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Synopsis

To provide a general atomic and molecular physics overview to the 
undergraduate and graduate students in physics. 

Great emphasis will be placed on familiarity with quantum mechanical 
description of the simplest atom (hydrogen) and its alike.

Attempt will be made to briefly highlight different current researches in 
the area of atomic and molecular physics, if time permits.
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Outline
History and basic backgrounds

Overview of different area of basic research in this field

Discuss methodology/concept for understanding the subject

Atomic physics and atomic structure

Molecular physics and molecular structure

Modern research in the field of atom and molecules physics

References:
Physics of Atoms and Molecules — B H Bransden & C J Joachain, Pearson International (2011),

The Physics of Atoms & Quanta: Intro. to experiement and theory — Hakan & Wolf
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Nuclear Physics lecture, Mark Dalton
Material physics lecture, …



History and basic backgrounds
History

The physics of atoms and molecules rely on a long history of discoveries, both experimental and theoretical. 

We shall briefly recognise the key steps which are at the root of modern atomic and molecular physics.

Greek philosophers: 
Anaxagoras (500 - 428 BC), Emedocles (484 - 424 BC)… Democritus (460 -370 BC)  

- argued that the atoms are invisible particles which differ from each other in form, position and 

arrangement.

Aristotle (384 - 322 BC) and almost everybody else 

- rejected the atomic hypothesis and supported the concept of the continuity of matter.

Atom — Greek word “a-tomio” which means “uncuttable''

Problem: Neither had any experimental or theoretical evidence.
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History and basic backgrounds contd…
Modern times

Experimental discovery of the gas laws

1662: Robert Boyle (1627 - 1691) — extended mathematics to chemistry
Emprical law: PV = RT  

Understanding of the rainbow — birth of spectroscopy

1666 - 72: Issac Newton — by refracting white light with a prism, he resolved it into its 
component colours (red, orange, yellow, green, blue and violet)

6

Other notable works: 

Thomas Melvill(e) (1749) — flame emission spectroscopy

He used a prism to observe a flame coloured by various salts.

…



History contd…
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Laws of chemical combinations
1801: J.L. Proust — law of definite proportions which states that when chemical elements combine to form a 

given compound, the proportion by weight of each element is always the same
1807: J. Dalton — law of multiple proportions which state that when two elements combine in different 

ways, to form different compounds, then for a fixed weight of one element, the weights of the other element 
are in the ratio of small integers.

1808: Dalton hypothesis — the elements are composed of discrete atoms. Compounds are formed when 
atoms of different elements combine in a simple ratio. Atoms can neither be created nor destroyed

1811: Avogadro — the first to distinguish between atoms (the discrete particles of the elements) and 
molecules (the discrete particles of compounds). At fixed pressure and temperature, equal volumes of 

different gases contain equal numbers of molecules.

Question: How to determine the Avogadro’s number, 𝑁𝐴?



History contds…
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1738: D. Bernoulli — interpretation of the empirical gas laws as kinetic model

Nineteenth century 
R. Clausius, J.C. Maxwell and L. Boltzmann — explain the physical properties of gases

Assumptions:
1. A gas consists of a large number of particles called molecules which make elastic collisions with 

each other  and with the walls of the container
2. The molecules of a particular substance are all identical and are small compared with the 

distances that separate them.
3. The temperature of a gas is proportional to the average kinetic energy of the molecules.

Kinetic theory of gases

Despite none fully acceptance of the chemistry explanation until late nineteenth century due to chemists 
Ignored the kinetic theory, many experimental advancement were made in the field.
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Other notable works of

William Herschel — discovery of the infrared light

Thomas Young (1801) — the wave theory of light

Joseph von Fraunhofer (1814) — invented spectroscope

…

Sir David Brewster (1827) — produces absorption spectra in a laboratory.

Electron
1833: M. Faraday — laws of electrolysis

1897: J.J. Thompson — studies with cathode rays led to electron discovery
1897: J.S. Townsend — direct measurements of the smallest possible charge, 𝑒

Late nineteenth century — Newton’s law of motion and Maxwell’s electromagnetic equations 
is inadequate to describe atomic phenomena.

