

African School of Fundamental Physics and Applications

Advanced Light Sources: A Worldwide State of the Art

Thierry d'Almeida July 30, 2021

BENINREVE

Outline

History

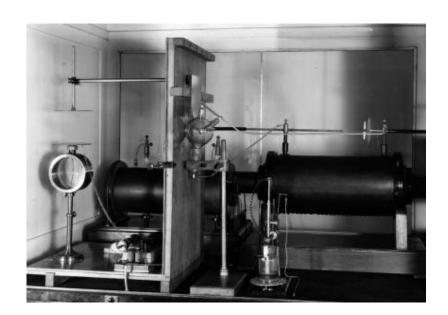
- The late 19th pioneering work
- The discovery of x-rays
- Major breakthroughs of the 20th century
- Modern sources: from the 1930's Berkeley/Livingstone cyclotron to the 1947 GE first synchrotron
- First synchrotron spectroscopy study in 1956 at Cornell
- Today's >60 Advanced Light Sources (AdLS) worldwide
 - Modern AdLS worldwide: third generation synchrotrons
 - Third generation synchrotrons: the State of the Art
 - General layout and main components
 - ►LINAC
 - ➢Booster
 - Storage ring, RF cavities, bending magnets
 - Insertion devices: wigglers and undulators
 - Free Electron lasers: a new generation of light sources
- The global role of AdLS in scientific infrastructure and collaboration

SÈMÈ CITY Innovation Made in Africa

BENIN**REVEL**

The late 19th century pioneering work

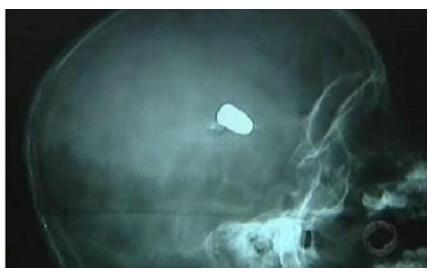
- Several European poles trying to gain insight into radiation mechanisms
 - UK: Thomson, Stokes, Barkla, Rutherford, Bragg
 - Germany: Hertz, Lenard, Roentgen, Planck, Sommerfeld, Laue
 - France: Poincaré, Becquerel, Villard, Curie
 - Netherlands: Haga, Werd


- 1890-1900: major advances
 - Electric discharges in gases
 - X rays
 - 🗕 Radium
 - α , n β , γ radiation
 - Corpuscular nature of cathode rays

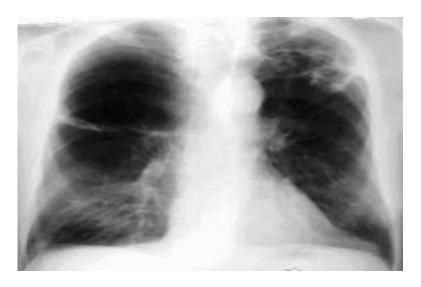
Crooke tubes used at the end of the 19th century to study electric discharges in gaseous media

1895: The discovery of X rays

Roentgen device for studying air ionization by X rays



X ray imaging of hand phalanx

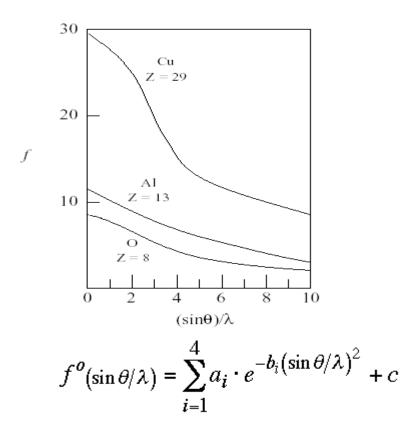

Radiology

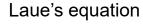
- Object placed along X-ray beam trajectrory
- Attenuation is a function of the density and structure of the object
- First Physics Nobel in 1901

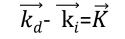
Few charming illustrations

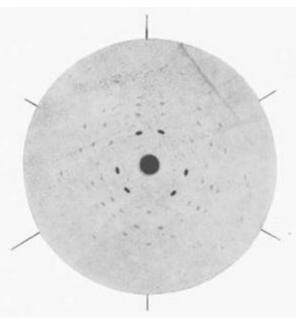
Bullet in brain...

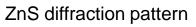
Tuberculous lung...

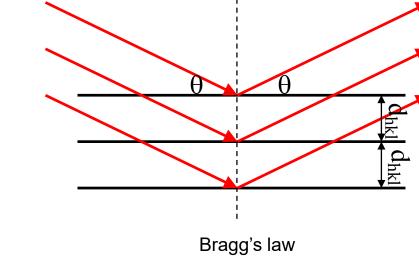

Fractured thighbone...


