
July 27, 2021 Lectures on the Internet of Things 1

Developing an IoT System
Uli Raich

Two lectures on Hardware and Software for
the Internet of Things

Lecture 1: Introduction to the hardware
and development environments and interfacing the “things”

(The “T” part of IoT)

Presented at the African School for Fundamental
Physics and Applications

July 27, 2021 Lectures on the Internet of Things 2

Introduce myself
● Dr. Ernst Ulrich Raich

short: Uli

● PhD in Physics (not computer science!)
but 4 years of IT studies without
diploma.

● Married, 3 adult children, 1 grand son

● Staff member of the European Center for Nuclear
Research, CERN, for 35 years, now retired

● Teaching (ICTP microprocessor courses) since 1980

● This is my 5th participation in the African School of Physics

● Guest lecturer at the University of Cape Coast 2017
Set up a microprocessor lab and gave a full semester course on embedded systems

Based on Raspberry Pi and the C language

July 27, 2021 Lectures on the Internet of Things 3

The Microprocessor Revolution

From all technical advances during the last 50 years the development of micro-processors
certainly had the biggest effect on our daily life.

When I was a student a computer looked like this:

It filled a whole room and the cost was
several 100 k$

July 27, 2021 Lectures on the Internet of Things 4

Minicomputers
When I was a doctoral student this was the computer I worked with:

● It fitted into a rack
● Cost: several 10 k$
● Typical memory size: 128 kBytes
● Hard disk: 600 Mbytes (which was huge!)
● Black and White serial terminal for

programming
● On such a machine the Unix OS was

developed

July 27, 2021 Lectures on the Internet of Things 5

The first Microprocessors
… and then came the Microprocessor

The first one I played with was the Motorola MC6800, 8bit
microprocessor

● Cost at introduction: ~ 500 $ US
● Clock frequency: 1 MHz
● Only external memory (my first system had 128 Bytes)
● “OS” in EPROM (ca. 2 kBytes)
● External parallel and serial interface
● Programs were stored on audio tape
● Total cost of a system: ~ 2000 $US
● Assembly language only
● Programmed in binary machine code entered through

a keypad

July 27, 2021 Lectures on the Internet of Things 6

… and today? for 7 Euros?

July 27, 2021 Lectures on the Internet of Things 7

ESP32 network connection

July 27, 2021 Lectures on the Internet of Things 8

Where do we find micro-controllers?

Answer: Everywhere!

● Car (many of them!)

● Coffee machine

● TV set, radio

● Watch

● Hand phone

July 27, 2021 Lectures on the Internet of Things 9

What used to be a joke
Two engineers standing around a coffee machine with this screen

One saying to the other:

“Those were the good old times when
coffee machines still worked without Windows”

July 27, 2021 Lectures on the Internet of Things 10

...becomes reality

July 27, 2021 Lectures on the Internet of Things 11

What is IoT?
IoT stands for the Internet of Things.

We need:

● A network interface: either Ethernet of WiFi

● A processor powerful enough to run the network protocol layers

● Interfaces to the things:

– General Purpose I/O (GPIO) lines

– I2C, I2S, SPI, serial interfaces

● The cost for the controller should be in a good relation with the cost of the things

July 27, 2021 Lectures on the Internet of Things 13

Embedded systems → IoT
The embedded systems course used a Raspberry Pi,
cost per station: ~ 120 US $

Programming language: C

I was promised that all exercises of the course would be ported to Python

Decided not only to port to Python but also change to cheapest possible hardware
and extend to Internet access (IoT)

Cost per station now: < 50 US$

If you run the course for 5 years this brings you to a cost of 10 US $ per student and
year. Students at UCC were allowed to take the equipment home for experimentation.

