## Parallel Session 1: Nuclear Physics

Studying Hadrons with Electron Beams

6th edition of the biennial African School of Fundamental Physics and Applications

Mark Dalton, Jefferson Lab



### Outline

Introduction: what are we trying to learn? Introduction to electron scattering Form factors Deep inelastic scattering New insights about the nucleus Exotic spectroscopy

# The Nucleus

Mark Dalton

**Nuclear Physics** 

### DIS on Nuclei: The EMC Effect and x>1



### The EMC Effect

EMC effect scales with average nuclear density





<sup>9</sup>Be = 2*α* clusters + "extra" neutron

Suggests EMC effect depends on local nuclear environment

### Short Range Correlations



### **Exclusive Varification**

A(e,e')X, A = <sup>3</sup>He, <sup>4</sup>He, <sup>12</sup>C, <sup>56</sup>Fe



Measured Composition (%)

|                        | 1N state              | 2N SRC            |  |  |  |
|------------------------|-----------------------|-------------------|--|--|--|
| <sup>2</sup> H         | <mark>96</mark> ± 0.7 | <b>4.0 ±</b> 0.7  |  |  |  |
| <sup>3</sup> He        | <b>92</b> ± 1.6       | <b>8.0 ±</b> 1.6  |  |  |  |
| ⁴He                    | 86 ± 3.3              | <b>15.4 ±</b> 3.3 |  |  |  |
| <sup>12</sup> <b>C</b> | <b>80</b> ± 4.1       | <b>19.3</b> ± 4.1 |  |  |  |
| <sup>56</sup> Fe       | <b>76</b> ± 4.7       | <b>23.0</b> ± 4.7 |  |  |  |



Proton-neutron rate is ~20 x proton-proton rate → two nucleons close together are almost always a p-n pair! Expected to be due to (shortrange) tensor correlations.

Jefferson Lab

Mark Dalton

#### **Nuclear Physics**

### DIS on Nuclei: The EMC Effect and x>1

SRC: nucleons see strong repulsive core at short distances EMC effect: quark momentum in nucleus is altered



Correlation is suggestive of deeper relationship.

How do short range correlations the quark content of nucleon?

Mark Dalton

Nuclear Physics

Fomin et al., PRL

# Spectroscopy

Jefferson Lab

Mark Dalton

**Nuclear Physics** 

### Constituent Quark Model

Classification scheme for hadrons in terms of "valence quarks" which give rise to the quantum numbers of hadrons.

 $J^{PC}$  J- total angular momentum, P-symmetry and C-symmetry

SU(3) flavour "Eightfold way"

Organizes a huge number of hadrons

| Symbol | Flavour | Electric charge (e) | Isospin       | I <sub>3</sub> | Mass $\text{Gev}/\text{c}^2$ |
|--------|---------|---------------------|---------------|----------------|------------------------------|
| u      | up      | $+\frac{2}{3}$      | $\frac{1}{2}$ | $+\frac{1}{2}$ | $\approx 0.33$               |
| d      | down    | $-\frac{1}{3}$      | $\frac{1}{2}$ | $-\frac{1}{2}$ | $\approx 0.33$               |
| С      | charm   | $+\frac{2}{3}$      | 0             | 0              | $\approx 1.5$                |
| S      | strange | $-\frac{1}{3}$      | 0             | 0              | $\approx 0.5$                |
| t      | top     | $+\frac{2}{3}$      | 0             | 0              | $\approx 172$                |
| b      | bottom  | $-\frac{1}{3}$      | 0             | 0              | $\approx 4.5$                |

| Baryon        | Quark content | Spin          | Isospin       | $I_3$          | Mass $Mev/c^2$ |
|---------------|---------------|---------------|---------------|----------------|----------------|
| <i>p</i>      | uud           | $\frac{1}{2}$ | $\frac{1}{2}$ | $+\frac{1}{2}$ | 938            |
| n             | udd           | $\frac{1}{2}$ | $\frac{1}{2}$ | $-\frac{1}{2}$ | 940            |
|               |               |               |               |                |                |
| $\Delta^{++}$ | uuu           | $\frac{3}{2}$ | $\frac{3}{2}$ | $+\frac{3}{2}$ | 1230           |
| $\Delta^+$    | uud           | $\frac{3}{2}$ | $\frac{3}{2}$ | $+\frac{1}{2}$ | 1230           |
| $\Delta^0$    | udd           | $\frac{3}{2}$ | $\frac{3}{2}$ | $-\frac{1}{2}$ | 1230           |
| $\Delta^{-}$  | ddd           | $\frac{3}{2}$ | $\frac{3}{2}$ | $-\frac{3}{2}$ | 1230           |

| Meson      | Quark content                                        | Spin | Isospin | $I_3$ | Mass $Mev/c^2$ |
|------------|------------------------------------------------------|------|---------|-------|----------------|
| $\pi^+$    | ud                                                   | 0    | 1       | +1    | 140            |
| $\pi^0$    | $\frac{1}{\sqrt{2}}\left(u\bar{u} - d\bar{d}\right)$ | 0    | 1       | 0     | 135            |
| $\pi^-$    | $d\bar{u}$                                           | 0    | 1       | -1    | 140            |
|            |                                                      |      |         |       |                |
| $\rho^+$   | ud                                                   | 1    | 1       | +1    | 770            |
| $\rho^0$   | $\frac{1}{\sqrt{2}}\left(u\bar{u}-d\bar{d}\right)$   | 1    | 1       | 0     | 770            |
| $\rho^{-}$ | $d\bar{u}$                                           | 1    | 1       | -1    | 770            |
| $\omega$   | $\frac{1}{\sqrt{2}}\left(u\bar{u}+d\bar{d}\right)$   | 1    | 0       | 0     | 782            |