The end of a locust... (CEA Moronvillers)

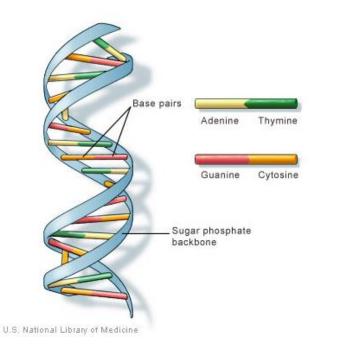

20th century major breakthroughs: Crystallography


- **X** ray diffraction reveals structure at the atomic scale $(\lambda \sim \text{\AA})$
 - Spectral shape: order/disorder
 - Diffraction angle: d-spacing
 - Intensity: electron density
- Interaction mechanisms
 - X rays–electrons interaction
 - Diffraction intensity increases with atomic number and decreases when Bragg angle increases





 $\lambda = 2d_{hkl} \sin \Theta_{R}$



Sir William Henry Bragg


William Lawrence Bragg

20th century major breakthroughs: The DNA structure

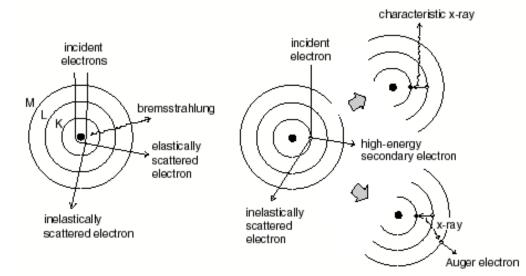
- Atomic arrangement determined
 - Crystal: dimensions and uniformity
 - Electron density and mean locations of atoms
 - Iteration over 180° for optimal resolution

Double helicoidal DNA structure, Nobel Prize 1962 Watson, Crick et Wilkins

1952: Photo 51

Roselind Franklin

Maurice Wilkins


Francis Crick

James Watson

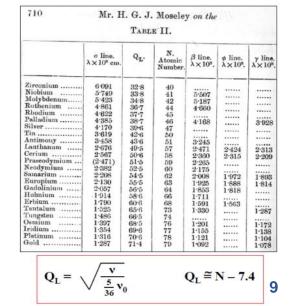
Deciphering of genetic code, protein synthsesis, cloning, sequencing of human genome,... Tremendous impact on life science: biochemistry, genetics, medecine, agriculture,...

20th century major breakthroughs: Apart from X ray diffraction

Characteristic X-rays (Nobel 1917)

Charles G. Barkla (1877-1944)

 $Q_{\rm K} = \sqrt{\frac{v}{\frac{3}{2}v_0}}$

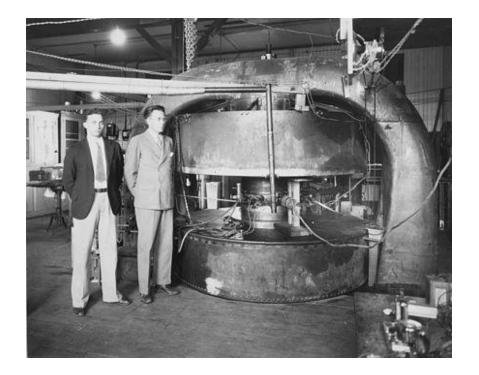


Henry G. J. Moseley (1887-1915)

- Systematic study of X-ray spectra
 - Mathematical relation between wavelength and atomic number
 - Number of lanthanides determined
 - Gap in periodic table evidenced

	TA	BLE I.		
	a line. $\lambda \times 10^{8}$ cm.	$Q_{\overline{K}}$.	N. Atomie Number.	β line. $\lambda \times 10^8$.
Aluminium	8.364	12:05	13	7-912
Silicon	7.142	13.04	14	6.729
Chlorine	4.750	16.00	17	
Potassium	3.759	17.98	19	3.463
Calcium	3.368	19.00	20	3.094
Titanium	2.758	20.99	22	2.524
Vanadium	2:519	21.96	23	2.297
Chromium	2.301	22.98	24	2.093
Manganese	2.111	23.99	25	1.818
Iron	1.946	24.99	26	1.765
Cobalt	1.798	26.00	27	1.629
Nickel	1.662	27.04	28	1.206
Copper	1.549	28.01	29	1.402
Zinc	1.445	29.01	30	1.306
Yttrium	0.838	38.1	39	
Zirconium	0.794	39.1	40	
Niobium	0.750	40.2	41	
h oryoaenum	0721	41.2	42	
Futhenium	0.638	43.6	44	
F Iladium	0.584	45.6	46	
S lver	0.260	46.6	47	

 $Q_K \cong N - 1$



The E. Lawrence/ M. Livinsgtone Cyclotron (U. C. Berkeley, early 1930's)

- Circular accelerator
- Particles subject to constant magnetic field
- Trajectories: successive half circles with increasing radii
- Particles are accelerated to non-relativistic velocities and reach energies of few tens of MeV
- **__** Still used, mostly in nuclear medicine

The synchrotron concept

- Charged particles accelerated to relativistic velocities along circular path will produce « light » parallel to their trajectory (Einstein/Maxwell)
- 1947: First observation of visible synchrotron light with the 70 MeV GE synchrotron,
- 1956: Larger, higher energy machine, higher energy radiation towards
 X region, 320 MeV Cornell synchrotron, first spectroscopy study on Al,
 Be near K and L edges (Tomboulian and Harman)

Lawrence an d Livingstone with their 1930 cyclotron at Berkeley

OVER 60 ADVANCED LIGHT SOURCES WORLDWIDE

ASP2021_Online lectures 11

Modern AdLS worldwide Third generation synchrotrons

Very high-Energy, High Brilliance facilities (>5 GeV, >800m, >30 insertion devices, hard X-rays)

