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e What is intelligence?
e What is artificial intelligence?

e What is Deep learning



From Intelligence to Deep Learning

e What is intelligence?

* Intelligence is the ability to process information so it can be
used to infer on decisions for the future

 What is artificial intelligence?

e Use the computer to mimic human intelligence
e What is Machine learning

* Learning from experience without being explicitly programmed
e What is Deep Learning?

 Using NN to automatically extract patterns from DATA and use
it for inferring and make decisions



Why DL is a Boom Now?

e ML started in the 1950s
 Deep Convolutional Nets since the 1990s

e Autonomous driving is now a multi billion dollars
business... TESLA is already there... Why only now?

 Big DATA - Cheap Storage, easy access, and lots of
Big Data

e GPUs are changing the face of the computer hardware
(Parallelizable tasks)

 Sophisticated software/firmware tools for Deep
Learning Models implementation



Machine Learning Example

e Map inputs (such as images) to targets (such as labels: Cat, Dog,
Woman)

e BUT let your mind flies by

Its all about
finding appropriate ‘{
representatlons

| ——

E

ThIS IS done via tralnlng
rather than programmlng r“

Transformation
Is controlled by weights




Example: Classification Dog vs Cat

CAT

X ()

FMOTOS

dVLpML

The DATA

we can

CElghiclyl DOG
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Example: Classification Dog vs Cat

The Model (Architecture)

the computational machinery for

- ingesting data of one type, and spitting
L V]/P %‘L_ out predictions of a possibly different OMI%QZL
type
CAT
X (Lr‘u.o't'i‘s. ' Y
The DATA =

we can

Eahiclyl DOG
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Example: Classification Dog vs Cat

(;VI/P&LJL_

CAT

X LABELED

(‘o)

The DATA

we can

Eahiclyl DOG

The Model (Architecture)
the computational machinery for
ingesting data of one type, and spitting
out predictions of a possibly different
type

outpal

.

The Loss Function:
minimize error rate, i.e., the fraction of
instances on which our predictions
disagree with the ground truth
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Artificial Intelligence

The Task: Recognise a Cat

2
o
-

Easy for people to perform. hard to describ:2®
formally

&

Sihd
: g Wy TR

Recognition of an object, or a spoken word,
IS many times intuitive, almost automatic,
but hard to describe “how do | do it”.

Let computers do what we do, learn from
experience
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Hierarchy of Concepts

e Chess is a very simple DATA set of
objects and rules, yet the play is
conceptually extremely
complicated and difficult...

e | et the computer understand the
world as a hierarchy of concepts,
each defined in terms of its relation
to a simpler concept

 Concepts are built on top of each
other; complicated concepts are

built on top of simpler ones... —>
DEEP LEARNING approach to Al

15



DATA representations

* Much of our knowledge is subjective and intuitive

 Computers need to capture this knowledge in order to make
intelligent decisions

* The capability to acquire knowledge by extracting patterns from raw
DATA is what Machine Learning is all about

label: DOG label: CAT

* The performance of a ML algorithm depends heavily on the
representation of the DATA they are given.

* Each piece of information given in the representation is called a
feature.
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DATA representations

e Example:

Cartesian coordinates Polar coordinates

* Choosing the right set of features can make a huge difference in solving a task
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DATA representations

Sometimes its difficult to know which features should be
extracted....

One solution is representation learning, learn the
mapping from a representation to a representation... even
to itself

DEEP LEARNING is about expressing representations in
terms of simpler ones... The computer builds complex
concepts out of simpler concepts

An Autoencoder encodes a representation of the DATA
to a different representation , while the decoder, converts
It back to the original representation

18



Deep “representation” Learning

 Break the complex presentation into a series of simpler
nested ones

Oulpult
(object identity)

3rd hidden layer
(object parts)

2nd hidden layer
(corners and

contours)

1st hidden layver

(edges)

Visible laver
(input pixels)

Based on Zeiler and Fergus, 2014
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Perceptron

 The basic unit of Deep Learning is the Perceptron

2
X ves-
0 BSpS  oF Zwvpo7 S
J/ e M

= Example: sigmoid function

1
g(z)=o0(z)= W

Inputs  Weights Sum  Non-Linearity Output I —

ing L1.pdf /
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http://introtodeeplearning.com/slides/6S191_MIT_DeepLearning_L1.pdf

Perceptron

 The basic unit of Deep Learning is the Perceptron

2 vea
o BSAS  oF Zwvpo7 S
J/ TE M

Wm Fy| Z
X : : W= :
—Xn .