July 27, 2021 Lectures on the Internet of Things 14

Documentation of UCC IoT course

The IoT course was given at the University of Cape Coast, Ghana, for the first time at the beginning of
2021

Everything is documented on a TWiki (https://afnog.iotworkshop.africa/do/view) located in Accra

It consists of

● Hardware and software documentation with plenty of links to relevant WEB pages

● Explanations for a range of experiments (exercises)

● Lecture slides

● Exercise sheets

● Solutions to the exercises that can be downloaded from a github repository
(https://github.com/uraich/IoT-Course)

Efforts are under way at the Université Cheik Anta Diop, Dakar, Sénégal, to provide a similar course
with all documentation written in French. (http://bepculi.homepc.it/do/view/IoT_UCAD/WebHome)

https://afnog.iotworkshop.africa/do/view
https://github.com/uraich/IoT-Course
http://bepculi.homepc.it/do/view/IoT_UCAD/WebHome

July 27, 2021 Lectures on the Internet of Things 15

Processors for IoT
There is a huge selection of different chips:

● STM32: ARM Cortex MCU. This is a whole family of chips with different
performance and price.

● Raspberry Pi: The RPi is more like a little computer. It has a quad core
micro-controller capable of running an ARM based Linux OS. All you
need to make this a full computer is a keyboard, a mouse and a
screen.

● ESP32 based boards: Dual core processor, SRAM and flash on chip.
WiFi and BlueTooth implemented on chip.

July 27, 2021 Lectures on the Internet of Things 16

Which one should I use?
The Raspberry Pi is a small computer powerful enough to run a full blown Linux
operating system:

 A quad core 1.2 GHz Broadcom 64 bit ARM CPU

 1 Gbytes of Ram

 Ethernet and wireless networks

 4 USB2 ports

 Micro SD connector

 40 pin extended GPIO connector with

 GPIO pins

 SPI and I2C bus interface

 Cost ~ 60-100 US $

 No ADC

Arduino + WiFi shield

Cost: ~12-15 US $
Popular because of simple C++ IDE

July 27, 2021 Lectures on the Internet of Things 18

The low end
If you just need an Internet connected
temperature sensor, the ESP01 will do!

Cost of processor and sensor: < 2 US $

In addition you need a programmer for a
few cents.

Temperature sensor

processorprogrammer

July 27, 2021 Lectures on the Internet of Things 19

Sensors and Actuators

For the IoT course I selected the
WeMos D1 mini series of boards.

It provides a selection of CPU boards

● ESP8266 CPU

● ESP32 with or without SPIRAM

and it comes with a large selection of
sensor/actuator boards

The sensor boards are connected to the

CPU through a simple plug and play system

July 27, 2021 Lectures on the Internet of Things 20

Connection between CPU and sensors

July 27, 2021 Lectures on the Internet of Things 21

… a big number of sensor shields

July 27, 2021 Lectures on the Internet of Things 22

WeMos D1 sensors
Here is an incomplete list of sensor and actuator
modules:

● user LED on CPU module

● Simple mechanical push button

● WS2812 single rgb LED or LED ring with 7
LEDs

● IR sender and receiver

● Passive buzzer

● PIR sensor

● DS18b20 digital temperature sensor

● BMP180 barometric pressure sensor

● SHT30 I2C temperature and humidity
sensor

● DHT11 temperature and humidity sensor

● Ambient light detector

● RTC and data logger with SD card
interface

● Relay module

● DC motor controller

● and so on ...

July 27, 2021 Lectures on the Internet of Things 23

How to develop code
The Raspberry Pi is a bit different than the others: Here the compiler can run natively
on the Pi. If you know Linux, then you know how to develop on the Pi.

All other CPU suppliers provide a cross-development environment with their chips.

The ESP32 CPU is described in a manual of more then 1000 pages! The library to
access all the hardware functionality is huge.

Espressif (the company behind the ESP32) supplies esp-idf, a build system based
on cmake and the hardware access library. Programming is done in C or C++.

The learning curve to start your first application is very steep.

The same is true for the STM32 chips.

