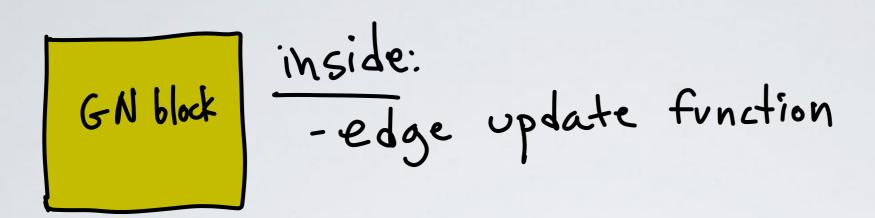


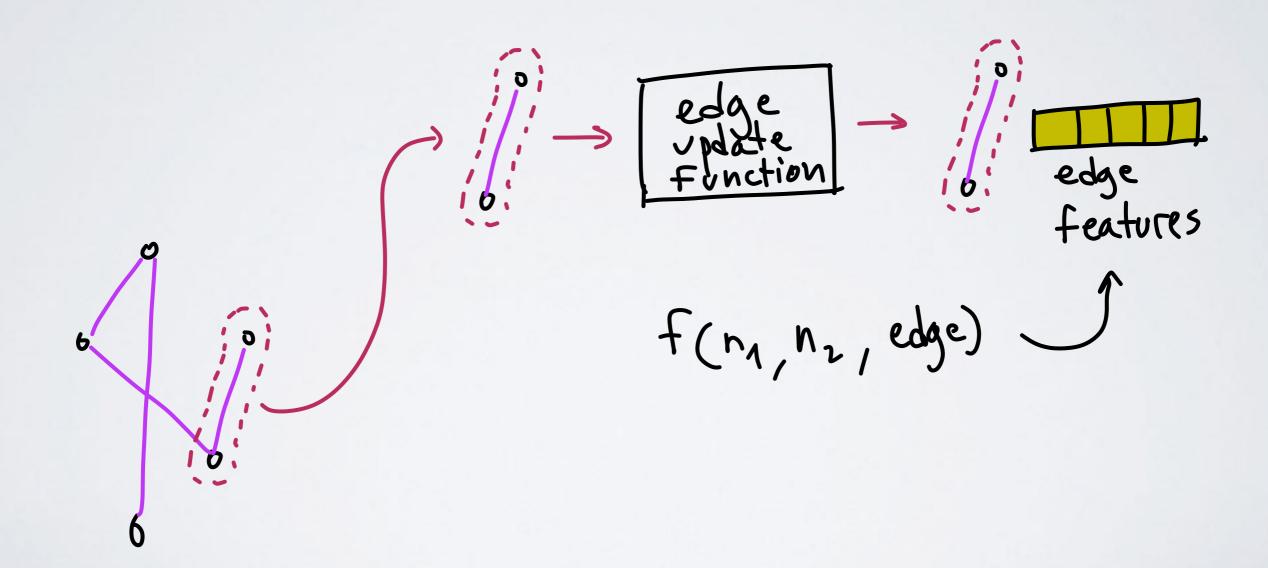
the '6N block'
it updates the node/edge/graph features features Before features after In the GNN, there is a hidden state on each node - and we want to "update" it so it contains information from the rest of the graph