Example: sigmoid function

9 :3 (Vo +XTW) 2= o= —

1+e~*
Inputs  Weights Sum ~ Non-Linearity Output I S

ing L1.pdf /
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http://introtodeeplearning.com/slides/6S191_MIT_DeepLearning_L1.pdf

Why non-linearity?

r
oSk 0sp
1], o8 F
o7y 07
iy 08
oSk 08
04 04

0 0

http://introtodeeplearning.com/slides/6S191 MIT DeepLearning L1.pdf

 Linear —> Linear decision boundary

* Non-linear—>Non-linear (complex) decision boundary

22


http://introtodeeplearning.com/slides/6S191_MIT_DeepLearning_L1.pdf

Non-Linear Activation Functions

08 :‘..‘ 3|:
0 ) .
0 5 > U
()= — (2) (0, 2)
o) i z)=max(0, z
gz 1+ e 2 y
, : '(2) = 1 z >0
g (z)=gz)(1-g(z)) 92)=19. otherwise

http://introtodeeplearning.com/slides/6S191 MIT DeepLearning L1.pdf

Sigmoid Saturates and kill Gradients ReLu- Rectified Linear units

| Many times;}ou use Rel.u for all Hiddean;ayers and Si;no in the final Iae
| as to output a probability (a score between 0 and 1) "

i
L
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Multi-out Perceptron

e Since all inputs connected to all outputs, we call It !

DENSED layer

x1 :L w.lll«
" W, - ‘ y1 = 9(2,)
X2
! . Y2 = g(2;)
)er .—’

m
Zi = Wy "‘Z, lxi Wi i
}:

7 = Wo + X'W
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Inputs Hidden Final Output

m d,
1 W o _ (@ Z @)
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Single Layer Perceptron (NN) g%



Simplified Drawing @,

X1
2
X2
2
xm
Inputs Output
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Inputs Hidden Output

Z(i) - %(1)+XT W )
Z®) )y (4) 1.9 (Z[/M))'  (5)



Summary: Layers & Weights

Layers extract representation of the DATA fed into them, which
are supposed to be more meaningful for decoding the DATA

Some DATA goes in, and
comes out in a more useful form

You can & of layers as “filters” Input X

:

. . . L
Weights control what the layer is Weights ™1 (gata trafsyfzimaﬁon)
doing to it’s input DATA I
. Layer

The depth of the model is the Weights [ (data transformation)
number of layers contribute to the learning !
process [ Predictions J

0

/
GOAL.: Find right values for the weights such that the target: Y
network maps the input to its right target

29



Loss Optimization

 Find the NN weights that give the minimus loss

1" - °
W* = argmin—E L(f(x(‘); W),y(‘))
=1

w N i

W* = argmin J (W)
w
- () (1)
" 3 d /W /) i
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Loss Optimization

* The Loss is a function of the NN weights
‘5_0\/ S,m[) IC!% NSSompe ZD \n/
- argmm](W) Remember:
Our loss is a function of

the network weights!

' 4
U =~ .
1 —4 : 7 -
2 =4 /’7,', 0
02
1 04
09

08 07 06

o 04 o3 | 06 W1

Wo 02 a9
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Loss Optimization: Gradient Descent

* The Loss is a function of the NN weights

W* = argmin J(W)
w

C mo U‘I‘f . Remember:
A . (if"‘) , mO\)(’."’\l/m Q,S cCent gmg[ffhf ur loss is a function of
(YE€UJ 1ow the network weights!
Y everse z‘; recton, more on

J (wo, wy)
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Gradient Descent
e Algorithm

e |nitialize weights randomly

 Loop until convergence:

e Compute Gradient ?J( h/)
oW
e Take a step 7 (the learning rate - how fast you
want to achieve the goal)

e Update weights in the opposite dlrectlon

We\a// J

 Return weights

33



BACKPROPAGATION

Backpropagation is the algorithm that computes the
gradient of a loss function with respect to the weights of
the NN in an efficient way

It is essential to do so in an efficient way in order to cope
with Multi Layer Networks.

