

CLIC SUSY Discovery Reach at 3 TeV

OUTLINE

- Introduction pMSSM11 benchmark points
- Mass spectrum for BMP1 and BMP2
- SUSY production cross section
- $\tilde{\chi}_1 \pm (4J \text{ or } e\mu) \text{ and } \tilde{\chi}_3^o (4J) \text{ searches}$
- $\tilde{\chi}_2^0$ and \tilde{q} (2J) searches

Introduction

Assess the reach for some SUSY particles at CLIC for two different compositions of the $\tilde{\chi}_1^0$ corresponding to two benchmark points resulting from a fit of The pMSSM11 model to non accelerator data and accelerator data

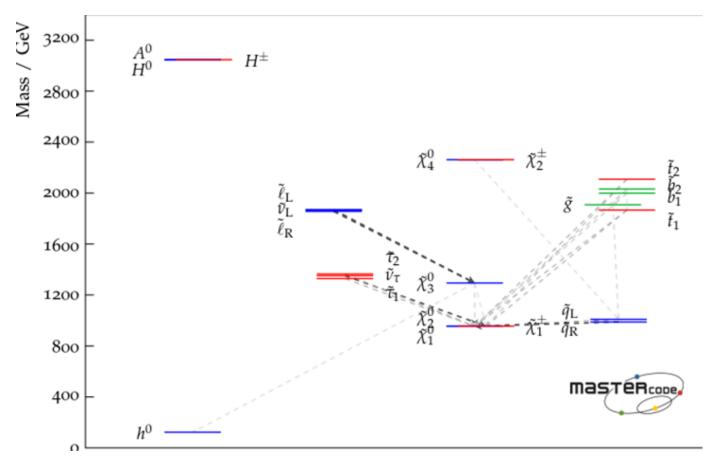
Ref: "The likelihood analysis of the pMSSM11 in Light of LHC 13-TeV Data "E. Bagnaschi, ... J.R. Ellis, ... G. Weiglein (arXiv:1710.11091).

As the fit includes LHC data these points are not excluded by LHC.

For the two benchmark points the composition is such that Ω is compatible with the relic density constraints.

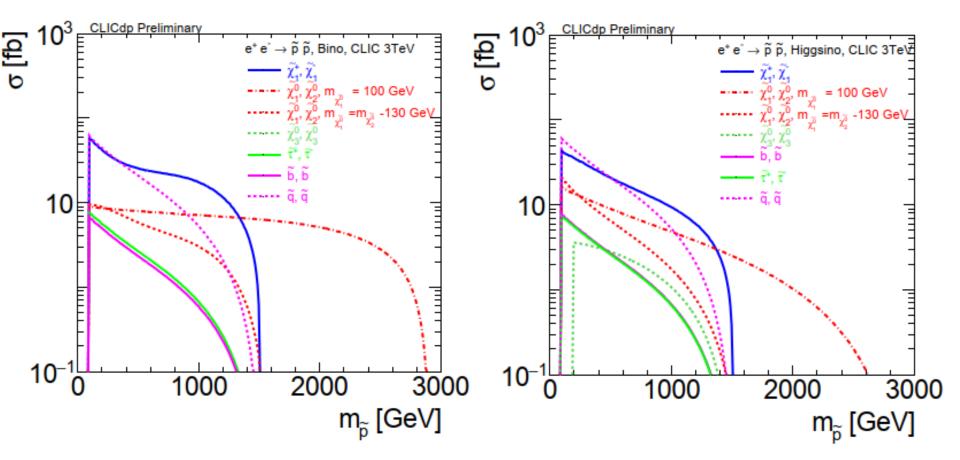
BMP1 Spectrum and $\tilde{\chi}_1^0$ composition

Benchmark point 1 (BMP1): Neutralino composition:

