Parallel Session 1: Nuclear Physics

Studying Hadrons with Electron Beams

6th edition of the biennial African School of Fundamental Physics and Applications

Mark Dalton, Jefferson Lab

Outline

Introduction: what are we trying to learn? Introduction to electron scattering

 Form factorsDeep inelastic scattering
New insights about the nucleus Exotic spectroscopy

The Nucleus

DIS on Nuclei: The EMC Effect and $x>1$

$R=\frac{\sigma_{\text {carbon }} / 12}{\sigma_{\text {deutrium }} / 2} \longleftarrow$ very weakly bound
Carbon

The EMC Effect

EMC effect scales with average nuclear density

${ }^{4} \mathrm{He}$

$$
{ }^{9} \mathrm{Be}
$$

${ }^{9} \mathrm{Be}=2 \boldsymbol{\alpha}$ clusters + "extra" neutron

Suggests EMC effect depends on local nuclear environment

Short Range Correlations

Short-range repulsive core gives rise to high proton momenta

Exclusive Varification

$A\left(e, e^{\prime}\right) X, A={ }^{3} \mathrm{He},{ }^{4} \mathrm{He},{ }^{12} \mathrm{C},{ }^{56} \mathrm{Fe}$
$A\left(e, e^{\prime} p N\right) X, A={ }^{12} C$

Measured Composition (\%)

	1 N state	2N SRC
${ }^{2} \mathrm{H}$	96 ± 0.7	4.0 ± 0.7
${ }^{3} \mathrm{He}$	92 ± 1.6	8.0 ± 1.6
${ }^{4} \mathrm{He}$	86 ± 3.3	15.4 ± 3.3
${ }^{12} \mathrm{C}$	80 ± 4.1	19.3 ± 4.1
${ }^{56} \mathrm{Fe}$	76 ± 4.7	23.0 ± 4.7

Proton-neutron rate is $\sim 20 x$ proton-proton rate \rightarrow two nucleons close together are almost always a $p-n$ pair!
Expected to be due to (shortrange) tensor correlations.

DIS on Nuclei: The EMC Effect and $x>1$

SRC: nucleons see strong repulsive core at short distances
EMC effect: quark momentum in nucleus is altered

Fomin et al., PRL 108, 092502 (2012)

Correlation is suggestive of deeper relationship.
How do short range correlations the quark content of nucleon?

Spectroscopy

Constituent Quark Model

Classification scheme for hadrons in terms of "valence quarks" which give rise to the quantum numbers of hadrons.
$J^{P C} \quad \mathrm{~J}$ - total angular momentum, P-symmetry and Csymmetry

SU(3) flavour "Eightfold way"
Organizes a huge number of hadrons

Symbol	Flavour	Electric charge (e)	Isospin	$\mathbf{I}_{\mathbf{3}}$	Mass Gev/c $\mathbf{c}^{\mathbf{2}}$
u	up	$+\frac{2}{3}$	$\frac{1}{2}$	$+\frac{1}{2}$	≈ 0.33
d	down	$-\frac{1}{3}$	$\frac{1}{2}$	$-\frac{1}{2}$	≈ 0.33
c	charm	$+\frac{2}{3}$	0	0	≈ 1.5
s	strange	$-\frac{1}{3}$	0	0	≈ 0.5
t	top	$+\frac{2}{3}$	0	0	≈ 172
b	bottom	$-\frac{1}{3}$	0	0	≈ 4.5

Baryon	Quark content	Spin	Isospin	$\mathbf{I}_{\mathbf{3}}$	Mass Mev/c ${ }^{2}$
p	$u u d$	$\frac{1}{2}$	$\frac{1}{2}$	$+\frac{1}{2}$	938
n	$u d d$	$\frac{1}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$	940
Δ^{++}	$u u u$	$\frac{3}{2}$	$\frac{3}{2}$	$+\frac{3}{2}$	1230
Δ^{+}	$u u d$	$\frac{3}{2}$	$\frac{3}{2}$	$+\frac{1}{2}$	1230
Δ^{0}	$u d d$	$\frac{3}{2}$	$\frac{3}{2}$	$-\frac{1}{2}$	1230
Δ^{-}	$d d d$	$\frac{3}{2}$	$\frac{3}{2}$	$-\frac{3}{2}$	1230

Meson	Quark content	Spin	Isospin	$\mathbf{I}_{\mathbf{3}}$	Mass Mev/c ${ }^{2}$
π^{+}	$u \bar{d}$	0	1	+1	140
π^{0}	$\frac{1}{\sqrt{2}}(u \bar{u}-d \bar{d})$	0	1	0	135
π^{-}	$d \bar{u}$	0	1	-1	140
ρ^{+}	$u \bar{d}$	1	1	+1	770
ρ^{0}	$\frac{1}{\sqrt{2}}(u \bar{u}-d \bar{d})$	1	1	0	770
ρ^{-}	$d \bar{u}$	1	1	-1	770
ω	$\frac{1}{\sqrt{2}}(u \bar{u}+d \bar{d})$	1	0	0	782