ESRF, Grenoble, 6 GeV, 844 m

APS, Argonne, 7 GeV, 1104 m

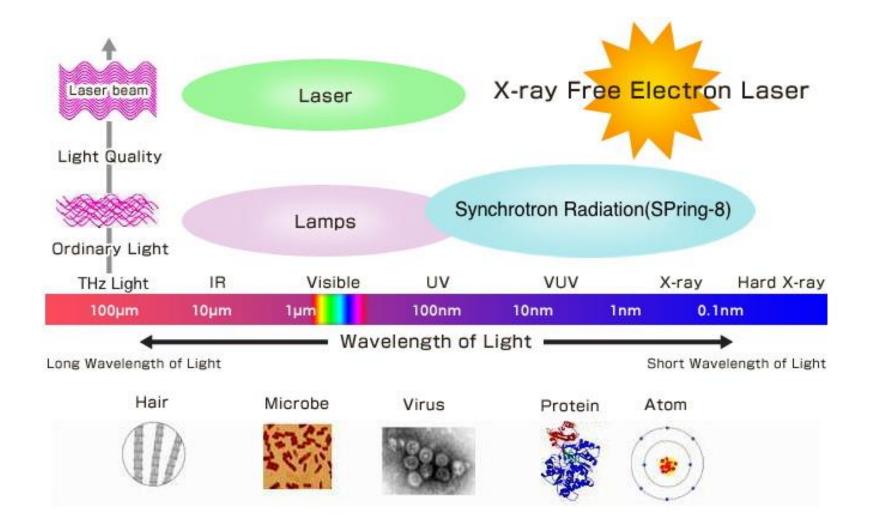
Spring-8, Harima, 8 GeV, 1436 m

Long wavelength sources, smaller, less expensive (<3 GeV, <600 m, UV-soft X-ray photons)

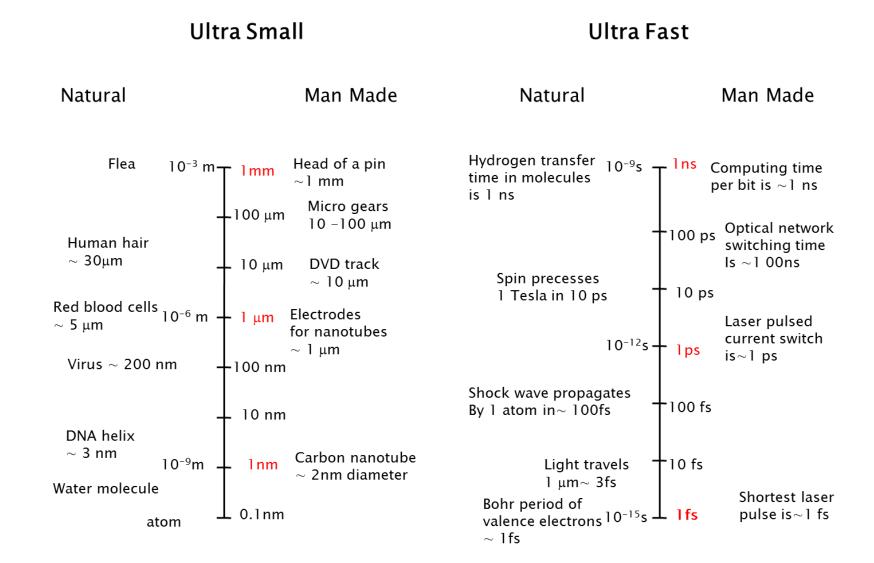
ALS, Berkeley 1,9 GeV, 196,8 m

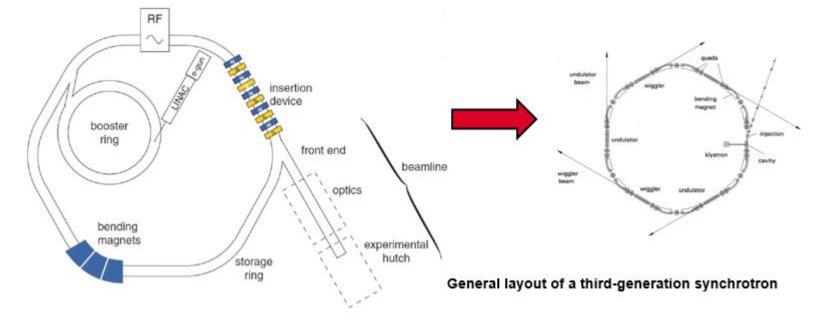
Elettra, Trieste 2,4 GeV, 260 m

NSRRC, Taiwan, 3 GeV, 518m

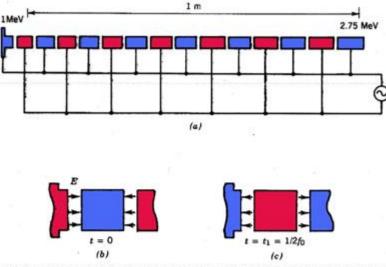


1992	ESRF, France (EU) ALS, US	6 GeV 1.5-1.9 GeV
1993	TLS, Taiwan	1.5 GeV
1994	ELETTRA, Italy	2.4 GeV
	PLS, Korea	2 GeV
	MAX II, Sweden	1.5 GeV
1996	APS, US	7 GeV
	LNLS, Brazil	1.35 GeV
1997	Spring-8, Japan	8 GeV
1998	BESSY II , Germany	1.9 GeV
2000	ANKA, Germany	2.5 GeV
	SLS, Switzerland	2.4 GeV
2004	SPEAR3, US	3 GeV
	CLS, Canada	2.9 GeV
2006:	SOLEIL, France	2.8 GeV
	DIAMOND, UK	3 GeV
	ASP, Australia	3 GeV
	MAX III, Sweden	700 MeV
	Indus-II, India	2.5 GeV
2008	SSRF, China	3.4 GeV
2009	PETRA-III, D	6 GeV
2011	ALBA, E	3 GeV