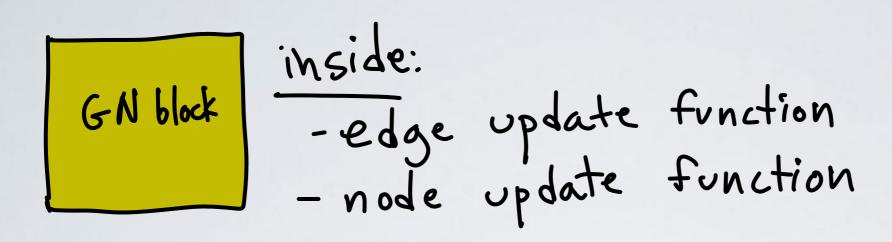


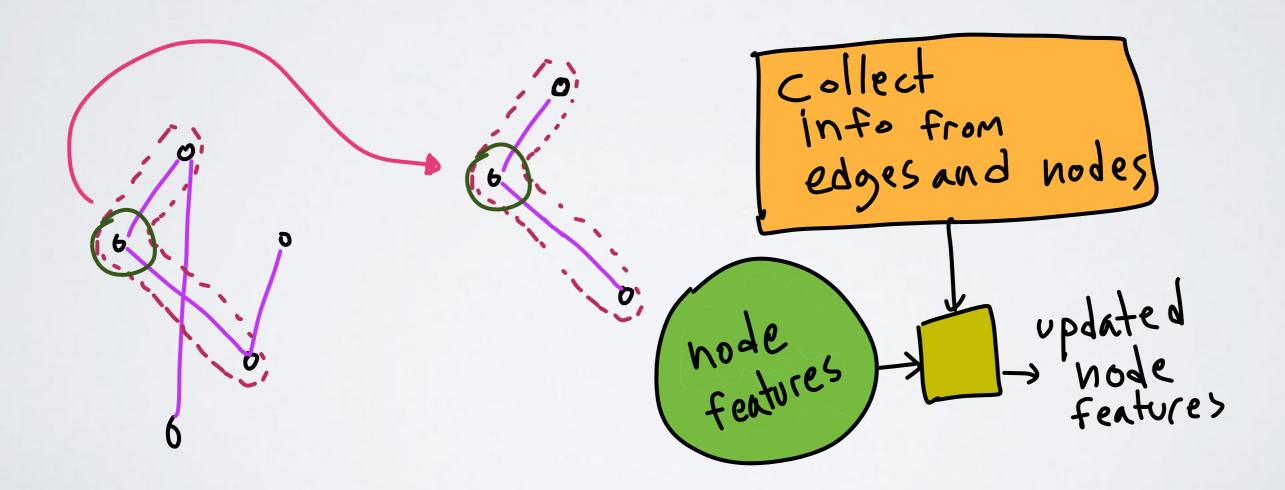


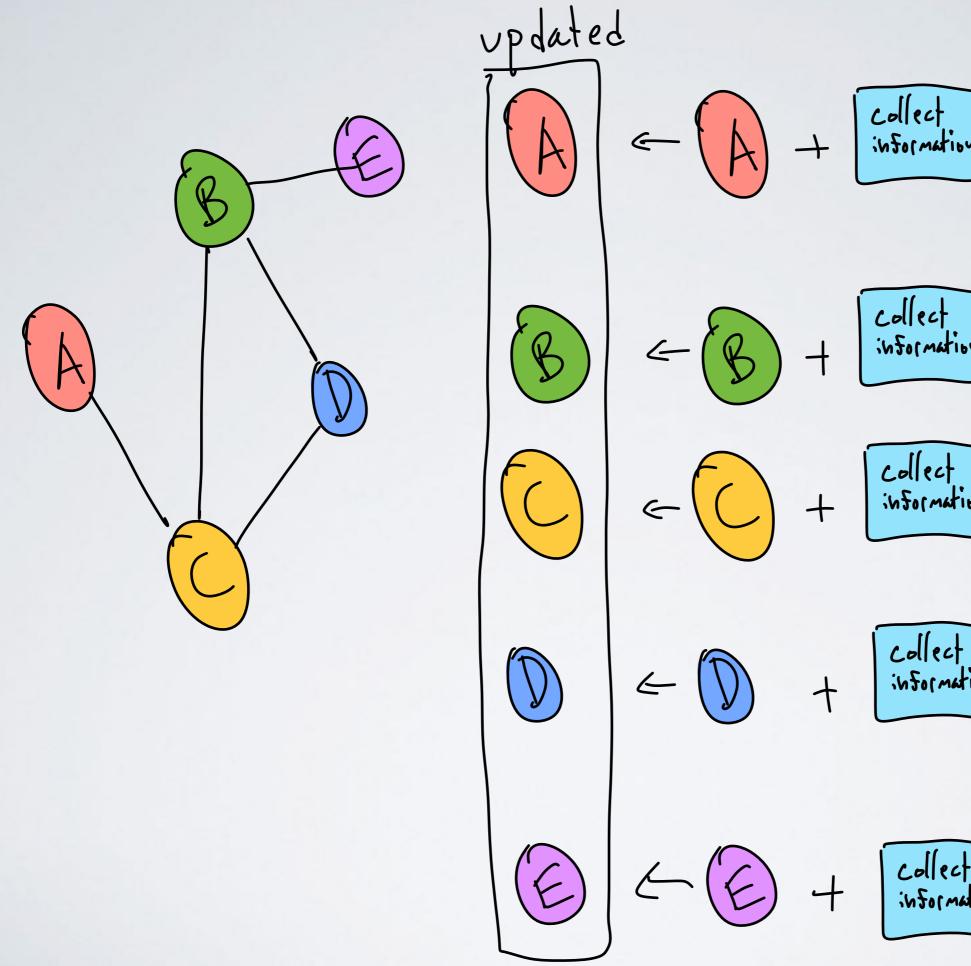
These functions can be anything we want - usually involving neural networks