Backpropagation is calculating the gradient iterating
backwards from the last layer to the network input

—>next lecture
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OPTIMIZATION

-the-loss-landscape-of-neural-nets.pdf


https://papers.nips.cc/paper/7875-visualizing-the-loss-landscape-of-neural-nets.pdf

Optimization of NN
Optimization through gradient descent
0] (W)
WeW—n——
- T W

A

How can we set the
learning rate?



Overfitting

Underfitting | < Ideal fit > Overfitting
Model does not have capacity Too complex, extra parameters,
to fully learn the data does not generalize well

37



Overfitting

e Stop Loss

0SS

validation

38
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Training

We divide our labeled

DATA into~80% training

and 20% validation -
(sometimes also

keep some DATA for test)

In each epoch we run
on a batch (1000s of
samples) and adjust the weights

Our success is measured
by the accuracy of our
predictions

This gap between training accuracy
and test accuracy is overfitting:
Overfitting is a central issue

39
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DEEP NN

e Ashallow network (a few layers) can do the work but it might
require an enormous number of units (neurons) per layer

o Deep Networks seem to suffer from the problem of vanishing
gradient as you back propagate deeper and deeper

e Some argue that the most important innov-ation in deep learning
applied to image processing is the CNN (Conv-olutional NN)

Eilam Gross 40



ConVv-olutional NN
CNN

Eilam Gross 41



Vision

e Vision is an essential part of our lives

e How does a computer process an image...

Blue
Band

Red
Band

 An image is a matrix of numbers [0,255]

ref: MIT 6.5191 Introduction to Deep Learning 2021 Lecture 5

153 ‘ 174
182 | 163
180 | S0
184 5
8 1w
106 | 207
#8179
87 | 166
168 | 191
174 1155
296 (176
‘ 24 4T
N4 173
196 | 236
wm mwm
26 1

mIIw

o Y P
w| ! 5|0
126 [ [ 10
mim 29 29
1 |23 m!m
25 m‘m!zn
n ‘.oim'm
mim:m 178
mlm‘m 149
mlns‘m W
m'm‘m 17
e |10 143 | o8
7s| ol e
usi ol ol 2
m'm‘mlm

5

"w

£ &

54

n

143

150

102

il

m

1%

166

m

wiinB

7%

141 | 156
210 (180
196 159
5] %6
an
e Ja
%
2| n
196 | %
43| %
w18
191 | 265
109 1 49
27 (248
138 |43
13 %%

234

k2

24

28

m

236

28


http://introtodeeplearning.com/

Classif

ication

MLP
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High Level Features

e How do we do it?

e Detect specific characteristic features

Nose, Wheels, Door,
Eyes, License Plate, Windows,
Mouth Headlights Steps

 We could tell the computer what are the features to look for but this is
extremely difficult due to variations of images

ref: MIT 6.5191 Introduction to Deep Learning 2021 Lecture 5


http://introtodeeplearning.com/

* Different angle,
rotations, translations

Image Variations

e Scale

e |ntra class variations




Learning Features, How?

We are looking for a way to extract features automatically in an
hierarchical fashion.

We want to learn features directly from DATA, without pre define
the features...

NN allow to do the above....

| Qo
But will a fully connected NN sufficient? g
Qi
Q¥

(
( X
.<<-Z‘

J

The 2D image will be mapped to a vector
All spatial information will be LOST!

o

S e s e P N
N ey et - e el
R o T i Bl TP
WO SNSRI N Y ’
- ol e T -~ _— »
e e T A e
- -~ - » - L - - - - - - - )

2T N NS
.......

......
............
........

GC0000000

How can we use the spatial information
and introduce scale and translation invariance?