Synchrotron EM spectrum


A broad range of applications

Third generation synchrotrons: A state of the art



Main components

- Heated electron gun
- Linear Accelerator (LINAC)
- Booster
- Storage ring
 - > Filling modes: uniform, single bunch, hybrid
 - ≻Klystrons
 - ➢Bending magnets
 - Insertion devices: wigglers and undulators
- Beamline optics
- Experimental hutch

LINAC

Wideroe-type LINAC for heavy ions. (a) Scale drawing accelerator with following parameters: ion species Cs-137, f=10 MHz, V_0 =100 kV; (b) Electric fields in accelerator gaps 1 and 2 at ion injection, (b) Emectric fields at time t= 1/2f, where f is the frequency

A view of the APS LINAC

LINAC: Electrons accelerated to 450 MeV and reach 99,999% of speed of light!

- High voltage accelerating electric field >200 kV
- High Power Amplifier (Klystrons) generate highly stable short-pulsed RF (power~30 MW)
- Electrons energy tripled over 1m (Figure of merit is acceleration gradient)
- Selective phasing drives electron to 450 MeV
- Electrons virtually moves at speed of light

BOOSTER

A view of the APS BOOSTER

Booster (~300 m)

- Race-track shaped ring electromagnets
- Electrons accelerated from 450 MeV to 6-8 GeV in 0.5 s
- Accelerated force supplied by 4 RF cavities
- Orbital path of electrons maintained using bending and focusing magnets which increase electron field strength in synchronization with the RF field

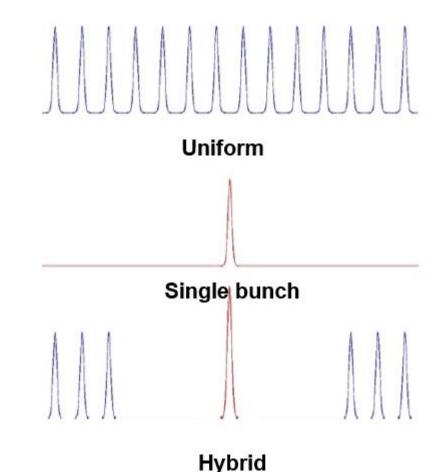
STORAGE RING

A view of the APS STORAGE RING

STORAGE RING

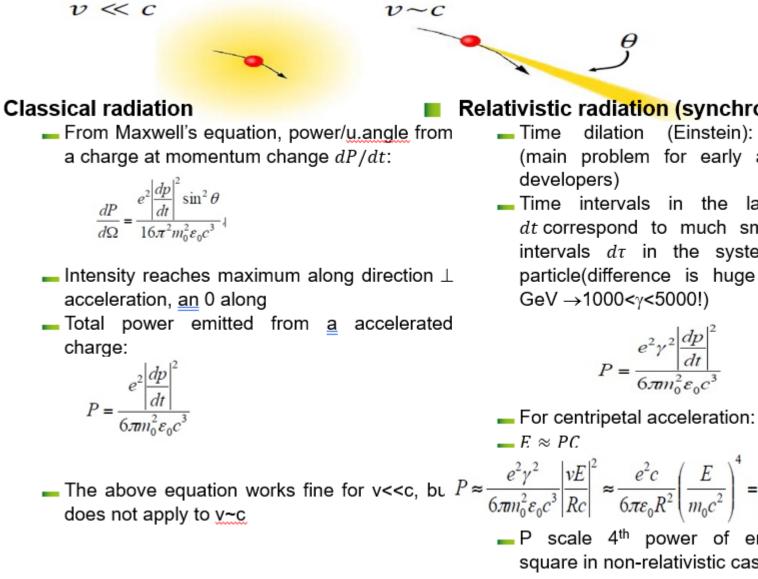
- 6-8 GeV electrons injected in 800-1400 m circumference ring
- Storage ring equipped with >1000 electromagnets
- Ring located in radiation-proof concrete inside experimental hall
- Powerful electromagnetic field focuses electrons into narrow beam bent on circular path along a vacuum aluminum pipe running through the center of the electromagnets
- ~40 straight sections (5 equipped with RF cavities and insertion devices, the remaining for beamlines)

STORAGE RING: Filling modes



Uniform filling

- ~1000 electron bunches distributed over entire ring circumference
- Beam current ~ 200 mA
- 🗕 Lifetime~ 60 hrs
- Convenient for most experiments except time-resolved
- ERefill time: 3 mn
- Single bunch
 - One single bunch of electrons circling around ring
 - Beam current is lower (1-20 mA), but
 - Very convenient for time-resolved experiments


Hybrid modes

- 7/8 +1 filling mode: a train of 868 bunches (7/8 of the Storage Ring circumference) filled with 200 mA (0.23 mA / bunch); both edges of the train are filled with 1 mA single bunch; the remaining 1/8 gap is filled in its center with a cleaned 2 mA-single bunch
- 24*8 +1 filling mode:One clean 4mA single bunch diametrically opposed to a ~ 196 mA multi-bunch beam composed of 24 groups of bunches spread over 3/4 of the storage ring circumference

STORAGE RING: Accelerated charged particles radiate

Relativistic radiation (synchrotron)