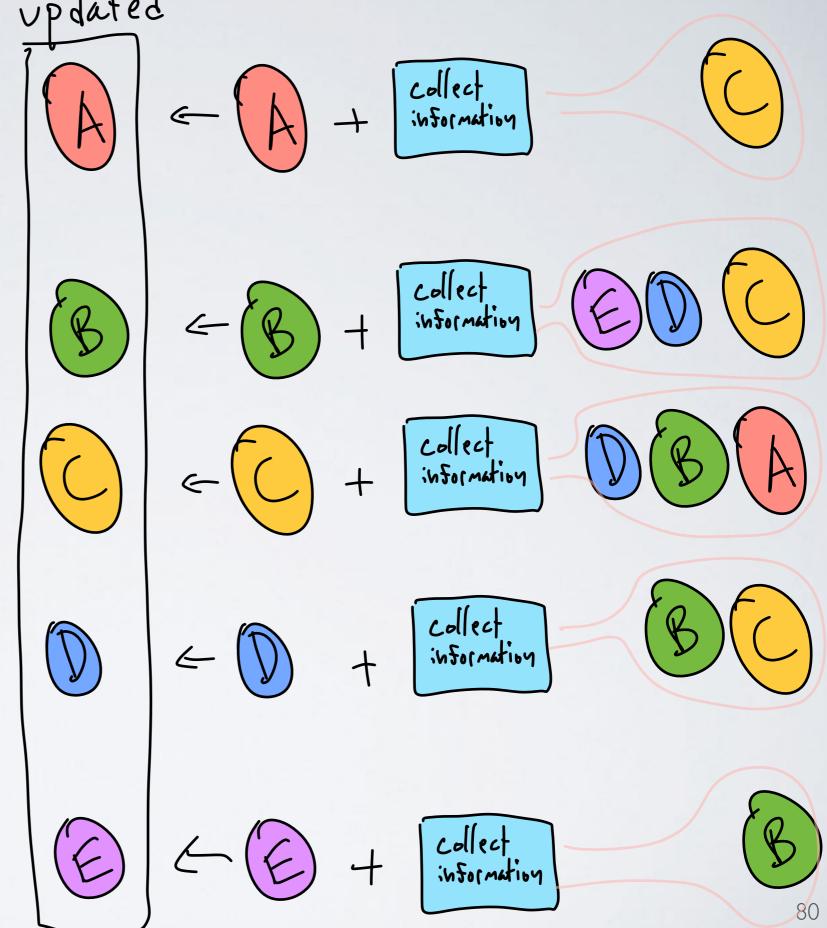






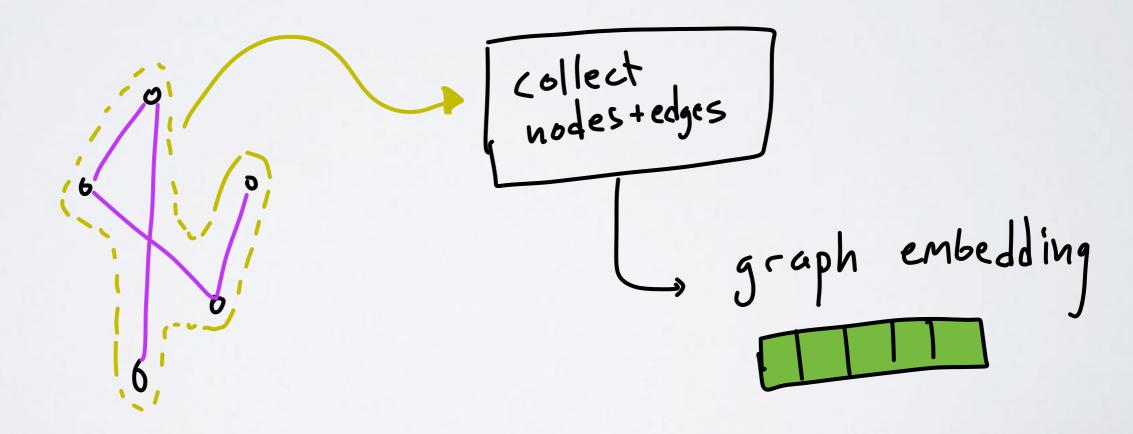






inside:

- -edge update function node update function graph update function

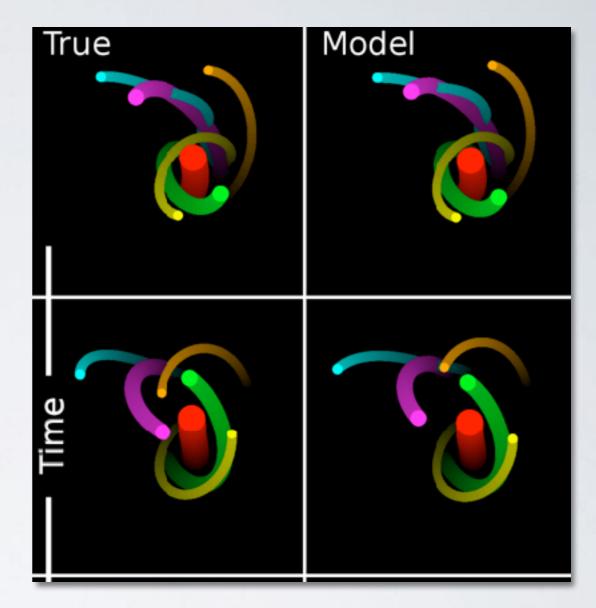


Example 2 Learn the dynamics of physical systems

arXiv:1612.00222

Input dataset:

Nodes = planets



Features = position in (x,y), velocity vector, mass

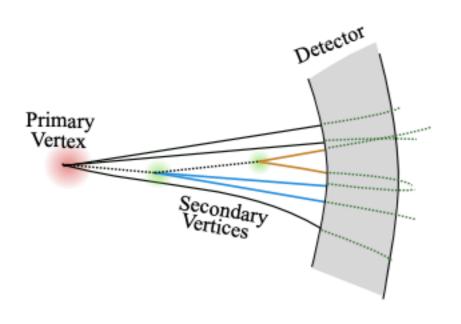
Edges = connect every planet to every other planet

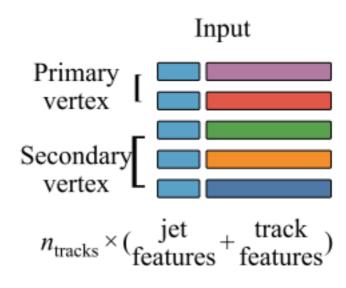
Some Applications

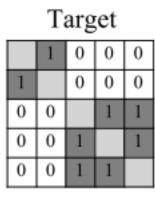
https://arxiv.org/pdf/2008.02831.pdf

Secondary Vertex Finding in Jets with Neural Networks

Jonathan Shlomi¹, Sanmay Ganguly¹, Eilam Gross¹, Kyle Cranmer² Yaron Lipman¹, Hadar Serviansky¹, Haggai Maron³, Nimrod Segol¹,