Baryon	Quark content	Spin	Isospin	$\mathbf{I}_{\mathbf{3}}$	Mass Mev/c ${ }^{\mathbf{2}}$
Σ^{+}	$u u s$	$\frac{1}{2}$	1	+1	1189
Σ^{0}	$u d s$	$\frac{1}{2}$	1	0	1193
Σ^{-}	$d d s$	$\frac{1}{2}$	1	-1	1189
Ξ^{0}	$u s s$	$\frac{1}{2}$	$\frac{1}{2}$	$+\frac{1}{2}$	1314
Ξ^{-}	$d s s$	$\frac{1}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$	1321
Λ	$u d s$	$\frac{1}{2}$	0	0	1115
Σ^{*+}	$u u s$	$\frac{3}{2}$	1	+1	1385
$\Sigma^{* 0}$	$u d s$	$\frac{3}{2}$	1	0	1385
Σ^{*-}	$d d s$	$\frac{3}{2}$	1	-1	1385
$\Xi^{* 0}$	$u s s$	$\frac{3}{2}$	$\frac{1}{2}$	$+\frac{1}{2}$	1530
Ξ^{*-}	$d s s$	$\frac{3}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$	1530
Ω^{-}	$s s s$	$\frac{3}{2}$	0	0	1672

Mesons

Ancient Greek μ ह́бov (méson, "middle")

Baryons

Greek word for "heavy" (ßapúc, barýs)

$I_{3}=\frac{1}{2}\left[\left(n_{\mathrm{u}}-n_{\overline{\mathrm{u}}}\right)-\left(n_{\mathrm{d}}-n_{\overline{\mathrm{d}}}\right)\right]$

Exotic Hadrons

Why don't we find other color-singlets? If they exist: what are their properties? Why are they so rare?
tetra-quark
penta-quark

PRL II5, 07200I (20I5)

hybrid meson

Meson Quantum Numbers

Mesons have well defined quantum numbers: total spin J, parity P, and Cparity C represented as JPC

$$
\begin{array}{cc}
P(q \bar{q})=(-1)^{L+1} & \text { mirror } \\
C(q \bar{q})=(-1)^{L+S} & \begin{array}{c}
\text { particle-anti- } \\
\text { particle exchange }
\end{array}
\end{array}
$$

S	L	J	P	C	$J^{P C}$	Mesons				Type
0	0	0	-	+	0^{-+}	π	η	η^{\prime}	K	pseudoscaler
1	0	1	-	-	1^{--}	ρ	ω	ϕ	K^{*}	vector
0	1	1	+	-	1^{+-}	b_{1}	h_{1}	h_{1}^{\prime}	K_{1}	axial vector
1	1	0	+	+	0^{++}	a_{0}	f_{0}	f_{0}^{\prime}	K_{0}^{*}	scaler
1	1	1	+	+	1^{++}	a_{1}	f_{1}	f_{1}^{\prime}	K_{1}^{*}	axial vector
1	1	2	+	+	2^{++}	a_{2}	f_{2}	f_{2}^{\prime}	K_{2}^{*}	tensor

explicitly exotic quantum numbers

$$
0^{--}, 0^{+-}, 1^{-+}, 2^{+-}, 3^{-+}, \ldots
$$

Light Quark Mesons from Lattice

Dudek et al. PRD 88 (2013) 094505

$\eta \pi / \eta^{\prime} \pi$ spectroscopy

COMPASS:
PLB 740 (2015) 303
JPAC:
PRL I22 (2019) 042002

$\eta \pi / \eta^{\prime} \pi$ spectroscopy

coupled channel fit to $\eta \pi$ and η ' π determine pole positions for a_{2}, a_{2}, and exotic π_{1}

$M_{\pi_{1}}=1564 \pm 89 \mathrm{MeV}$
$a_{2}(1320) \quad a_{2}^{\prime}(1700)$
$\Gamma_{\pi_{1}}=492 \pm 115 \mathrm{MeV}$

COMPASS:
PLB 740 (2015) 303
JPAC:
PRL I 22 (2019) 042002

Experiment and Detector

Hall D at Jefferson Lab

Linearly polarized photon beam

Proton target
Hermetic detector - high efficiency for charged and neutral particles

Photon Beamline

$\sim 12 \mathrm{GeV}$ electrons from CEBAF
Coherent bremsstrahlung on thin diamond wafer
Linearly polarized in coherent peak ~35\%
Tagged photon energy

GlueX phase 1 tagged luminosity

$$
\begin{array}{ll}
8.2-8.8 \mathrm{GeV} & 125 \mathrm{pb}^{-1} \\
6.0-11.6 \mathrm{GeV} & 440 \mathrm{pb}^{-1}
\end{array}
$$

Summary

Electron scattering is a versatile and powerful experimental technique

It continues to provide new insights in nucleon structure and nuclear structure and the spectroscopy of strongly interacting systems.