- dilation (Einstein): $dt = \gamma d\tau$ (main problem for early accelerator
- Time intervals in the lab system dt correspond to much smaller time intervals $d\tau$ in the system of the particle(difference is huge as multi-

$$P = \frac{e^2 \gamma^2 \left| \frac{dp}{dt} \right|^2}{6 \pi m_0^2 \varepsilon_0 c^3}$$

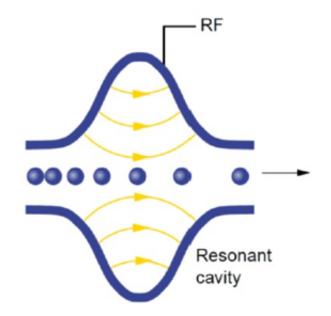
= For centripetal acceleration: $\frac{dP}{dt} = \rho v/R$
= $E \approx PC$
, bu $P \approx \frac{e^2 \gamma^2}{6 \pi m_0^2 \varepsilon_0 c^3} \left| \frac{vE}{Rc} \right|^2 \approx \frac{e^2 c}{6 \pi \varepsilon_0 R^2} \left(\frac{E}{m_0 c^2} \right)^4 = \frac{e^2 c}{6 \pi \varepsilon_0 R^2} \gamma^4$
= P scale 4th power of energy! (vs square in non-relativistic case)

Energy loss per revolution in circular orbit

$$\Delta E = P \frac{2\pi R}{v} \approx \frac{e^2 \gamma^4}{3\varepsilon_0 R}$$

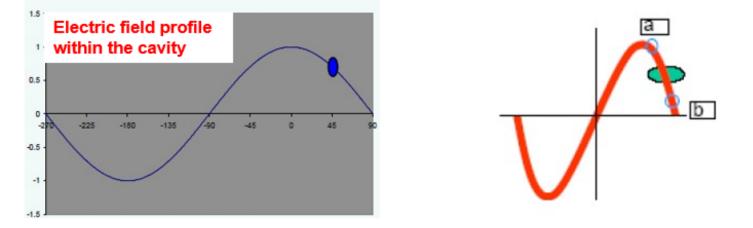
- VVhere we use $v \approx c$
- In convenient units:

 $\Delta E(MeV) = 8.85 \cdot 10^{-2} \, \frac{E^4(GeV)}{R(m)}$

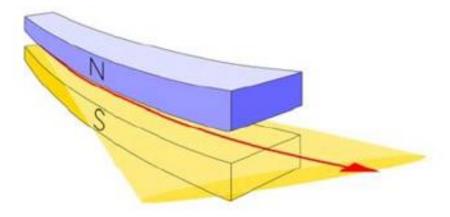

Power loss~1MW at 400mA storage current, for each loop, energy drop is about 1% of total energy

Radiated power from a storage ring (with beam current I, of radius R and total straight sections of length L)

$$P(kW) = 8.85 \cdot 10^{-2} \frac{E^4 (GeV)}{R + \frac{L}{2\pi}(m)} I(mA)$$

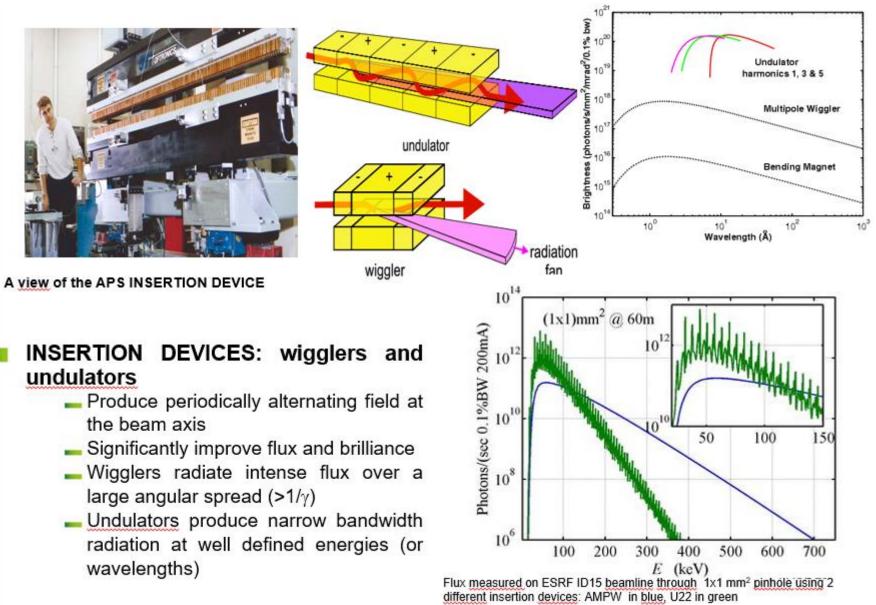

Need to compensate power loss by pumping energy back into electrons using klystron (RF cavities)

- Electric field across resonant cavity
- Electrons are accelerated if they enter cavity at the right time in RF cycle:

