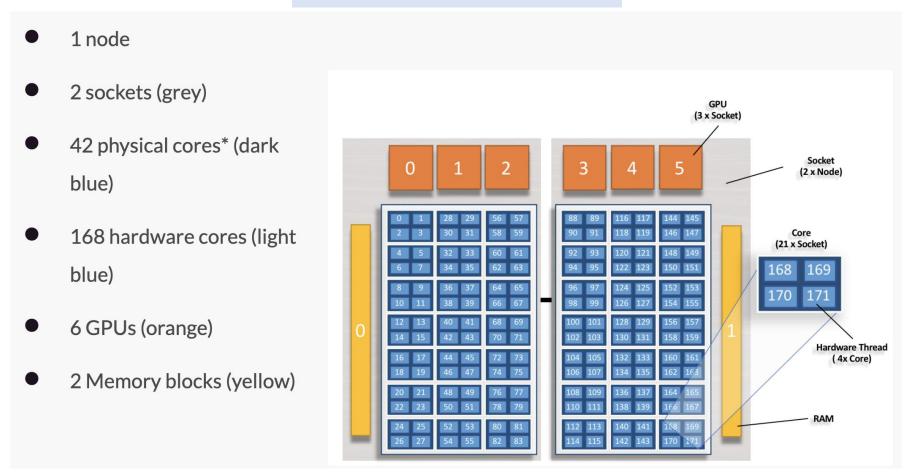
### ATLAS simulations performance on Summit

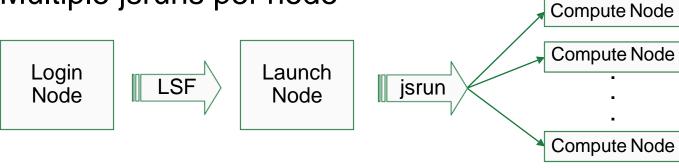
#### Sergey Panitkin BNL


# Introduction

- In February AthSimulation release 21.0.34 was built by Alex Undrus on Summit, natively for Power9 CPU
- I started testing ATLAS detector simulation on Summit right away.
  First results were already shown in March at the ATLAS site jamboree meeting at CERN
- Goals:
  - Prepare for running actual production release (to be determined and build)
  - Learn how to use job submission interface, IBM Spectrum LSF and jsrun utility
  - Study performance, scalability, effects of multi-threading on Power9 CPUs, etc
- Work in progress.
  - Scalability tests are not completed since we ran out of allocaton

### Summit at OLCF. Node structure

~4600 IBM Power System AC922 nodes each with 2 Power9 CPU and 6 nVidia Volta V100 GPUs, 512GB DDR4 RAM + 96GB HBM2


~193K CPU cores in 4600 nodes

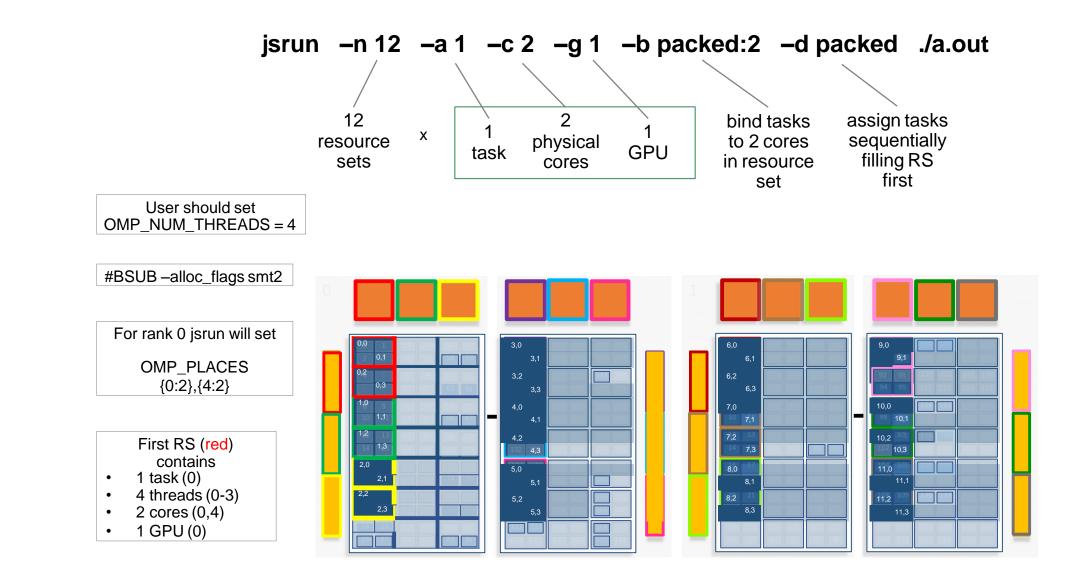


jsrun utility allows for fine grained allocation of CPU and GPU per MPI rank, as well as choice of SMT level. Large parameter space!