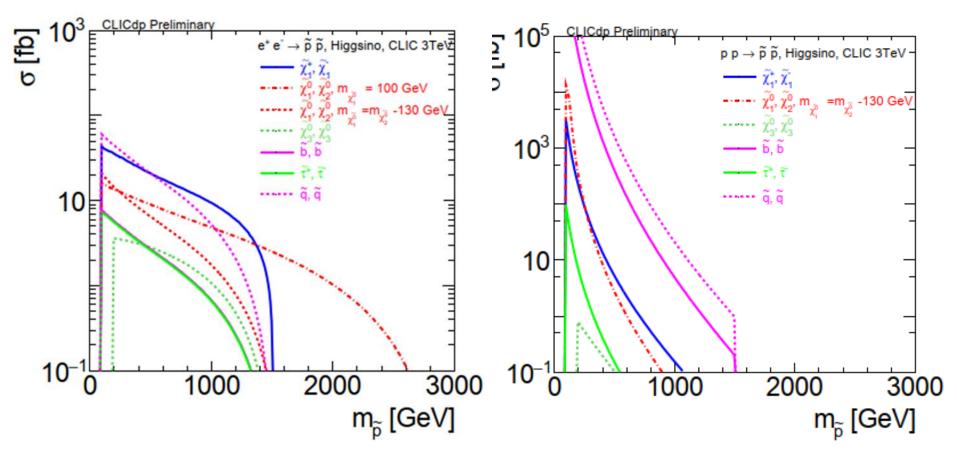

~o1 = 0.999*bino -0.028*wino +0.036*higgsino1 -0.008*higgsino2

BMP2 Spectrum and $\tilde{\chi}_1^0$ composition

Benchmark point 2 (BMP2): Neutralino composition:


~o1 = 0.096*bino +0.018*wino -0.704*higgsino1 +0.703*higgsino2

cic


SUSY Cross Sections at CLIC

SUSY production cross section for BMP1 (Bino) and BMP2 (Higgsino).

SUSY Cross Sections at CLIC and LHC

SUSY production cross section for BMP2 (Higgsino) at CLIC and LHC.

 $\tilde{\chi}_1$ ± Search

 $e^+ e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-$

Only the decay $\tilde{\chi}_1 \pm \rightarrow \tilde{\chi}_1^0$ W± is considered for the analysis with a branching ratio of 100%.

Two W decay channels are considered:

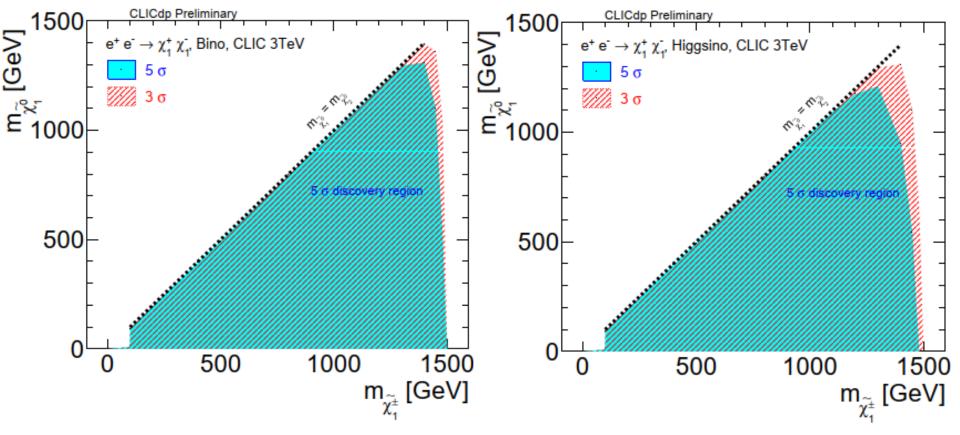
- for $m(\tilde{\chi}_1 \pm) m(\tilde{\chi}_1^{\circ}) > 90$ GeV the 4J final state selection is used. $W^+W^- \rightarrow q \bar{q} q \bar{q}$; branching ratio = 49%
- for 5 GeV < m($\tilde{\chi}_1$ ±) m($\tilde{\chi}_1^\circ$) < 90 GeV the e μ final state is used W⁺ W⁻ \rightarrow e⁻ μ^+ v $\bar{\nu}$ and e⁺ μ^- v v ; branching ratio = 2%