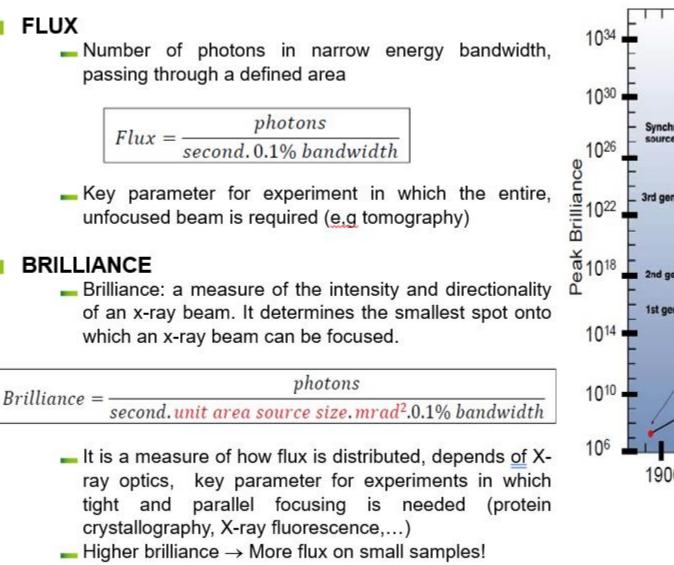

Basic principles of RF acceleration

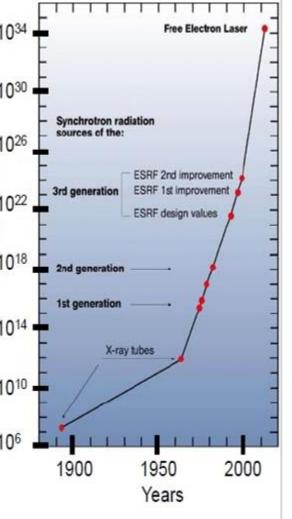
- The RF source supplies power to create a strong oscillating electric field across the cavity
- This electric field supplies energy to the particles through acceleration
- This compensates for the synchrotron radiation losses

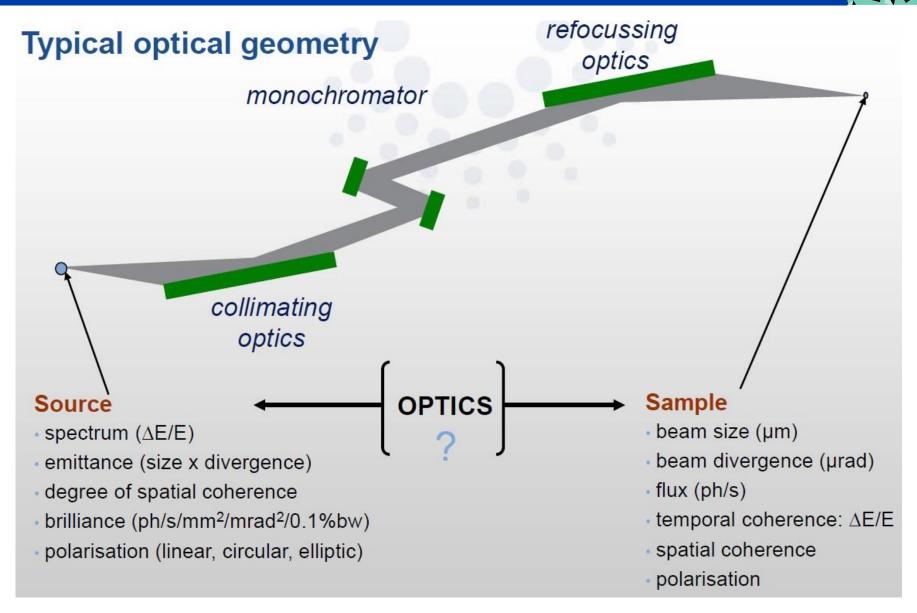
- Centre of the bunch crossing the cavity is called "the synchronous particle"
- Particles see voltage : $V_0 \sin 2\pi \omega_{rf} = V_0 \sin \varphi(t)$
 - For synchronous particle, $\varphi_S = 0$, no acceleration
 - Particle arriving early see φ < 0,
 - Particle arriving late see φ > 0,
- Energy of those in advance is decreased and vice versa: « bunching »
- To accelerate, make $0 < \varphi_S < \pi$, $\Delta E = qV_0 \sin \varphi_S$
- For longitudinal phase stability, make $-\frac{\pi}{2} < \varphi_S < +\pi/2$


STORAGE RING: Bending magnets

Main function: keeps electrons in a closed path


- Superconducting magnets: B~ 5 Tesla
- Flux scales with B²
- Produce broadband radiation
- Radiation fan:
 - Vertical divergence= 1/γ
 - Horizontal divergence= angular change
 - in path of electrons~10°


Third generation synchrotrons: INSERTION DEVICES

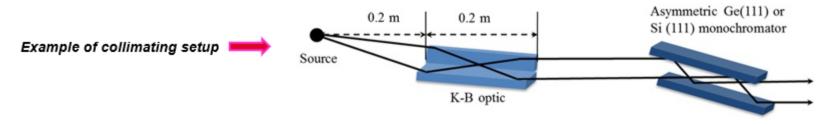

ASFZUZI_UNINe lectures 25

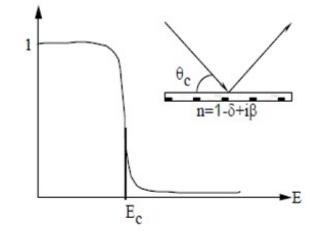
Flux and Brilliance: (key indication of beamline facility)

X-ray Optics

Main task: transform X-ray beam in order to obtain best match to experimental requirements SP2021_Online lectures 27