A CNN

CNN (Convolutional Neural Network -
CONVNET) is made of layers that preserve the
spatial characteristics of an image

Dense Layers (CL) learn global patterns, CNN
learn local patterns

It IS translational invariant,
highly data efficient on perceptual problems

47



Conv-olutional NN (CNN)

W
55 , | dense dense
- Ve 13 13 13 e
114 55 5 4 3| 4 g
1 5&27 3113 3P 13 3 13
384 384 2% | | 1000
224 1256 17 Max Max 4096 4096
, " Max pooling pooling
"""A;Stri 4o pooling
3’ of 4

o AFully Connected dense layers NN learn global patterns, CNN learn local
patterns

e« CNN (Conv-olutional Neural Network - CONVNET) is made of layers that
preserve the spatial characteristics of an image

« CNNis based on SHARED WEIGHTS, which reduces the dimensionality of the
problem and introduces translation inv-ariance, highly data efficient on
perceptual problems

Eilam Gross 48



Visual Reception Field

* A neuron in the hidden layer sees only a patch of the image:
Number of weights is reduced, and the spatial relation between pixels is kept.

90,6900, :
0/8,6/0/0,6,0/6)0]0180,8)0]
=020 oy 5 00X

0,0/006 C O 000000

* &>
00,006 00s'S 08 900
a'a’a’a’a a’s)a’a a~a e

CONVOLUTION

» We apply a filte (@e]g\ el (S| {e] s WER- 101 [CR (o W] CELEIa R filter size NxN

SEIMEERNAEI] spatial relationship between pixels
by learning image features in local
sguare areas If the image

Input: 20 image.
Array of pixel values

Idea: connect patches of input
to neurons in hidden layer.

* We apply multig tures

* The same filter is used via a sliding window all over the image, weights are
shared, so it does not care where in the image a feature appears.... (invariance)



Introducing Convolution

Image (Fxg)(x)= )  f(u)g(x— uv)
1/1/1/0]0 S
o 1 1 1 o 1x1 1x0 1x1 0 0
0/0|1|1]|1 0/1/1/1|0 4
0(0/1[1]|0 0,/0/f1|1]|1
oj1/1/0(0 O|0(1(1|0

Kernel 0 111 0 0 | d

Convolve
1|01
ol 1] 0 image Feature

0

1

The convolved image is

also called

a Feature Map or
Activation Map

Kernel is a feature detector
of the input layer
Kernel Is also called a filter

50



What are CNNs good for

e Detection (Self Driving Cars) & Segmentation (pixel by pixel
probablllty for objects)

- building, L aes 7
cysliding lu?‘ I '"'#
N Alnn P "'. .

Figures copyright Shanging Ren, Kaiming He, Rass Girsehick, lian Sun, 2015 Reproduoed Jith Fleurﬂ mp rlght rlement Farabet, 2012,

permission, Reprocduced with sermission. [Farabet et a’,, 2012]
[Faster R-CNN: Ren, He, Girshick, Sun 2015]
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What are CNNs good for

e Classification & Retrieval (Similarity Matching, Google Images)

mite container ship motor scooter leapard
black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard
starfish drilli latform fcart an cat
» . !
o -

gr e musnroom cher a ascar ca
_convertible | agaric A!ﬂ‘ quirrel monkey
grille mushroom grape spider monkey
| pickup jelly fungus elderberry titi
bheach wagon alll fungus |Mordshire buliterrier indri
fire engine | dead-man's-fingers currant howler monkey

Figuras copyright Alex Krizhevsky, llya Sutskever, anc Ceoffrey Hinton, 2012. Reproducec with permissicn.
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What are CNNs good for

 Face Recognition

" REHOVOT o PREHO B anm'«‘ 17 AUGUST

5 MAR 2018 lZB NOV 2016 2016

12 JULY

2016




What are CNNs good for

* Pose Recognition

Imzges are examoles of pose estimation, net actually from Toshev & Szegecy 2014, Copyright Lane Mclntosh.

[Toshev, Szegedy 2014]
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What are CNNs good for

e Medical Images, Street Sign Recognition, Classification of

GGalaxies

Benign Benign Malignant Malignant Benign

Sleplr ]
B 5 &2 B2

[Levy et al. 2016] eopyright Levy et al. 2016

Rear:zdt. ced vith oarmise on

From afito r-;ht: pudic donain by NASA, usage c;[:u‘uned by

[Dleleman et a/. 20 14] SSA/HuUbble, pub e damain oy NASA ard public domain.