Jefferson Lab

Mark Dalton

| Baryon        | Quark content | Spin          | Isospin       | $I_3$          | Mass $Mev/c^2$ |
|---------------|---------------|---------------|---------------|----------------|----------------|
| $\Sigma^+$    | uus           | $\frac{1}{2}$ | 1             | +1             | 1189           |
| $\Sigma^0$    | uds           | $\frac{1}{2}$ | 1             | 0              | 1193           |
| $\Sigma^{-}$  | dds           | $\frac{1}{2}$ | 1             | -1             | 1189           |
| $\Xi^0$       | uss           | $\frac{1}{2}$ | $\frac{1}{2}$ | $+\frac{1}{2}$ | 1314           |
|               | dss           | $\frac{1}{2}$ | $\frac{1}{2}$ | $-\frac{1}{2}$ | 1321           |
| Λ             | uds           | $\frac{1}{2}$ | 0             | 0              | 1115           |
|               |               |               |               |                |                |
| $\Sigma^{*+}$ | uus           | $\frac{3}{2}$ | 1             | +1             | 1385           |
| $\Sigma^{*0}$ | uds           | $\frac{3}{2}$ | 1             | 0              | 1385           |
| $\sum^{*-}$   | dds           | $\frac{3}{2}$ | 1             | -1             | 1385           |
| =*0           | uss           | $\frac{3}{2}$ | $\frac{1}{2}$ | $+\frac{1}{2}$ | 1530           |
|               | dss           | $\frac{3}{2}$ | $\frac{1}{2}$ | $-\frac{1}{2}$ | 1530           |
| $\Omega^{-}$  | SSS           | $\frac{3}{2}$ | 0             | 0              | 1672           |

Jefferson Lab

Mark Dalton

**Nuclear Physics** 

#### Mesons

Ancient Greek μέσον (méson, "middle")



#### Baryons

Greek word for "heavy" (βαρύς, barýs)









#### Jefferson Lab

Mark Dalton

#### **Nuclear Physics**

### **Exotic Hadrons**

Why don't we find other color-singlets? If they exist: what are their properties? Why are they so rare?





Mark Dalton Jefferson Lab

**Nuclear Physics** 

### Meson Quantum Numbers

Mesons have well defined quantum numbers: total spin J, parity P, and Cparity C represented as J<sup>PC</sup>

$$P(q\bar{q}) = (-1)^{L+1} \qquad \text{mirror}$$

 $C(q\bar{q}) = (-1)^{L+S}$ 

particle—antiparticle exchange

| S | L | J | P | С | $J^{PC}$ | Mesons  |          |         | Type    |              |
|---|---|---|---|---|----------|---------|----------|---------|---------|--------------|
| 0 | 0 | 0 | _ | + | $0^{-+}$ | $\pi$   | $\eta$   | $\eta'$ | K       | pseudoscaler |
| 1 | 0 | 1 | _ | — | 1        | $\rho$  | $\omega$ | $\phi$  | $K^*$   | vector       |
| 0 | 1 | 1 | + | — | $1^{+-}$ | $b_1$   | $h_1$    | $h_1'$  | $K_1$   | axial vector |
| 1 | 1 | 0 | + | + | $0^{++}$ | $ a_0 $ | $f_0$    | $f_0'$  | $K_0^*$ | scaler       |
| 1 | 1 | 1 | + | + | $1^{++}$ | $ a_1 $ | $f_1$    | $f_1'$  | $K_1^*$ | axial vector |
| 1 | 1 | 2 | + | + | $2^{++}$ | $a_2$   | $f_2$    | $f_2'$  | $K_2^*$ | tensor       |

explicitly exotic quantum numbers

$$0^{--}, 0^{+-}, 1^{-+}, 2^{+-}, 3^{-+}, \ldots$$

Jefferson Lab

Mark Dalton

Nuclear Physics

### Light Quark Mesons from Lattice



Dudek et al. PRD 88 (2013) 094505

Mark Dalton

#### **Nuclear Physics**

ASP2021

 $\eta \pi / \eta' \pi$  spectroscopy



### $\eta \pi / \eta' \pi$ spectroscopy





#### Jefferson Lab

Mark Dalton

#### Nuclear Physics

ASP2021

### **Experiment and Detector**



Hall D at Jefferson Lab



### Photon Beamline



- ~12 GeV electrons from CEBAF Coherent bremsstrahlung on thin diamond wafer Linearly polarized in coherent
- peak ~35% Taggad photon apor
- Tagged photon energy

GlueX phase 1 tagged luminosity 8.2 - 8.8 GeV 125 pb<sup>-1</sup> 6.0 - 11.6 GeV 440 pb<sup>-1</sup>



#### Jefferson Lab Mark Dalton

### Summary

Electron scattering is a versatile and powerful experimental technique

It continues to provide new insights in nucleon structure and nuclear structure and the spectroscopy of strongly interacting systems.