### jsrun Introduction

- Launch job on compute resources
- Similar functionality to aprun and mpirun on Titan
- Still in development
- Launch nodes
  - Similar to Titan
  - Non-jsrun commands executed on launch node
  - Shared resource
- Multiple jsruns per node




#### From Chris Fuson's talk at OLCF user meeting

### Basic jsrun Examples

| Description                                      | Jsrun command                                | Layout notes                                     |
|--------------------------------------------------|----------------------------------------------|--------------------------------------------------|
| 64 MPI tasks, no<br>GPUs                         | jsrun –n 64 ./a.out                          | 2 nodes: 42 tasks<br>node1, 22 tasks on<br>node2 |
| 12 MPI tasks each<br>with access to 1<br>GPU     | jsrun –n 12 –a 1 –c 1 –g1 ./a.out            | 2 nodes, 3 tasks<br>per socket                   |
| 12 MPI tasks each<br>with 4 threads and 1<br>GPU | jsrun –n 12 –a 1 –c 4 –g1 –bpacked:4 ./a.out | 2 nodes, 3 tasks<br>per socket                   |
| 24 MPI tasks two<br>tasks per GPU                | jsrun –n 12 –a 2 –c 2 –g1 ./a.out            | 2 nodes, 6 tasks<br>per socket                   |
| 4 MPI tasks each with 3 GPUs                     | jsrun -n 4 –a 1 –c 1 –g 3 ./a.out            | 2 nodes: 1 task per<br>socket                    |

#### From Chris Fuson talk at OLCF user meeting

#### Hardware Threads: Multiple Threads per Core



Mixing of CPU and GPU payloads is very important. NGE!

#### From Chris Fuson talk at OLCF user meeting

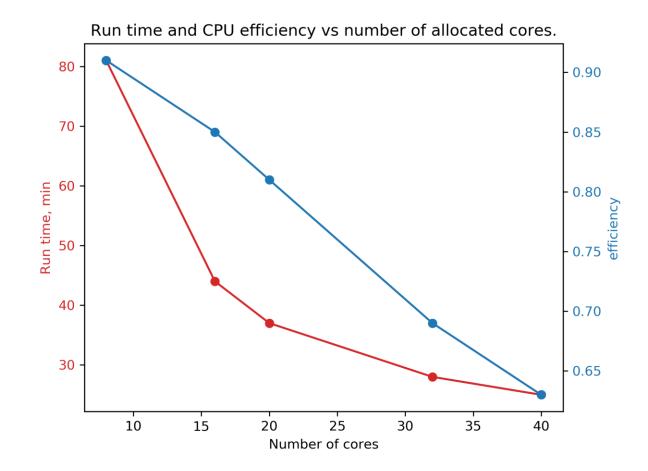
6

# First performance tests on Summit

#### ATLAS rel. 21.0.34 compiled on Summit. AthenaMP Geant 4 detector simulation. Single node.

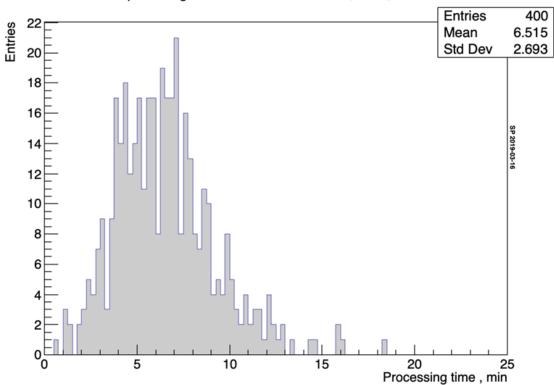
Sim\_tf.py --inputEVNTFile=/ccs/home/panitkin/EVNT.06820177.\_000107.pool.root.1 --maxEvents=100 --preExec "EVNTtoHITS:simFlags.SimBarcodeOffset.set\_Value\_and\_Lock(200000)" "EVNTtoHITS:simFlags.TRTRangeCut=30.0;simFlags.TightMuonStepping=True" --preInclude

"EVNTtoHITS:SimulationJobOptions/preInclude.BeamPipeKill.py,SimulationJobOptions/preInclude.FrozenShowersFCalOnly.py" --skipEvents=0 -


-firstEvent=165001 --outputHITSFile=HITS.10974383.\_000371.pool.root.1 --physicsList=FTFP\_BERT\_ATL\_VALIDATION --randomSeed=189 --conditionsTag "default:OFLCOND-MC16-SDR-14" -geometryVersion="default:ATLAS-R2-2016-01-00-01\_VALIDATION" --runNumber=301053 --AMITag=s3126 --DataRunNumber=284500 --simulator=FullG4 --truthStrategy=MC15aPlus

| Cores | SMT | workers | events | Run time, min | CPU efficiency |
|-------|-----|---------|--------|---------------|----------------|
| 8     | 1   | 8       | 100    | 81            | 0.91           |
| 16    | 1   | 16      | 100    | 44            | 0.85           |
| 20    | 1   | 20      | 100    | 37            | 0.81           |
| 32    | 1   | 32      | 100    | 28            | 0.69           |
| 40    | 1   | 40      | 100    | 25            | 0.63           |
|       |     |         |        |               |                |