1885: J. Balmar — Experimental observed discrete lines in the visible spectrum of hydrogen. 

He showed that the wavelength could be fit by  𝜆 = 𝐵
𝑛2

𝑛2−4
, where an integer 𝑛 ≥ 3 & 𝐵 = 4/𝑅𝐻 (Rydberg const)

History contds…
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What way forward?

1879: J. Stefan empirical law — the power emitted per unit area, 𝑅, from a body at the absolute 
temperature 𝑇 (K), could be represented by: 𝑅 = 𝑒𝜎𝑇4

where 𝑒 is the emissivity which varies with the nature of the surface and 𝜎 is the Stefan’s constant.

Black body radiation — a study of the properties of radiation from hot bodies provide the first evidence of 
the quantisation of energy.
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For a number of standing electromagnetic waves (modes) per unit volume within a cavity, the energy density 
reads

𝜌(𝜆) =
8𝜋

𝜆4
𝜀,      𝜀 - the avg. energy in the mode with wavelength 𝜆

Lord Rayleigh and J. Jeans approach: 𝑓(𝜆𝑇) = 8𝜋𝑘(𝜆𝑇); 𝜀 = 𝑘𝑇 ——- Ultra-violet catastrophe!

Rayleigh-Jeans distribution law: 𝜌(𝜆) = 8𝜋

𝜆4
(𝑘𝑇)

1899: O. Lummer & E. Pringsheim — experimentally measured the spectral distribution as a function of 
temperature 

Blackbody radiation…

1893: W. Wein — based on general thermodynamics arguments, show that the spectral distribution 
function for energy density a cavity is  𝜌(𝜆) = 𝜆5𝑓(𝜆𝑇),

𝜆 is wavelength of the radiation and 𝑓(𝜆𝑇) is a function to be determined beyond thermodynamical reasoning.
Wien’s displacement law: the wavelength of the peak of each curves corresponds to a different 

temperature.
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1900: Planck’s quantum theory

Postulate: 
The energy of an oscillator of a given frequency 𝜈 cannot take arbitrary values between zero and infinity, 
but can only take on the discrete values 𝑛𝜀0, where 𝑛 is a positive integer or zero, and 𝜀0 is a finite 
“quantum” of energy, which may depend on the frequency.

Average energy of an ensemble of oscillators, each of frequency 𝜈, in thermal equilibrium is;
𝜀 =

𝜀0

𝑒𝛽𝜀0−1

Then, 
𝜌(𝜆) =

8𝜋

𝜆4
𝜀0

𝑒𝜀0/𝑘𝑇 − 1

To satisfy Wein’s law: 𝜀0 = ℎ𝜈

ℎ is Planck’s constant (ℎ = 6.6262 × 10−34𝐽𝑜𝑢𝑙𝑒 − 𝑠𝑒𝑐).

Planck’s distribution law: 𝜌(𝜆) = 8𝜋ℎ𝑐

𝜆5
1

𝑒ℎ𝑐/𝜆𝑘𝑇−1
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Subsequently N. Bohr, in 1913, was able to invoke the idea of quantisation of 
atomic energy levels to explain the existence of line spectra.

Geiger, Marsden and Rutherford (1906 - 1913): Based on the scattering of 𝛼 particles by metallic foils of various
thickness, Rutherford found that 𝛼 particles had charge to mass ratio Τ𝑞 𝑀 equals the doubly ionised helium atom.

Atom is mostly empty space with a small positively charged nucleus (protons) containing most of the mass and low mass
negatively charged particles (Thompson’s electrons) orbiting this nucleus.

Is Planck’s quantum theory acceptable?

Planck's theory was not accepted readily. However it was not long before the quantum concept
was used to explain other phenomena.

In 1905, A. Einstein was able to interpret the photoelectric effect by introducing the idea of  photons, 
or light quanta, and in 1907 he used the Planck formula for the average energy of an oscillator to derive 

the law of Dulong and Petit concerning the specific heat of solids. 



Early quantum formulation and Bohr’s idea - I
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1913: Neils Bohr’s — based on Rutherford’s 𝛼-scattering experiment and the observation of discrete 
spectra, Bohr introduced the energy level quantisation of atom

The postulates were:
1. Electron moves in circular orbit about proton under Coulomb attraction.