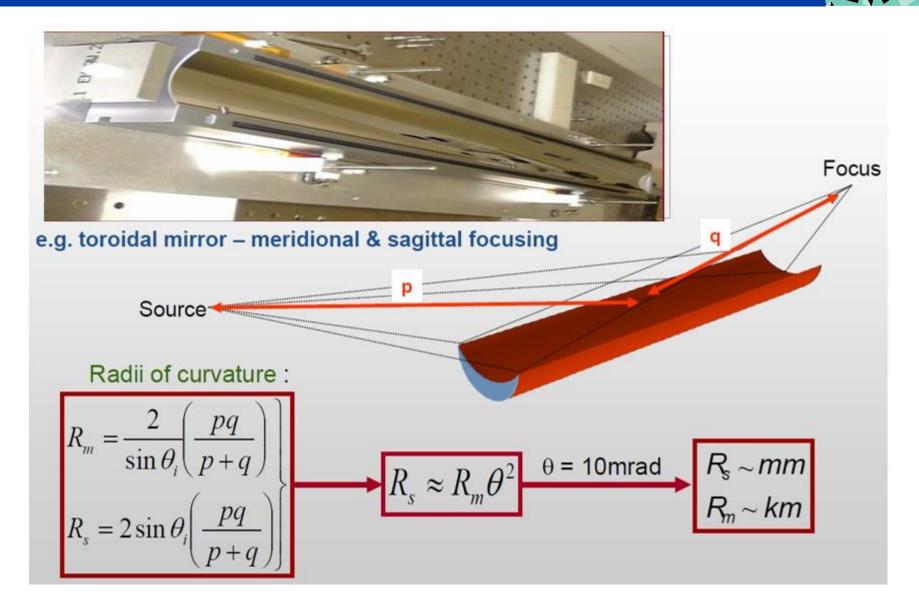
X-ray optics: Mirrors

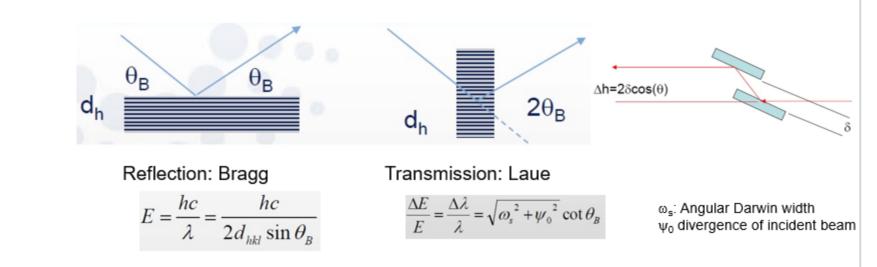

Main functions


- Deflecting:
- Collimation: matching the monochromator angular acceptance with the beam divergence
- Focusing: various shape (spherical, cylindrical and toroidal)
- Power filter: decreases incident power on sensitive optical components

Requirements

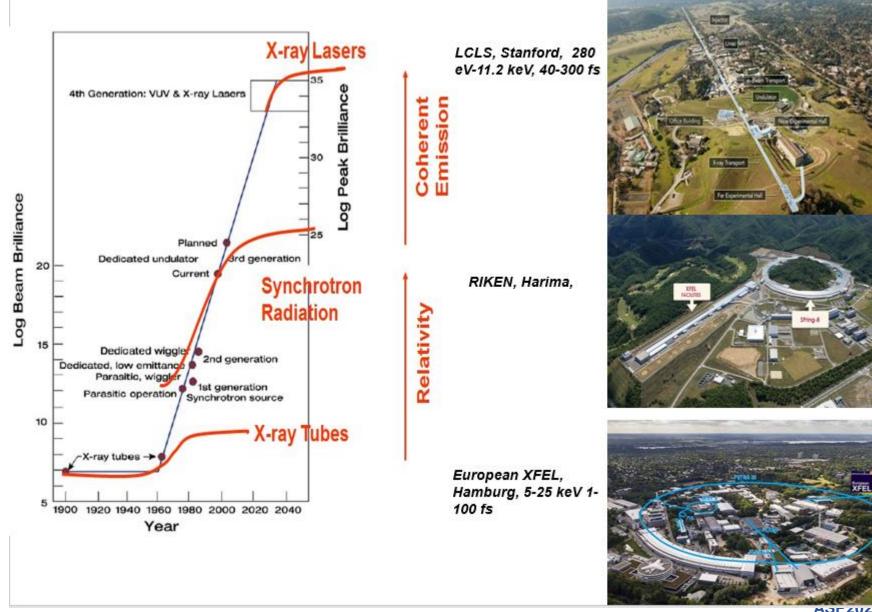
- Ultra-smooth surface: roughness < 5 rms</p>
- Ultra-precise shaping
- Very accurate and stable mechanical mounting
- Efficient cooling
- Reflectivity must tend to100% (for small enough angles)
- Small angles mean mirrors need to be long