W→4J Background Cross Sections

Process	σ[fb]	Events for ∫L=1 ab For BDT Train and Test
$e^+ e^- \rightarrow q \bar{q} q \bar{q}$	5.5 10 ²	1.1 10 ⁶
$e^+ e^- \rightarrow q \bar{q} q^- v \bar{v}$	7.2 10 ¹	1.5 10 ⁵
e⁺e⁻ → qāqāII	1.7 10 ²	3.4 10 ⁵
e⁺e⁻→qq̄qq̄lv	1.0 10 ²	2.0 10 ⁵

Cross sections of the main backgrounds for the 4J final state and number of events used for the analysis. The events are from the samples used for the Higgs analysis

$W \rightarrow e \mu$ Background Cross Sections

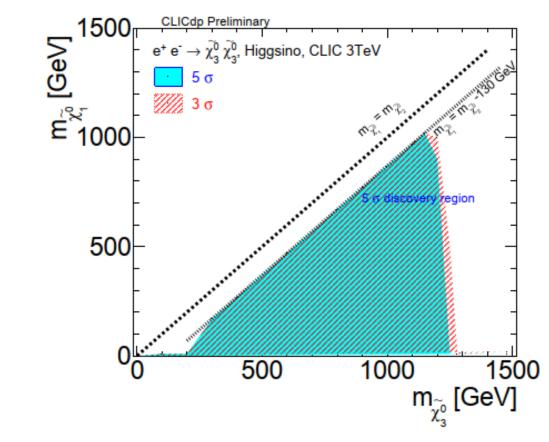

Process	σ[fb]	Events for ∫L=1 ab For BDT Train and Test
$e \gamma \rightarrow e^- \mu^+ \mu^-$	2.3 10 ²	4.6 10 ⁵
$e^+ e^- \rightarrow e^- \mu^+ e^+ \mu^-$	2.0 10 ¹	4.0 10 ⁴
$e^+ e^- \rightarrow e^- \nu \ \mu^+ \nu$	5.5 10 ¹	1.1 10 ⁵
$e^{\scriptscriptstyle +} e^{\scriptscriptstyle -} \rightarrow \tau^{\scriptscriptstyle +} \tau^{\scriptscriptstyle -} \rightarrow e^{\scriptscriptstyle -} \nu \mu^{\scriptscriptstyle +} \nu$	1.4	5000

Cross sections of the main backgrounds for the $e \mu$ final state search and number of events used for the analysis. The events were generated using Whizard2

$\tilde{\chi}_1 \pm Results$

 5σ and 3σ regions in the plane (m $\tilde{\chi}_1^\circ$, m $\tilde{\chi}_1 \pm$) for Bino and Higgsino. $\tilde{\chi}_1 \pm$ observation difficult for m $\tilde{\chi}_1 \pm$ -m $\tilde{\chi}_1^\circ$ < 5GeV. For m $\tilde{\chi}_1 \pm$ -m $\tilde{\chi}_1^\circ$ > 5GeV the $\tilde{\chi}_1 \pm$ and $\tilde{\chi}_1^\circ$ masses can be determined using the W energy

e⁺ e $\rightarrow \tilde{\chi}_3^0 \tilde{\chi}_3^0$ Only the $\tilde{\chi}_3^0 \rightarrow \tilde{\chi}_1^0$ h decay channels is considered for the analysis with a branching ratio of 100%.


The search is done in the region where $m\tilde{\chi}_2 - m\tilde{\chi}_1^0 > mh$ and assuming a branching ratio $h \rightarrow b\bar{b}$ of 60%

As it is a 4 jet final state the backgrounds are the same as for the $\tilde{\chi}_1\pm$ analysis.

$\tilde{\chi}_3^o$ Results

5 σ and 3 σ regions in the plane (m $\tilde{\chi}_1^{\circ}$, m $\tilde{\chi}_3^{\circ}$) The Higgsino $\tilde{\chi}_3^{\circ}$ can be observed at CLIC; the $\tilde{\chi}_3^{\circ}$ and $\tilde{\chi}_1^{\circ}$ masses can be determined using the higgs energy distribution.

$\tilde{\chi}_2{}^o$ and \tilde{q} Searches

 $e^+ e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0$

Only the $\tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0$ h decay channels is considered for the analysis with a branching ratio of 100%.