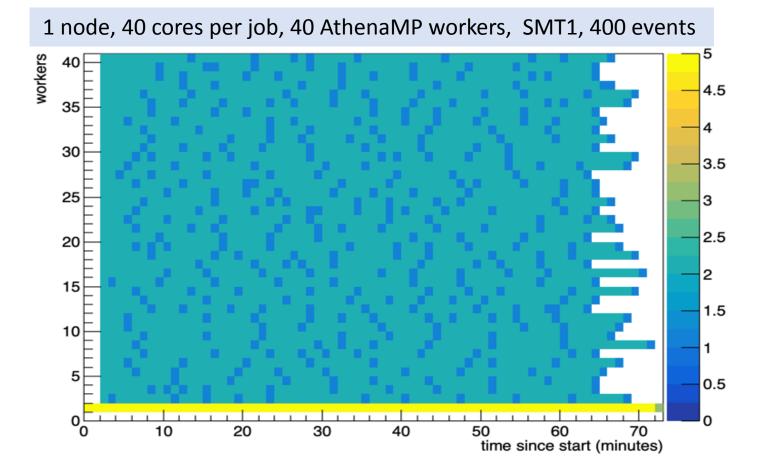
preliminary


For comparison: same run with 100 events on Titan's 16 cores, with 16 AthenaMP workers took ~62 minutes. Summit cores are ~40% faster.

#### Run time and CPU efficiency vs number of allocated cores



Single Summit worker node. AthenaMP, 100 events, SMT1


#### ATLAS simulation event processing time



Event proessing time on Summit. Cores 40, smt1, Events 400

1 node, 40 cores per job, 40 AthenaMP workers, 400 events

#### AthenaMP worker occupancy on Summit



Main contributors to inefficiency are idle cores at the end of job run. AthenaMP initialization and configuration time is smaller @ ~2min

### First performance tests on Summit. Effect of SMT

Summit's CPUs support Simultaneous Multi-Threading (SMT), each physical core supports up to 4 hardware threads.

| Cores | SMT | workers | events | Run time, min | CPU efficiency |
|-------|-----|---------|--------|---------------|----------------|
| 8     | 1   | 8       | 100    | 81            | 0.91           |
| 8     | 2   | 16      | 100    | 69            | 0.89           |
| 8     | 4   | 32      | 100    | 69            | 0.85           |
| 10    | 1   | 10      | 100    | 69            | 0.89           |
| 10    | 2   | 20      | 100    | 59            | 0.86           |
| 10    | 4   | 40      | 100    | 55            | 0.83           |
| 20    | 2   | 40      | 400    | 110           | 0.92           |
| 20    | 4   | 80      | 400    | 107           | 0.88           |

ATLAS rel. 21.0.34 compiled on Summit. AthenaMP Geant 4 detector simulation. Single node.

Use of SMT2 helps to improve run time, SMT4 shows diminishing returns

preliminary

# Summary

- AthSimulation release 21.0.34 was built on Summit
- Testing of ATLAS detector simulation on Summit started.
- First results showed that per core Summit is ~40% faster than Titan
  - 40 cores per node and SMT leads to significant boost in per node performance compared to Titan
- Enabling SMT2 shows noticeable increase in performance, SMT4 does not show large effect
- In order to maintain job efficiency it is important to balance number of cores per job, SMT level with number of events per job and Summit policies constrains
- Scalability studies are in progress, pending project extension

# The End

# Summit batch queue polices

| Bin | Min Nodes | Max Nodes | Max Walltime (Hours) | Aging Boost (Days) |
|-----|-----------|-----------|----------------------|--------------------|
| 1   | 2,765     | 4,608     | 24.0                 | 15                 |
| 2   | 922       | 2,764     | 24.0                 | 10                 |
| 3   | 92        | 921       | 12.0                 | 0                  |
| 4   | 46        | 91        | 6.0                  | 0                  |
| 5   | 1         | 45        | 2.0                  | 0                  |

Limit of 2 *eligible-to-run* jobs per user No more than 100 jobs in any state at any time per user

#### Current CSC343 allocation status. 04/24/19

summit usage in Node-hours:

|                  | F         | Project Tota | S         |  |
|------------------|-----------|--------------|-----------|--|
| Project          | Allocatio | n Usage      | Remaining |  |
|                  |           |              |           |  |
| csc343           | 5000      | 6429         | -1429     |  |
|                  |           |              |           |  |
| Individual Usage |           |              |           |  |
|                  |           |              | % of      |  |
| I                | UserID    | Usage        | Total     |  |
|                  |           |              |           |  |
|                  | amalik    | 3802 5       | 9.15%     |  |
| р                | panitkin  | 2626 4       | 0.85%     |  |
| I                | psvirin   | 0 0.00       | 0%        |  |