Electrostatic attractive force = 1

4𝜋𝜀0

𝑍𝑒2

𝑟2
Centrifugal force = 𝑚𝑣2

𝑟

𝑍𝑒 - Charge of nucleus, 𝑣 - velocity of electron, 𝑟 - radius
2. Electron can revolve only in those orbits whose angular momentum is an integral multiple of ℏ = ℎ/2𝜋. That is; 𝐿 =

𝑚𝑣𝑟 = 𝑛ℏ 𝑛 = 1,2,3, . . .

Radius of the orbit, 𝑟 = 4𝜋𝜀0
𝑛2ℏ2

𝑚𝑍𝑒2
and velocity, 𝑣 = 𝑛ℏ

𝑚𝑟

3. Total energy of the electron in orbit remains constant. 𝐸 = 𝐸𝑘𝑖𝑛 + 𝐸𝑝𝑜𝑡

𝐸𝑛 = −
𝑚𝑍2𝑒4

(4𝜋𝜀0)
22ℏ2

1

𝑛2

4. Radiation is emitted only when the electron jumps from one discrete orbit to another orbit of a lower energy. When 
electrons absorb radiation, the reverse transition occurs. Δ𝐸 = 𝐸𝑓 − 𝐸𝑖 = ℎ𝑣 = ℎ𝑐/𝜆
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n=
1 n=

2 n=
3 n=4

n=4 ——
n=3 —— -1.5 eV

n=2 —— -3.4 eV

n=1 —— -13.6 eV

𝐸𝑛 =
−13.6𝑒𝑉

𝑛2

Electron energy, 𝐸𝑛 =
−13.6𝑍2

𝑛2
eV Orbit radius, 𝑟 = 𝑛2𝑎0

𝑍

𝑍 — atomic number and 𝑎0 — Bohr radius

For 𝑍 = 1 (Hydrogen)

Questions:
• How does the velocity of ground state hydrogen 

electron compare to velocity of light?
• Is the non-relativistic model justified?
Hint: 𝑟1 = 5.29 × 10−11meter

Niels Bohr, 1922 Nobel prize in physics — investigation of atomic structure and radiation

Early quantum formulation and Bohr’s idea - II 
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Failures of Bohr model

Some of the shortcomings of the model are:
1. Fails to describe why certain spectral lines are brighter than others. That is, no mechanism for calculating 

transition probabilities.
2. It violates the uncertainty principle which states that position and momentum cannot be simultaneously 

measured.

From Bohr model, the linear momentum 𝑝 = 𝑚𝑣 = 𝑛ℏ/𝑟

From Hiesenberg uncertainty principle, Δ𝑝 ∼ ℏ/Δ𝑥 ∼ ℏ/𝑟

Bohrs model only valid at the classical limit, ie. large 𝑛 limit

Thus, full quantum mechanical treatment is needed to model electron in hydrogen atom

Bohr model is not in fact a correct description of the nature of electron orbits.
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Quantum mechanically, we have four quantum numbers:
Principal quantum number - 𝑛
Azimuthal quantum number - 𝑙

Magnetic quantum number - 𝑚𝑙

Spin quantum number - 𝑠

Selection rule must be modified

A single quantum number 𝑛 cannot actually explain the transitions in an atom.

Hydrogen spectrum
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Schro
··

dinger equation for the Atom -I

Hydrogen is one electron atom and perhaps the simplest system in nature, 𝑍 = 1.
The potential associated with the attractive Coloumbic force between the positive charge proton and the 

negative charge electron is 𝑉(𝑟
⃗
) = −

𝑍𝑒2

4𝜋𝜀0𝑟
.

Since it is a two body problem, we introduced a reduced mass (to treat it as one body problem) 𝜇 = 𝑚𝑀

𝑚+𝑀
,        

where 𝑚 and 𝑀 are the masses of the electron and proton respectively.

kinetic energy + potential energy = Total energy 
1

2𝜇
(𝑝𝑥

2 + 𝑝𝑦
2 + 𝑝𝑧

2) + 𝑉(𝑥, 𝑦, 𝑧) = 𝐸

For quantum mechanical treatment, the classical dynamical quantities would be replaced with their 
corresponding quantum mechanical operators.