The search is done in the region where $m\tilde{\chi}_2 - m\tilde{\chi}_1^0 > mh$ and assuming a branching ratio $h \rightarrow b\bar{b}$ of 60%

 $e^+ e^- \rightarrow \tilde{q} \tilde{q}$

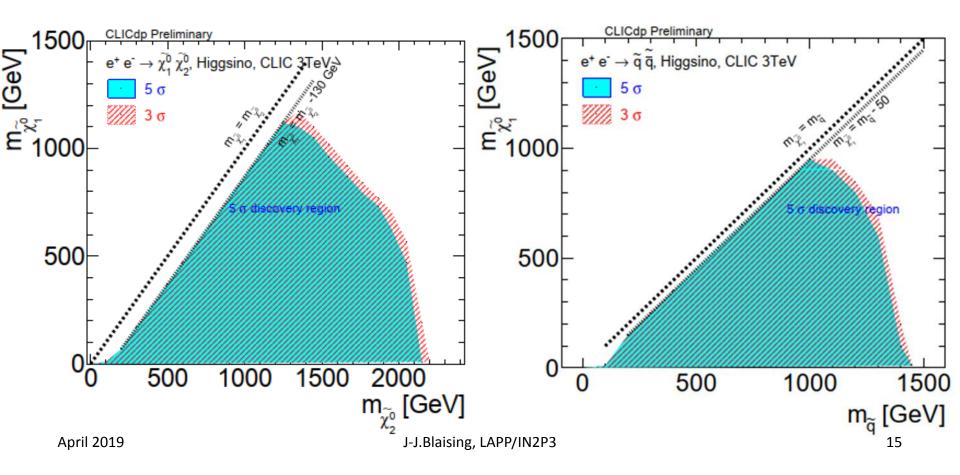
Only the $\tilde{q} \rightarrow \tilde{\chi}_1^0$ q decay channel is considered for the analysis. with a branching ratio of 100%.

The search is done in the region where $m\tilde{q}-m\tilde{\chi}_1^0 > 50$ GeV and assuming a branching ratio $\tilde{q} \rightarrow \tilde{\chi}_1^0 q$ of 100%

e⁺ e $\rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0$ h and e⁺ e $\rightarrow \tilde{q} \tilde{q} \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0$ q \bar{q} are 2 jets final state events. The SM model backgrounds are shown on next slide.

$\tilde{\chi}_2^0$ and \tilde{q} Background Cross Sections

Process	PtqQ>1 GeV MqQ>1 GeV σ[fb]	PtqQ>20 GeV MqQ>100 GeV σ[fb]	Events for ∫L=500 fb With Lumi factors 1, 0.8, 0.75
$\gamma\gamma \to q\;\bar{q}$	5.4 10 ⁶	1100 (MqQ>100)	4.1 10 ⁵
$e \pm \gamma \rightarrow e \pm q \bar{q}$ (γ)	1.9 10 ⁶	2500	1.0 10 ⁶
$e \pm \gamma \rightarrow \nu q \bar{q}$ (γ)	4.5 10 ⁴	1080	4.4 10 ⁵
$e^+ e^- \rightarrow e^+ \nu q \bar{q} (\gamma)$	7.5 10 ⁴	380	2.0 10 5
$e^+ e^- \rightarrow q \bar{q} \nu \bar{\nu}$ (γ)	1.4 10 ³	71	3.5 10 4
$e^+ e^- \rightarrow e^+ e^- q \ \bar{q} \ (\gamma)$	6.5 10 ⁵	450	2.2 10 ⁵
$e^+ e^- \rightarrow q \bar{q}$ (y)	385	60	3.0 10 ⁴
$e^+ e^- \rightarrow h \nu \nu$ (γ)	410	No cut	2.1 10 ⁵


2 jet final state SM background cross sections

April 2019

Results

5 σ and 3 σ regions in the plane (m $\tilde{\chi}_1^0$, m $\tilde{\chi}_2^0$) and (m $\tilde{\chi}_1^\circ$, m \tilde{q}). The \tilde{q} and $\tilde{\chi}_2^\circ$ can be observed at CLIC; the \tilde{q} and $\tilde{\chi}_2^\circ$ masses can be determined using the quark and h energy distributions respectively.