July 27, 2021 Lectures on the Internet of Things 24

The Arduino
Open source hardware

Shields

July 27, 2021 Lectures on the Internet of Things 25

Arduino IDE
Designed for the beginner and hobbyist
market

Originally provided for the AVR processors
but now also available for ESP8266, ESP32
or the STM32 processors

Uses a C++ like language

Simplifies program development a lot

Comes with a huge collections of examples
and libraries

Upload and flash programming is integrated

d

July 27, 2021 Lectures on the Internet of Things 26

MicroPython
MicroPython is stripped down Python interpreter based on Python 3.5 and dedicated to micro-controllers. It is provided
in source format in form of a github repository

Excellent documentation is provided and if this is not enough you can have a look at the source code

A very active user forum helps in case of problems

However:

It needs quite a bit of infrastructure on the PC to be able to cross-compile Micropython, which depends on

● The xtensa-esp32-elf-gcc cross compiler

● The espidf libraries (IDF stands for IoT Development Framework)

● esptool to erase and program the ESP32 flash

● ampy of ftpd to transfer files to the ESP32 file system

Micropython exists for a series of micro-controllers, the ESP32 being a popular port.

The interpreter is written in C

https://github.com/micropython/micropython/
http://docs.micropython.org/en/latest/

July 27, 2021 Lectures on the Internet of Things 27

Bringing up the system
● MicroPython is built using a Makefile
● It uses Espressif’s build system based on cmake
● esptool is used to burn the firmware into the ESP32 flash (esptool is accessed by the Micropython

Makefile such that
make deploy will flash the firmware)

● MicroPython REPL can be accessed through a USB to serial adapter combined with a virtual
terminal program like minicom or gtkterm

● MicroPython can also be accessed over the network
● A working custom binary of MicroPython, built for the UCC course, is available on github
● Programs are written on the PC and uploaded to the MicroPython file system before being executed
● We use the thonny IDE to simply the procedure

July 27, 2021 Lectures on the Internet of Things 28

Learning Python
In the first lecture and exercise session we give an introduction to Python. Basic
knowledge of Python is a major advantage. If you are totally new to the language then go
through the Python tutorial first.

● We use the Python interactive shell REPL (the Read, Evaluate, Print Loop) to get
acquainted with Python

● We write our first simple Python scripts using thonny

● Since none of the example programs depends on specific hardware we can run the
programs on the PC or on the ESP32

● The exercise sheet is available on the Twiki and as Libreoffice document

https://docs.python.org/3/tutorial/index.html
http://localhost/do/view/UCC_Course_2020/REPLAndStandardPythonProgramming

July 27, 2021 Lectures on the Internet of Things 29

How do we talk to the ESP32?
The CPU board has a Micro USB connector and a USB to
serial converter.

We connect it to the PC with the same micro USB cable you
use on your smart phone for charging and data transfer.

We can use a serial terminal emulator to communicate with
the ESP32 or the thonny IDE for communication and
program development

d

July 27, 2021 Lectures on the Internet of Things 30

thonny

July 27, 2021 Lectures on the Internet of Things 31

Interfacing to the “things”
The ESP32 has a big number of interfaces implemented on the chip:

● GPIO pins

● PWM

● Capacitive touch sensor

● I2C interface

● SPI interface

● Analogue to digital converter

● Digital to analogue converter

● Timer

July 27, 2021 Lectures on the Internet of Things 32

Setup for demos

The ESP32 CPU on the right with a user LED

The Lolin NeoPixel board with 7 rgb LEDs

The SHT30 temperature and humidity sensor
controlled through the I2C bus

A linear potentiometer connected to the
ESP32 ADC

July 27, 2021 Lectures on the Internet of Things 33

GPIO
A big number of General Purpose Input/Output lines

These lines can be programmed as outputs or inputs with or without
pull-up resistors

They are used to control:

● LEDs, relays, stepping motors…

● You can implement serial protocols in “bit-banging” mode

or they can be used to read

● status bits, switches, analyze serial protocols

July 27, 2021 Lectures on the Internet of Things 34

GPIO driver in MicroPython
The GPIO driver in MicroPython makes GPIO access super simple:

We use the class Pin in the machine module:

from machine import Pin

led = Pin(19,Pin.OUT) # GPIO 19 connects to the user LED

led.on()

is all that is needed to control a LED (or a relay)

We even do not need a program to accomplish this.