𝑝𝑥 → −𝑖ℏ𝜕/𝜕𝑥, 𝑝𝑦 → −𝑖ℏ𝜕/𝜕𝑦, 𝑝𝑧 → −𝑖ℏ𝜕/𝜕𝑧, 𝐸 → −𝑖ℏ𝜕/𝜕𝑡,

Let introduce a wave function describing the electron as; 𝜓 = 𝜓(𝑥, 𝑦, 𝑧, 𝑡)
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Since the potential 𝑉 is independent of the time and angle, we simplify the equation in two ways. First, the
time dependent part (RHS) of the equation is replaced by the energy eigenvalue. Secondly, writing the

Hamiltonian in spherical coordinates, we can separate the wave function 𝜓(𝑟
⃗
) into a product of radial-only

and angular-only parts.

Schro
··

dinger equation for the Atom - II
Then,

−
ℏ2

2𝑚𝑒
𝛻2 + 𝑉(𝑟) 𝜓 = −𝑖ℏ

𝜕𝜓

𝜕𝑡
,  where 𝜓 ≡ 𝜓(𝑟

⃗
, 𝑡) and 𝑉(𝑟

⃗
) = −

𝑍𝑒2

4𝜋𝜀0𝑟

𝛻 is Laplacian operator
Time-dependent SE equation

In spherical polar coordinates,    − ℏ2

2𝜇
𝛻2𝜓(𝑟, 𝜃, 𝜙) + 𝑉(𝑟)𝜓(𝑟, 𝜃, 𝜙) =

𝐸𝜓(𝑟, 𝜃, 𝜙)
where  

𝛻2 =
1

𝑟2
𝜕

𝜕𝑟
(𝑟2

𝜕

𝜕𝑟
) +

1

𝑟2sin𝜃

𝜕

𝜕𝜃
(sin𝜃

𝜕

𝜕𝜃
) +

1

𝑟2sin2𝜃

𝜕2

𝜕𝜙2
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Schro
··

dinger equation for the Atom - III: Separation of variables

We can separate the resulting partial differential eqn. into a set of three ordinary differential eqns.:
𝑑2Φ

𝑑𝜙2
= −𝑚𝑙

2Φ

−
1

sin𝜃

𝑑

𝑑𝜃
sin𝜃

𝑑Φ

𝑑𝜃
+
𝑚𝑙

2Θ

sin2𝜃
= 𝑙(𝑙 + 1)Θ

1

𝑟2
𝑑

𝑑𝑟
𝑟2
𝑑𝑅

𝑑𝑟
+
2𝜇𝑟2

ℏ2
[𝐸 − 𝑉(𝑟)]𝑅 = 𝑙(𝑙 + 1)

𝑅

𝑟2

Schro
··

dinger equation produces three quantum numbers

Assuming the eigenfunction is separable: 𝜓(𝑟, 𝜃, 𝜙) = 𝑅(𝑟)Θ(𝜃)Φ(𝜙)
Substituting 𝜓(𝑟, 𝜃, 𝜙) into the SE, carrying out the differentiations and rearranging

1

Φ

𝑑2Φ

𝑑𝜙
= −

sin2𝜃

𝑅

𝑑

𝑑𝑟
𝑟2
𝑑𝑅

𝑑𝑟
−
sin𝜃

Θ

𝑑

𝑑𝜃
sin𝜃

𝑑Θ

𝑑𝜃
−
2𝜇

ℏ2
𝑟2sin2𝜃[𝐸 − 𝑉(𝑟)]
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Schro
··

dinger equation for the Atom - IV: Solutions

Azimuthal part 
A particular solution of the first ODE is Φ(𝜙) = 𝑒𝑖𝑚𝑙𝜙.

The eigenfunctions must be single valued, ie., Φ(0) = Φ(2𝜋) and using Euler’s formula, 1 = cos𝑚𝑙2𝜋 +
𝑖sin𝑚𝑙2𝜋 .

This is satisfied if and only if; 𝑚𝑙 = 0,±1,±2, . . .
Thus, solutions only exist when 𝑚𝑙 have a certain integer values. It is called a quantum number. It plays role 
when atom interacts with magnetic fields, known as the magnetic quantum number in spectroscopy.