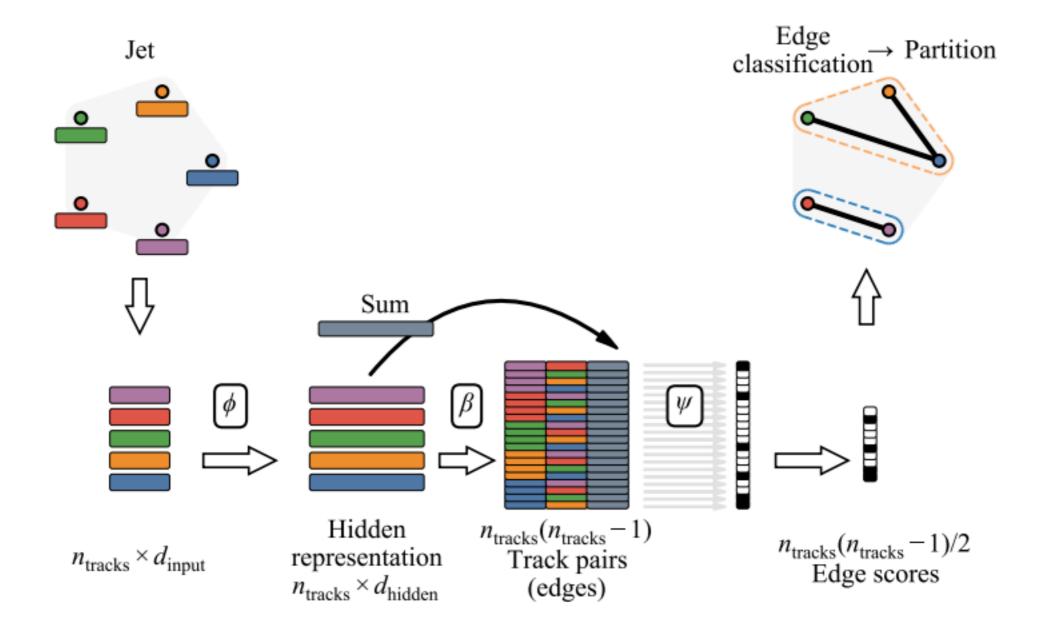


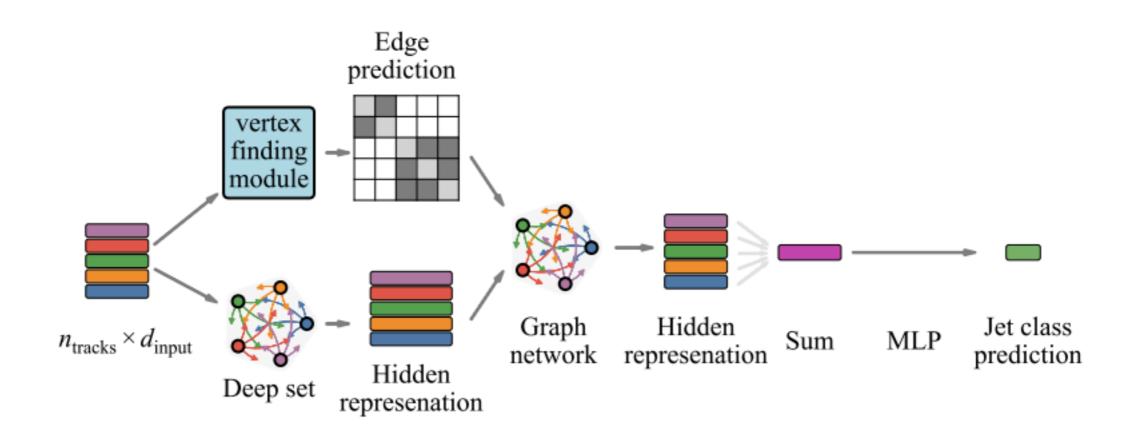
$$n_{\mathrm{tracks}} \times (n_{\mathrm{tracks}} - 1)$$
 edges