Let’s try!

d

https://docs.micropython.org/en/latest/esp32/quickref.html#pins-and-gpio

July 27, 2021 Lectures on the Internet of Things 35

The blink program
With the C programming language the ubiquitous Hello World program has
become well known.

It is the most simple program you can possibly write in C, printing “Hello World!”

It is useful to demonstrate that is programming infrastructure

● Editor, compiler, linker

● Program execution

work well.

The equivalent in the world of embedded systems or IoT is the blinking LED.

d

July 27, 2021 Lectures on the Internet of Things 36

Pulse Width Modulation
How can we change the LED light intensity with a single digital GPIO line?

The answer is: Pulse Width Modulation (PWM)

Instead of emitting a steady zero or one signal level we emit a frequency (the
modulation frequency) and we change the time the signal is high during a pulse
(duty cycle)

The frequency is high enough and the LED persistence long enough, such that the
human eye cannot resolve the frequency.

The average current through the LED is changed and such the light intensity.

PWM is also used to control servo motors

https://docs.micropython.org/en/latest/esp32/quickref.html?highlight=esp32%20neopixel#pwm-pulse-width-modulation

July 27, 2021 Lectures on the Internet of Things 37

PWM

d

July 27, 2021 Lectures on the Internet of Things 38

NeoPixels
The addressable rgb LED of type WS2812 is used in many
LED chains

It uses a sophisticated timing sequence to set an individual
LED in the chain

We use a simple, 7 LED chain for demonstration purposes

MicroPython provides the NeoPixel driver, which looks after
the protocol and its stringent timing

The sensor shield uses GPIO 26 to control the LEDs

July 27, 2021 Lectures on the Internet of Things 39

NeoPixel program

d

July 27, 2021 Lectures on the Internet of Things 40

Analogue Signals
The ESP32 has two 12bit Analogue to Digital Converters (ADCs) with a
total of max 18 input channels

We will use ADC1 on GPIO 36

The ADC accepts signal levels 0..1V but there is an attenuator in front of
it extending the signal range

An attenuation of 11dB provides an input range of ~ 0..3.6V fitting well
with the 3.3V Vcc of the CPU board

Again the MicroPython ADC driver provides easy access to the hardware

https://docs.micropython.org/en/latest/esp32/quickref.html#adc-analog-to-digital-conversion

July 27, 2021 Lectures on the Internet of Things 41

ADC readout program

d

July 27, 2021 Lectures on the Internet of Things 42

The I2C bus
The Inter-Integrated Circuit (I2C) bus was invented be Philips in the early
1980. It is used by many sensors to communicate their data to the CPU.

July 27, 2021 Lectures on the Internet of Things 43

I2C addressing
The I2C bus uses the master/slave paradigm. The CPU acts as the master and the sensors as
slaves.

The I2C bus uses 7 address bits (the 8th bit is the R/W line). A maximum of 128 slaves can therefore
be connected to a single master.

The ESP32 has two hardware I2C buses, but MicroPython also provides a software I2C
implementation using bit-banging on any GPIO line.

The pins for SCL (the I2C clock line) and SDA (the I2C data line) are

● SCL: GPIO 22

● SDA: GPIO 21

Control and readout of an I2C based sensor requires a driver accessing it using the MicroPython I2C
driver calls. An example for the SHT30 temperature and humidity sensor is explained here.

d

https://afnog.iotworkshop.africa/do/view/UCC_Course_2021/SHT30NopI2CTemperatureAndHumiditySensor

July 27, 2021 Lectures on the Internet of Things 44

The SHT30
The SHT30 is a digital temperature and relative humidity sensor

I wrote the sht3x driver myself and integrated it into the MicroPython firmware

The user program becomes very simple:
from sht3x import SHT3X
sht30 = SHT3X()
tempC, humi=
sht30.getTempAndHumi(clockStretching=SHT3X.CLOCK_STRETCH,repeatability=SHT3X.REP_S_HIGH)

Is all that is needed to get at the measured temperature (in °C) and
humidity (in %) values.

All the detailed command handling is done within the driver

d

July 27, 2021 Lectures on the Internet of Things 45

IoT course exercises

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