Polar part, Θ(𝜃)
Making change of variable, 𝑧 = 𝑟cos𝜃, the 2nd ODE is transformed into an associated Legendre equation: 

𝑑

𝑑𝑧
(1 − 𝑧2)

𝑑Θ

𝑑𝑧
+ 𝑙(𝑙 + 1) −

𝑚𝑙
2

1−𝑧2
Θ = 0.

Solutions: Θ𝑙𝑚𝑙
(𝜃) = sin|𝑚𝑙|𝜃𝐹𝑙|𝑚−𝑙|(cos𝜃) , where 𝐹𝑙|𝑚−𝑙|(cos𝜃) are associated Legendre polynomial

functions.
For finite Θ;  𝑙 = 0,1,2,3,4. . .; 𝑚𝑙 = −𝑙,−𝑙 + 1, . . . , 0, . . , 𝑙 − 1, 𝑙
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Schro
··

dinger equation for the Atom - IV: Solutions representation

Spherical harmonic solutions: 𝑌𝑙
𝑚𝑙(𝜃, 𝜙) = Θ𝑙𝑚𝑙

(𝜃)Φ𝑚𝑙
(𝜙)

It is product of trigonometric and polynomial functions

Taken from: Wolfram MathWorks

Few spherical harmonics are:
𝑌0
0 = 1

𝑌1
0 = cos𝜃𝑌1

±1 = (1 − cos2𝜃) Τ1 2𝑒±𝑖𝜙

…
…..
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Schro
··

dinger equation for the Atom - V: Radial part

To satisfy this equation for any value of r, both expressions in brackets must equal zero. We have

𝑎0 =
4𝜋𝜀0ℏ

2

𝜇𝑒2
;            𝐸 = −

ℏ2

2𝜇𝑎0
2

What are their values numerically?

For each positive integer of 𝑛, the radial wave equation has many solutions. Bound-state solutions are 

only possible if, 𝐸𝑛 = −
𝑍2𝜇𝑒4

(4𝜋𝜀0)
22ℏ2𝑛2

= −13.6
𝑍2

𝑛2
eV.     The principal q. no. 𝑛 = 𝑙 + 1, 𝑙 + 2, . . .

For hydrogen atom, 𝑍 = 1. Assuming the ground state 𝑛 = 1, 𝑙 = 0; the third ODE can be written as
1

𝑟2
𝑑

𝑑𝑟
𝑟2
𝑑𝑅

𝑑𝑟
+
2𝜇

ℏ2
𝐸 +

𝑒2

4𝜋𝜀0𝑟
𝑅 = 0

Taking the derivative and assume solution 𝑅 = 𝐴𝑒−𝑟/𝑎0 , where 𝐴 and 𝑎0 are constants. The eq. becomes;
1

𝑎0
2 +

2𝜇

ℏ2
𝐸 +

2𝜇𝑒2

4𝜋𝜀0ℏ
2 −

2

𝑎0

1

𝑟
= 0.



24

Molecules
What is a molecule?

Many atoms can combine to form a particular molecules, E.g. hydrogen (H) and Oxygen (O) atoms form water
(H2O); Chlorine (Cl) and Sodium (Na) atoms form NaCl molecules. Bonding between oppositely charged
bodies could be understood in the light of Coulomb interaction (attraction) but atoms of the same type can still
form bonds, a typical example is hydrogen molecule 𝐻2.

A molecule is an electrically neutral group of two or more atoms held together by chemical bonds. —-
Wikipedia

Our goal
To understand the formation of molecule from 

atom in the quantum mechanical framework.

In contrast to atoms, molecules have two 
more degrees of freedom: rotational

and vibrational

https://en.wikipedia.org/wiki/Electrically
https://en.wikipedia.org/wiki/Atom
https://en.wikipedia.org/wiki/Chemical_bond
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Molecules contd…

In molecules, the potential seen by the electrons lacks a central character. For the simplest of molecules, the 
homonuclear diatomic molecule, the potential is two-centred. The increase in the number of nuclei, 
increases the complexity nature of the attractive potential.