Materials: Si, SiC, Rh-coated Si

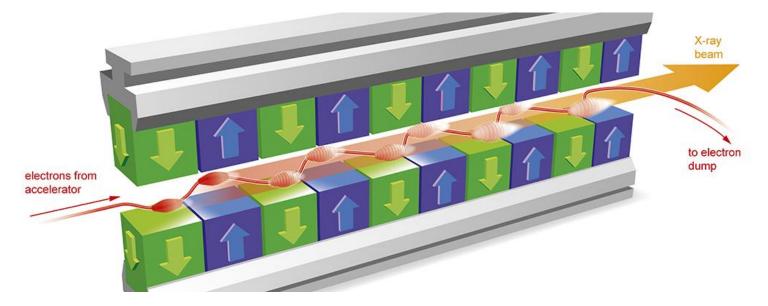

ASP2021_Online lectures 28

Example: toroidal focusing mirror

X-ray Optics: Monochromators


Main functions

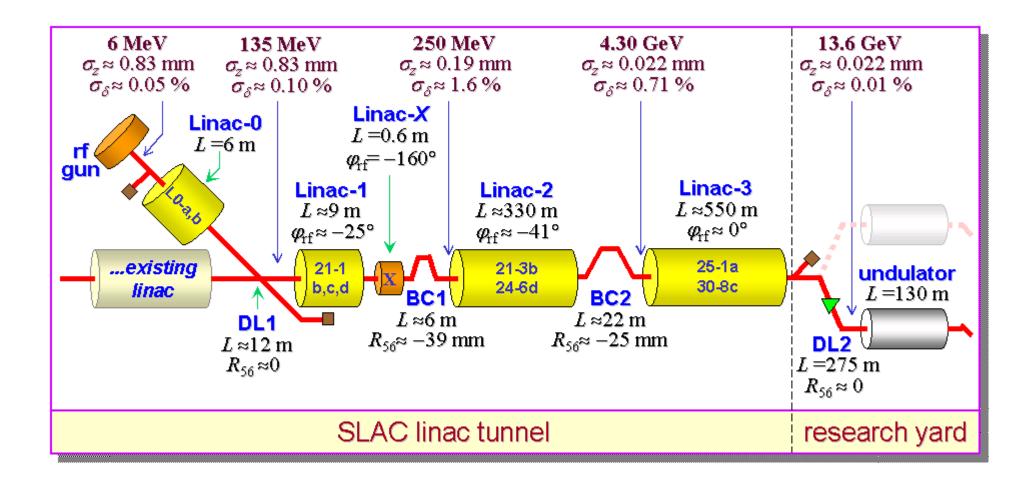
- Reduces incident beam to a narrow energy (wavelength) bandwidth
- Double monochromator minimizes beam motion with angle change
- Energy bandwidth depends on:
 - crystal types
 - Reflecting planes
 - Divergence of incident beam
- Collimation: matching the monochromator angular acceptance with the beam divergence


Requirements

- Perfect crystals: Si, Ge, Diamond, but need to be tailored very precisely:
 - > Orientation, cutting, polishing,,,,
 - Strain free, accurate and stable mounting
- Efficient cooling
- Materials: Si, Ge, Diamond

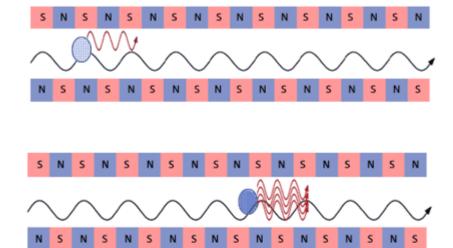
Free Electron Lasers (FEL): a new generation of light sources

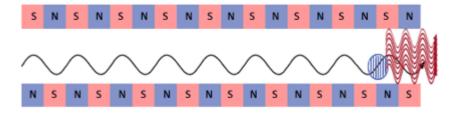
ASFZUZI_Online lectures 31


Principle:

- Short intense bunches of electrons injected in the LINAC
- Electrons are accelerated (up to 15 GeV) and passed through compressors (packed)
- Bunches oscillate through undulator magnet and emit x-rays
- X-rays are emitted **coherently** and at the **same** λ (unlike synchrotron)
- Tremendous brightness achieved using SASE (Self Amplified Spontaneous Emission)

Characteristics


- Photons between 1.5 and 15 Å (8 keV and 800 eV)
- 10¹² photons in a needle-thin beam
- Pulse duration: 1 -230 fs


FEL general scheme

Principle

- Electrons are forced to sinusoidal motion through a series of magnets with alternating poles
- Electrons produce synchrotron radiation
- Electron motion modified by electromagnetic fields of its own radiation
- Electrons bunch split into micro bunches due both the undulator and emitted synchrotron light
- Micro-bunches separated by a half wavelength of emitted radiation
- Micro-bunches radiate as if they were single particles with huge charge
- One single bunch generates an coherent X-ray pulse of 10¹² photons

- Advanced light sources are the most transformative scientific instruments similar to the invention of conventional lasers and computers.
- Advanced light sources are revolutionizing fundamental and applied sciences, including agriculture, biology, biomedicine, chemistry, climate and environmental eco-systems science, energy, engineering, geology, heritage studies, materials science, nanotechnology, paleontology, pharmaceutical discoveries, physics, with an accompanying impact on sustainable industry.
- The community of researchers around the world are striving collaboratively to construct ever more intense sources of electromagnetic radiation, specifically derived from synchrotron light sources and X-ray free-electron lasers (XFELs), to address the most challenging questions in living and condensed matter sciences.
- An African Light Source is expected to contribute significantly to the African Science Renaissance, the return of the African Science Diaspora, the enhancement of University Education, the training of a new generation of young researchers, the growth of competitive African industries, and the advancement of research that addresses issues, challenges and concerns relevant to Africa.
- For African countries to take control of their destinies and become major players in the international community, it is inevitable that a light source must begin construction somewhere on the African continent in the near future, which will promote peace and collaborations amongst African nations and the wider global community.

