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Objectives

« Provide the existence conditions of traveling
waves in chemotaxis.

» Study the dynamical behaviors of 2D a
chemotactic system.

Introduction

Chemotaxis is the ability of cells/bacteria to move to-
wards (away) attractive (harmful or repulsive) chem-
icals/regions. This phenomenon has been studied in
media with no dynamics of their own [1], though re-
cent recent experimental evidences suggest otherwise
2]. Chemotaxis may be used to describe large scale
behaviors, and to tackle fertility issues, perform organ
repair, manufacture devices with the potential of per-
forming specific tasks such as fat elimination, foraging
just to name a few.

Though experimental evidences of traveling bands
of matter in chemotactic systems has become a
paradigm, theoretical description of these traveling
structures akin to traveling waves is still under investi-
cation. It is not exactly very clear how cells aggregate,
form patterns and collectively move, but based on
known biology, mathematical models describing their
spatiotemporal evolutions can be assessed. Keller and
Segel (3| were the first to derive a mathematical model
for chemotaxis. The solutions of their model shows
some drawbacks such as existence of analytical solu-
tions only for singular chemotactic sensitivity, a very
problematic assumption since it implies bacterial den-
sities and velocities may grow to infinity. In such a
case solutions are unphysical.

To circumvent these issues, a chemotaxis model ac-
counting for traction forces, long-range diffusion, ad-
vection, bacterial proliferation and chemoattractant
kinetics is considered. Analytical solutions are con-
structed, their existence conditions provided and their
stability is numerically tested with success.

Hypotheses and model description

In our manufacturing, we are interested in describ-
ing the collective motion of bacteria placed in fluid
presenting a uniform flow rate. The bulk velocity of
the medium comprises a contribution emanating from
cells while moving. Let denote by n(7, t) the bacterial
density and ¢(7, t) the chemoattractant concentration.
The conservation laws permit to write |1, 3, 4
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Results II: The wave profiles
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Figure 1: bacterial wave constructed are bell-shape, dip and step

traveling waves profiles

Important Results

« In addition to the fact that traction completely modifies the system, traction, long-range diffusion and

chemotaxis present competing effects.

» Traction and long-range diffusion slow down the waves and entail the transport of a small number of
particles. Long-range diffusion increases the thickness of the wave but does not alter the magnitude.

- We prove that while dip waves travel faster (better candidates to explaining fast bacterial coordination),
step waves have the potential of carrying a higher number of cells, hence may be considered as robust
structures to perform transport in a highly dense medium.

Results 1: The wave velocity
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Figure 2: Influence of traction (c), long-range diffusion (d) and

chemotaxis (e) on the wave velocity

Results 111: The wave thickness,
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Figure 3: Influence of long-range diffusion (a), traction (b), and

chemotaxis (c) on the wave characteristics

Conclusion

In summary, we have introduced a new mathemati-
cal model for chemotaxis. Applying the F-expansion
method, we construct solutions of our model and use
them to study the dynamical behaviors of the bulk
system. We provided the conditions within which so-
lutions constructed exist and hence are physical ob-

jects that may be expected in real experiments. The

stability of solutions constructed is analyzed through
direct numerical integration. Both numerical and an-
alytical solutions remain very close hence ascertaining
our theoretical predictions.
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