How can the problem be simplified?
Take into account the large difference in the masses of the nuclei and the electrons.

This is important in the analysis of molecular structure and spectra

First, let us compare the energies and masses of the electrons and the nuclei in a molecule
𝑚𝑒 = 9.1095 × 10−31kg                  𝑚𝑁 = 1.6750 × 10−27kg

Let us consider electrons in a potential well of size 𝑅 (bond-length or molecule size), the electrons energy 

estimate, 𝐸𝑒 ≈
𝑝2

2𝑚
≈

ℏ2

2𝑚𝑅2
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Molecules contd…

Now consider a diatomic molecule, the energy of the nucleus can be estimated by treating the molecule
(specifically a diatomic molecule) as a linear harmonic oscillator. That is, the molecule is bound due to the
electronic attraction but would fall apart due to nuclear repulsion in the absence of electrons. The
oscillator energy would be 𝐸𝑣𝑖𝑏 = 𝑀𝜔𝑣𝑖𝑏

2 𝛿2/2 where 𝜔 𝛿 are the frequency of oscillation and the
displacement respectively.

Analysing the amount of energy that will results in dissociation show that the energy of nuclear 
oscillations (vibrational energy) is considerably smaller than the electronic energy. 

Bound state estimate: ℏ𝜔𝑣𝑖𝑏 ∼ (𝑚/𝑀) Τ1 2𝐸𝑒

The nucleus pair can be approximated as a rigid rotator with the quantised energy levels given by 𝑙(𝑙 + 1)ℏ2/2𝐼, where the moment of inertia 

Thus, rotational energy 𝐸𝑟𝑜𝑡 ≈
ℏ2

𝐼
≈

𝑚

𝑀
𝐸𝑒
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Molecules: Energy scales 

Thus;                             𝐸𝑟𝑜𝑡 < 𝐸𝑣𝑖𝑏 < 𝐸𝑒𝑙𝑒𝑐

The difference in the energies allows us to separate the three kinds of motion and corresponds to a difference in the charact

From: www.yokogawa.com

http://www.yokogawa.com
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Molecules: Born-Oppenheimer approximation

This is finding the solution of the Schrodinger equation of a molecule by the assumption that the
electronic motion and the nuclear motion can be well separated. That is, based on the energy and time
scale difference that we discussed in previous slide.

Then, molecular wave functions

𝜓𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒(𝑟
⃗

𝑖 , 𝑅
⃗

𝑗) = 𝜓𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠(𝑟
⃗

𝑖 , 𝑅
⃗

𝑗)𝜓𝑛𝑢𝑐𝑙𝑒𝑖(𝑅
⃗

𝑗)

•Electronic wave function depends on nuclear positions but not their velocities. That is, nuclear motion is 
much slower than the electron motion that they can be seen to be fixed.

•Nuclear motion (rotation, vibration)sees a smeared out potential from the fast moving electrons.
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Schrodinger equation of diatomic molecules: Born-oppenheimer approx.

Consider a diatomic molecule with nuclei located at 𝑅𝐴 and 𝑅𝐵 having masses 𝑀𝐴 and 𝑀𝐵 , 
charges 𝑍𝐴 and 𝑍𝐵 . Assuming that the molecules have 𝑛 electrons, the Schrodinger equation 
can be written as

−
ℏ2

2𝜇
𝛻2 −

ℏ2

2𝑚𝑒
∑
𝑖=1

𝑛

𝛻𝑖
2 + 𝑉 Ψ = 𝐸Ψ

Where, Ψ is the total electronic and nuclear wave function; 𝐸 is the total energy
1st term: Kinetic energy of the nuclei with reduced mass 𝜇 = 𝑚𝐴𝑚𝐵/(𝑚𝐴 +𝑚𝐵)

2nd term: KE of the electrons

The potential, 𝑉 = ∑
𝑖>𝑗=1

𝑛 𝑒2

𝑟𝑖𝑗
− ∑

𝑖=1

𝑛 𝑍𝐴𝑒
2

𝑟𝑖𝐴
− ∑

𝑖=1

𝑛 𝑍𝐵𝑒
2

𝑟𝑖𝐵
+

𝑍𝐴𝑍𝐵𝑒
2

𝑅

𝑅𝐴 𝐵

𝑟𝐴 𝑟𝐵
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Schrodinger equation of diatomic molecules: Born-Oppenheimer approx.

