Parallel Session 1: Nuclear Physics

Studying Hadrons with Electron Beams

6th edition of the biennial African School of Fundamental Physics and Applications

Mark Dalton, Jefferson Lab

Outline

Introduction: what are we trying to learn? Introduction to electron scattering Form factors Deep inelastic scattering New insights about the nucleus Exotic spectroscopy

Quantum Chromodynamics

gauge field theory that describes the strong interactions of colored quarks and gluons, is the SU(3) component of the SU(3)×SU(2)×U(1) Standard Model of Particle Physics.

a gluon's interaction with a quark rotates the quark's color in SU(3) space.

The Feynman rules of QCD involve a quark-antiquark-gluon (qq⁻g) vertex, a 3-gluon vertex (both proportional to g_s), and a 4-gluon vertex (proportional to g_s^2).

ASP2021

coupling is to 3 color charges gluons carry color—anti-color charges and self interact color charge is conserved QCD conserves flavor QCD conserves parity

Jefferson Lab

Running Coupling

fermion pairs.

QCD: screening by quarks anitquark pairs anti-screening by gluons (dominates)

QCD

Asymptotic Freedom

Small Distance High Energy

Large Distance Low Energy

Perturbative QCD High Energy Scattering

Strong QCD

Hadron Spectrum - no signature of gluons?

QCD Potential

Short distance part (1/r term) from quark-antiquark gluon exchange

$$V(q\overline{q}) = -4 \alpha_s + kr$$

Long distance part (k r term) is modelled on an elastic spring

k is known as the string tension

This model provides a good description of the bound states of heavy quarks: charmonium (c c) bottomonium (b b)

8

ASP2021

Colour Flux-tube Model

QED

Field lines extend out to infinity with strength $1/r^2$

Electromagnetic flux conserved to infinity

5/2/10

QCD

Field lines are compressed into region between quark and antiquark

Colour flux is confined within a tube. No strong interactions outside the flux-tube.

Particle Physics Lecture 8 Steve Playfer

Breaking a flux tube requires the creation of a quark-antiquark pair

Like breaking a string! Requires energy to overcome string tension

Mark Dalton Jefferson Lab

Nuclear Physics

Why Electron Scattering?

one photon exchange (simple)

penetrating

Except: charge elastic scattering of the Coulomb field of a heavy-Z nucleus

Energy and momentum transfer independent

Magnetic, electric and charge transitions

 $M_{\lambda}, E_{\lambda}, C_{\lambda}$

Charged

Difficult to access neutrons, Beam heating of the target, Bremsstrahlung, causes radiative tails and potentially large corrections

Light Mass

"Easy" experimentally

stable, pre-existing high intensity, high duty cycle, high energy, and high polarization

Jefferson Lab

Mark Dalton

Nuclear Physics

ASP2021

Jefferson Lab

CEBAF Accelerator, 12 GeV electron beam 4 experimental end stations Newport News, Virginia, USA

Jefferson Lab

Mark Dalton

Nuclear Physics

Electron Scattering Kinematics

Scattering is a function of 2 variables, energy and angle

We choose to use other variables.

$$Q^{2} = EE'\sin^{2}(\theta/2)$$
$$x = \frac{Q^{2}}{2M\nu}$$

Jefferson Lab

Mark Dalton

Nuclear Physics

Electron Scattering

$$Q^2 = EE' \sin^2(\theta/2)$$

Matter wave

De Broglie wavelength
$$\lambda = \frac{h}{\mathbf{p}}$$

Q²: 4-momentum of the virtual photon

- Photon is off mass shell
- Q² measures

Jefferson Lab

- virtuality or "mass" of the photon
- momentum transferred to the target

Mark Dalton

Increasing momentum transfer

- -> shorter wavelength
- -> higher resolution to
- observe smaller

structures

Nuclear Physics

р

Electron Scattering

Vary energy transfer at constant momentum transfer

achieved by varying the angle and energy of the scattered electron.

Elastic Scattering and Form Factors

The point-like scattering probability for elastic scattering is modified to account for finite target extent by introducing the "form factor"

Assuming spherically symmetric (spin-0) target

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \left|F(q)\right|^2$$

point-like target, electron spin

$$F(q) = \int e^{iqr} \rho(r) d^3r$$

Form factor is the Fourier transform of charge distribution

This is a non-relativistic picture

Figure from Particles and Nuclei, Povh et al.

Mark Dalton

Historical Nuclear Charge Distributions

Acta Phys.Polon.B 40 (2009) 2389-2404

Proton Form Factor

Proton Form Factor

Polarization transfer measurements give different result.

2-photon exchange i.e. failure of the Born approximation

Charge & magnetization distributions in the proton are different

charge depletion in interior of proton

ASP2021

Orbital motion of quarks play a key role (Belitsky, Ji + Yuan PRL 91 (2003) 092003)

Jefferson Lab Mark Dalton Nuclear Physics

Deep Inelastic Scattering

 $x = \frac{Q^2}{2M\nu}$

Interpreted as the fraction of nucleon momentum of the parton that was struck. Inelastic scattering requires 2 quantities to describe the kinematics

https://www.ellipsix.net/

ASP2021

Jefferson Lab Mark

Mark Dalton

Nuclear Physics

Parton Distribution Function

Jefferson Lab

Mark Dalton