55

Pholos: try Lane Meinlosh

[Sermanet etal. 2011]  commmoszan .
[Ciresan et al.]



What are CNNs good for

* Rendering Images @ ‘ - Aalg
Van Gogh style 7 4 _ dg



What are CNNs good for

e Colorizing BW Images

Richard Zhang, Adobe Research



What are CNNs good for

* | et the computer recognize scenes and suggest a relevant

caption

" P e
Saiy : o o i T I e R
a soccer player is kicking a soccer ball a street sign on a pole in front of a building  a couple of giraffe standing next to each

other

58



ttere  we waw o preserne Sﬂ)ﬁ Rl
ConVOIUtK)n Layer Filters always extend the full

A set of learnable filters that - .
produce activation maps————— depth of the input volume

32X32X3 Image /

/ 5x5x3 filter

32 £

Convolve the filter with the image
l.e. “slide over the image spatially,

computing dot products”
% We can put as many filters as we like
The number of filters define the DEPTH of the

3 resulting layer

LV

http://cs23 1n.stanford.edu/slides/2017/cs231n 2017 lectureS.pdf 59



http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture5.pdf

* The weights are shared, and a feature map is represented by
5x5x3+1=7/6 parameters

Convolution Layer

_— 32X32x3 image
. Ox5x3 filter w

4

™~ 1 number:
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image
3 (i.e. 5*5*3 = 75-dimensional dot product + bias)

wlz + b

http://cs23 1n.stanford.edu/slides/2017/cs231n 2017 lectureS.pdf 60



http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture5.pdf

* The weights are shared, and a feature map is represented by
5x5x3+1=7/6 parameters

Convolution Layer

activation map

_— 32X32x3 Image

_ 5x5x3 filter w
32 /,/"'
] 28
— Convolve (slide over all spatial locations)
|
3

|
3

1

http://cs23 1n.stanford.edu/slides/2017/cs231n 2017 lectureS.pdf 61



http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture5.pdf

e Stacking activation maps , each learns different features

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

/ >
Convolution Layer
ﬁ 28

3 6

activation maps

28

We stack these up to get a “new image” of size 28x28x6!

http://cs23 1n.stanford.edu/slides/2017/cs231n 2017 lectureS.pdf 62
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CNN

* As we go deeper in the net we strat to probe higher level

features
Preview

Mid-level

features
corners, blolbs

Low-level

features
edges

L
P
_

VGG-16 Convl 1 “VGG-16 Conva 2

63

[Zeiler and Fergus 2013]

- .:"‘!.' ' :

Visualizat nn of VCG-16 by Lane Meintosh, VOG-16

architecture from [Simonyan and Zisserman 2024].

High-level To
features Classifier

VGG-16 Conv5 3



Unsupervised Learning
Auto Encoders

Eilam Gross 64



Supervised s Unsupervised Learning

Supervised Learning Unsupervised Learning
Data: (x, y) Data: x
X is data, y is label Just data, no labels!

Goal: Learn a functionto map x->y  Goal: Learn some underlying
hidden structure of the data

Examples: Classification, e No need for annotation
regression, object detection, Examples: Clustering,

semantic segmentation, image dimensionality reduction, feature
captioning, etc. learning, density estimation, etc.

* [f we manage to understand the underlying
features of our DATA , it’s a huge step towards
understanding the visual world around us

Eilam Gross 65



AutoEncoder

[ NP2 o) s Yo Xa) Iy, 1D L Whdte BENN SRS ¥ {
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AutoEncoder
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AutoEncoder
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Definition of imagination

the act or power of forming a mental image of
something not present to the senses or never before

wholly perceived in reality


https://www.merriam-webster.com/dictionary/image

Traditional Autoencoders

Input Reconstructed input

- -
-

https://towardsdatascience .com/autoencoders-introduction-and-implementation-3f40483b0a85

Eilam Gross 70
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Denoicina Autoencoder