• Now introduce the Born-Oppenheimer or the adiabatic approximation; the nuclear motion is 
slow compared to the electronic motion. This will eliminate the nuclear kinetic energy term.

• The total molecular wave function can be written as combination of the electron wave function 
and the nuclear wave function.

• After substituting into the Schrodinger equation (SE) and separation of variables

• …
• …….
• We have SE of nuclear motion of diatomic molecule and another SE of electrons motion
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Schrodinger equation of diatomic molecules: Born-Oppenheimer approx.

Solve the resulting SE of nuclear motion (spherical coordinate) in analogue to the hydrogen atom

Rotational energy, 𝐸𝐽 =
ℏ2

2𝜇𝑅2
𝐽(𝐽 + 1)

𝐽 — rotational quantum number (angular momentum) of the molecule

In classical mechanics, energy of a rotating body 𝐸𝑎 = 1/(2𝐼𝑎𝜔𝑎
2)

𝜔𝑎 — the angular velocity (rad/sec)
The magnitude of the angular momentum |𝐽| = 𝐼𝑎𝜔𝑎

2

Therefore,  𝐸𝐽 =
𝐽(𝐽+1)ℏ

2𝐼
, 𝐽 = 0,1,2, . . .

In terms of a rotational term, 𝐹(𝐽) = 𝐸𝐽/ℎ𝑐 = 𝐵𝐽(𝐽 + 1)𝑐𝑚−1,    where the rotational constant 𝐵 =
ℏ

4𝜋𝑐𝐼
It means large molecules have closely spaced energy levels.
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𝐹(𝐽) − 𝐹(𝐽 − 1) = 2𝐵𝐽

Schrodinger equation of diatomic molecules: Born-Oppenheimer approx.

Rotational spectra selection rules
Transitions are only allowed according to selection rule 
for angular momentum;

Δ𝐽 = ±1

Schematic energy level diagram of molecular rotations (see figures)
From: Lu et al, Two-Dimensional Spectroscopy at Terahertz Frequencies,
Topic in current chem 376 (2018)
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Schrodinger equation of diatomic molecules: Born-Oppenheimer approx.

Molecular vibrational motion H
O

Lennard-Jones

𝑟
𝐴 𝐵

𝑉LJ(𝑟) = 𝜀
𝑅𝑒
𝑟

12

− 2
𝑅𝑒
𝑟

6

𝑉ion(𝑟)

Lennard-Jones
potential

𝑟

Then, expanding 𝑉ion(𝑟) around the equilibrium molecular separation 𝑅𝑒; 

𝑉ion(𝑟) = 𝑉ion(𝑅𝑒) +
𝑑𝑉𝑖𝑜𝑛
𝑑𝑟

|𝑅𝑒(𝑟 − 𝑅𝑒) +
1

2

𝑑2𝑉𝑖𝑜𝑛
𝑑𝑟2

|𝑅𝑒(𝑟 − 𝑅𝑒)+. . . .

Equilibrium
= No force Harmonic Anharmonicity 
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Schrodinger equation of diatomic molecules: Born-Oppenheimer approx.

Solutions: Hermite polynomial + Gaussian wave function . 

The vibrational energy levels; 𝐸𝑛 = 𝑛 +
1

2
ℏ𝜔,𝜔 = 𝑘/𝜇, and 𝑛 = 0,1,2, . . . is vibrational quanta

Expanding the ionic potential between the diatomic molecule up to second order

𝑉ion =
1

2

𝑑2𝑉

𝑑𝑥2
𝑥2 =

1

2
𝑘𝑥2

Large (small) 𝑘 means stiff (weak) bond between the atom A & B.