¹Weizmann Institute Of Science, Israel

 $^{^{2}}NYU$

³NVIDIA Research



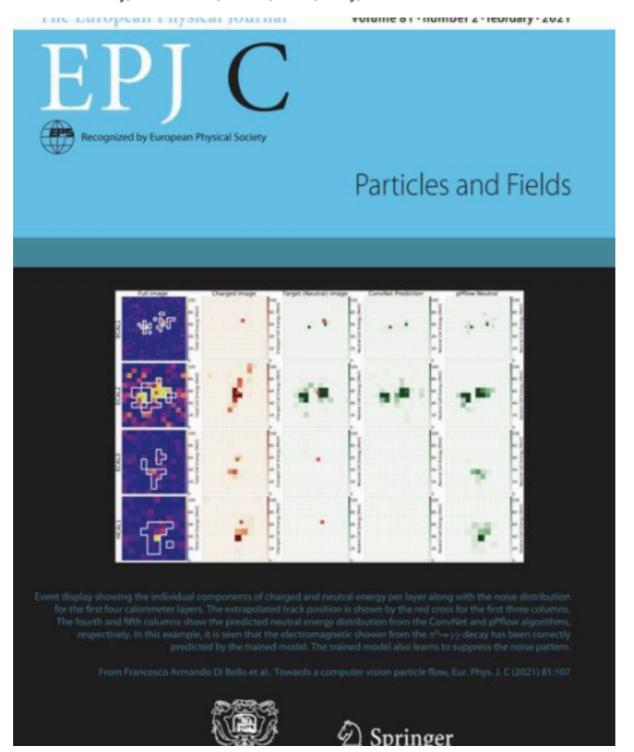


Vertex Finding Module	Accuracy	F1	b jets F1	c jets F1	light jets F1
AVR	0.50	0.49	0.62	0.44	0.40
Baseline	0.57	0.56	0.67	0.40	0.60
Track Pair	0.56	0.57	0.65	0.48	0.57
RNN	0.62	0.60	0.74	0.37	0.69
Set2Graph	0.63	0.62	0.72	0.44	0.69

Towards a Computer Vision Particle Flow *

Francesco Armando Di Bello^{a,3}, Sanmay Ganguly^{b,1}, Eilam Gross¹, Marumi Kado^{3,4}, Michael Pitt², Lorenzo Santi ³, Jonathan Shlomi¹