26>28«1 28«¢23x1

Kx1 432 14x14x32
Yy 152 1182
4 7x7x64 . , woed
, 331 26 1011y zaazs ) “
= l:ﬁ —{-* :ﬁ ]
Conv3, " Reshape
 Conv2 stride = DeConv3
5’ stricde—-2 Ll U strde-2
,// Flatten FC e
Convil DeConve
sride=2? stridp=2
DeConv1
strice -2
Encoder —>i—> Decoder —
Noisiy input St Denoised image
y Inp representation g

|

The feature we want to
extract from the image

Eilam Gross 71



Graph Neural Nets



Data can often be represented as a graph

https://edorado93.github.io/2017/12/10/Deep-Dive-Into-Graph-Traversals-227a90c6a261/

Social networks, molecules, planets in a solar
system, particles in a gas, road networks,
computer networks, covid- |9 patients, etc.

/3



a graph

t's a data structure. It's made from nodes and edges. Nodes and

edges have "features’ or “attributes”

The order of the nodes/edges In this table is arbitrary
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In the GNIN, there Is a hidden state on each node - and we want
to “update’” it so It contains information from the rest of the graph

P @

X /8
()

é
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O r '\V\Q;AQK
/ GN bleck '*@Clﬁﬁ urqlog\—( Function

\\/ — node u{,éac\‘t Fonction
_ ﬁm?ln o?,ld( fouction

These functions can be anything we want -

usually involving neural networks
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GN block
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GN block
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GN block

‘\\,\gi A'Q‘.

—eclﬁﬁ u?cloc\’t Function

. V\oJe. urda\,’\‘ﬂ function
i 6('0\?\/' oYloc\( Fouction
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6 D\IT—\
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Example 2
Learn the dynamics of physical systems

arXiv:1612.00222

Input
dataset:

Nodes = planets

Features = position In (x,y), velocity vector, mass

Edges = connect every planet to every other planet

82



Some Applications



https://arxiv.org/pdf/2008.02831.pdf

Secondary Vertex Finding in Jets with Neural Networks

Jonathan Shlomi', Sanmay Ganguly', Eilam Gross', Kyle Cranmer’ Yaron Lipman',
Hadar Serviansky', Haggai Maron®, Nimrod Segol ',

'Weizmann Institute Of Science, Israel
INYU
*NVIDIA Research

[nput Target
Primary [ /||
vertex ! [ N
0

Secondary| [

vertex L () pm—

n x ( jet + track ) Miracks ™ ("lracks —1)
tracks = ‘Meatures  features edges



https://arxiv.org/pdf/2008.02831.pdf

Jet
®)
o —
 E—
®)
—/
%)
 E— o
—3
I o
— ﬂ v
)
—> >
Hidden Nyracks(Miracks — 1)
Miracks * Dinput representation Track pairs

Pyracks ¥ @hidden (edges)

Edge _, Partition
classification

ntracks(ntracks o 1)/ 2
Edge scores



Edge
prediction

vertex

finding | —

module \
/ - . — - @

ntr'xcks mput @ . n(e}tl;z:[gl;k Hldden. Sum MLP Jet ?la.SS

represenation prediction
D Hidden
eep set
represenation
Vertex Finding bjets | cjets | light jets
Module Accuracy | FL | "gi | gy Fl

AVR 0.50 049 | 0.62 0.44 0.40
Baseline 0.57 0.56 | 0.67 0.40 0.60
Track Pair 0.56 0.57 | 0.65 0.48 0.57
RNN 0.62 0.60 | 0.74 0.37 0.69
Set2Graph 0.63 0.62 | 0.72 | 044 0.69




Towards a Computer Vision Particle Flow *

Francesco Armando Di Bello**, Sanmay Ganguly"!, Eilam Gross', Marumi Kado*,
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Summary

Deep Learning enables the implementation of a
complicated or unknown function from DATA X to some
Target Y

It can be supervised (Classification) or Unsupervised
(Learning from DATA without labeling)

Graph Neural Nets enable functions from sets to sets of
sparse DATA with different structures

DL is becoming an analysis tool you cannot do without,
so start to take it seriously