Harmonic approximation

The Schrodinger equation for relative motion of diatomic molecule A-B with a quadratic potential energy
(harmonic oscillator) reads:

−
ℏ2

2𝜇

𝑑2𝜓𝑛
𝑑𝑥2

+
1

2
𝑘𝑥2𝜓𝑛 = 𝐸𝑛𝜓



35

𝐸𝑛 = 𝑛 +
1

2
ℏ𝜔, 𝑛 = 0,1,2, . . . Vibrational terms of molecule in terms of 

wavenumber

𝐺(𝑛) = 𝑛 +
1

2
𝑛
˜

𝑛
˜
≡

1

2𝜋𝑐

𝑘

𝜇

Downsides
• The harmonic/parabolic potential approx. 

Is poor at high excitation energies

• Harmonic potential does not describe 
molecular dissociation

Schrodinger equation of diatomic molecules: Born-Oppenheimer approx.
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Schrodinger equation of diatomic molecules: Born-Oppenheimer approx.

Anharmonicity

In reality, the failure of the interatomic potential from a
parabola (harmonic oscillations) results into effects like second
order nonlinear oscillations, thermal expansion, finite phonon
lifetime among others. Thus, the use of a asymmetric potential
is required, e.g Morse potential.

Morse potential
A closed-form solution and resembles the true potentials.

𝑉M(𝑟) = ℎ𝑐𝐷𝑒 1 − 𝑒−𝑎(𝑟−𝑅0
2

Where, 𝑎 = 𝜇𝜔2

2ℎ𝑐𝐷𝑒
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Schrodinger equation of diatomic molecules: Born-Oppenheimer approx.

The Schrodinger equation can be solved for the Morse potential, resulting permitted energy levels reads;

𝐺(𝜈) = 𝜈 +
1

2
𝜈
˜
− 𝜈 +

1

2

2
𝔛𝑒𝜈

˜
,   where 𝔛𝑒 =

𝜈

4𝐷𝑒
.

The number of vibrational levels for a Morse oscillator is finite: 𝜈 = 0, 1, 2, 3, . . . , 𝜈𝑚𝑎𝑥

Coupling of rotational and vibrational motion

Rotational motion: 𝐸(𝑅) = 𝐽(𝐽+1)ℏ2

2𝜇𝑅0
2

Vibrational motion: 𝐸(𝑅) = 𝑛 +
1

2
ℏ𝜔0, where 𝜔0

2 =
1

𝜇
𝜕2𝐸𝑎/𝜕𝑅

2
𝑅=𝑅0

Neglecting constants;

The two are not strictly independent. For instance, the torque 𝐼 = 𝜇𝑅0 should be replaced by 𝐼 = 𝜇𝑅2, 
where 𝑅 is now given by the instantaneous value owing to vibrational motion.



38

Schrodinger equation of diatomic molecules
The energy should take the form

𝐸(𝑅) = 𝐸𝑒𝑙𝑒(𝑅0) + 𝑛 +
1

2
ℏ𝜔0 +

1

2𝜇𝑅2
𝐽(𝐽 + 1)ℏ2

Electronic energy Vibrational Centrifugal distortion, 𝑅 → 𝑅0

𝐸rot =
𝐽2

2𝜇𝑅0
2 −

𝐽4

2𝜇3𝑅0𝜔
2

𝐹centri = 𝜇𝜔2𝑅0 = 𝐽/𝜇𝑅0
3 ≡ 𝐽/𝜇𝑅3

𝐹harmonic = −𝜇𝜔2(𝑅 − 𝑅0) 𝑑𝐸 = −∫ 𝐹centri𝑑𝑅



Atomic & molecular physics at diff. Temperature

Temperature 
scale

∼ 104 − 10K ∼ 10−1 K

∼ 10−6 K
∼ 10−9 K

Fusion Plasma and stellar 

environment, Understanding the 

Molecular interactions in 

astrophysics, Formation of complex 

molecules in interstellar environment

Atomic and Molecular beams, Clusters

Laser cooled atoms, Atomic clocks,

Nanotechnology using cold atoms

Bose-Einstein Condensation, Fermi Sea,

Quantum many body physics, Matter

wave optics, Atom interferometry,

— Atomic Physics is bedrock of

condensed matter physics
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Modeling Molecular Polaritons

T.S. Haugland, Phys. Rev. X 10, 041043  (2020)

Hybrid system

Can we study/infer atoms and molecular behaviour from thermodynamics?

Computational physics

Some current researches

On personal note:

Thanks to ASP