⁴Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405, Orsay, France

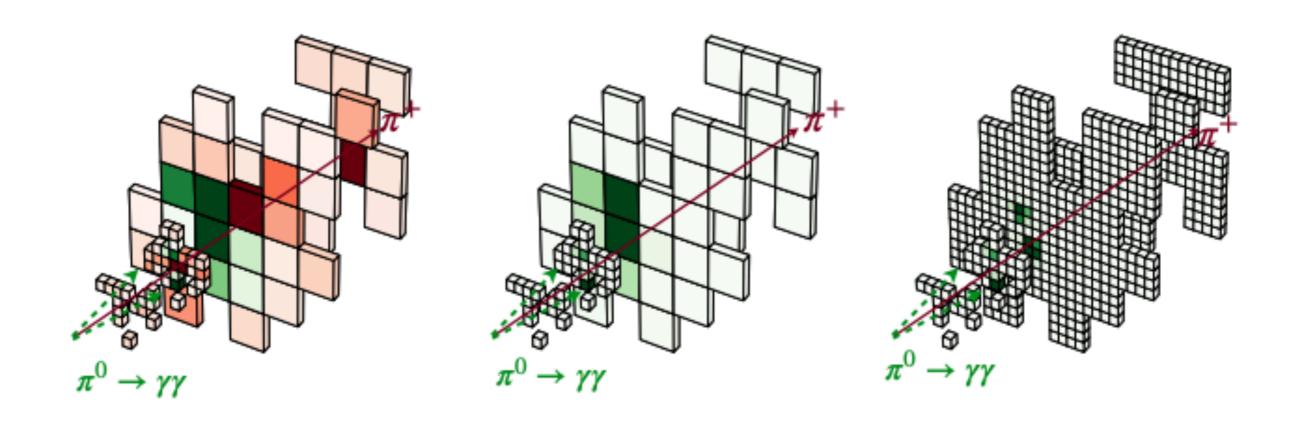


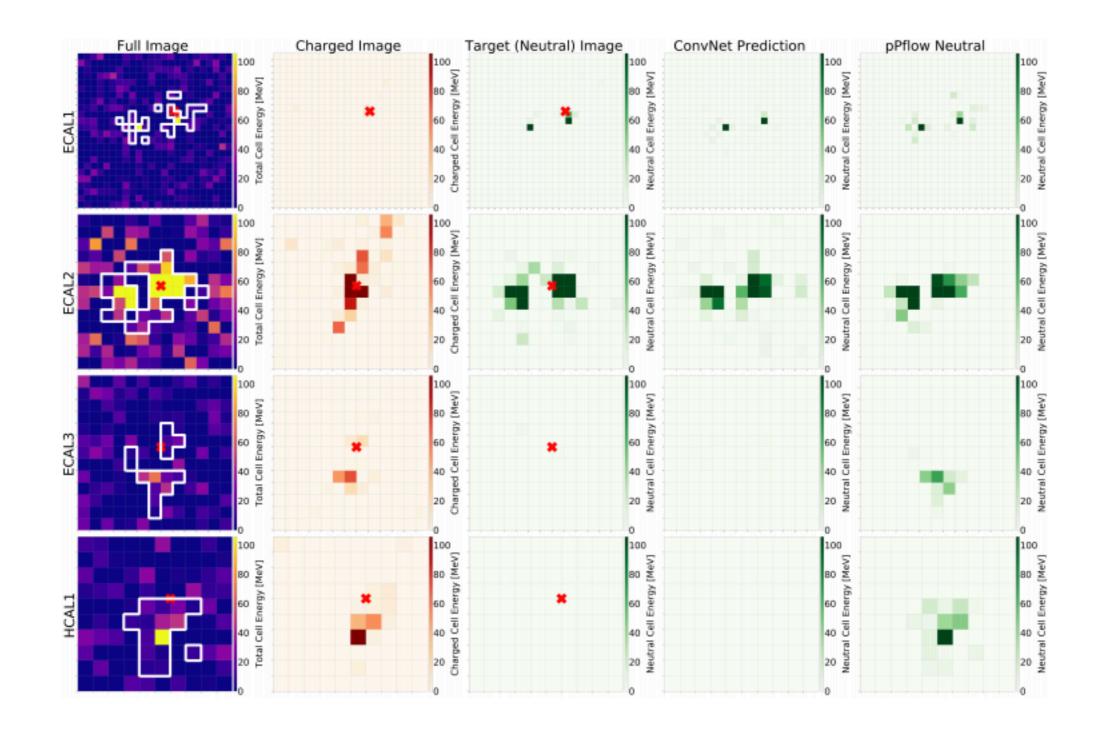
Weizmann Institute of Science, Rehovot 76100, Israel

²CERN, CH 1211, Geneva 23, Switzerland

³Università di Roma Sapienza, Piazza Aldo Moro, 2, 00185 Roma, Italy e INFN, Italy

Super resolution





Summary

- Deep Learning enables the implementation of a complicated or unknown function from DATA X to some Target Y
- It can be supervised (Classification) or Unsupervised (Learning from DATA without labeling)
- Graph Neural Nets enable functions from sets to sets of sparse DATA with different structures
- DL is becoming an analysis tool you cannot do without, so start to take it seriously