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Motivation

• Machine learning techniques, especially
deep learning, are fast becoming part of
High Energy and Nuclear Physics

• Simulation code, Data analysis:
• 50% performance gain on LHC running

• ATLAS and LHC will generate huge data and
this can not be handled using single node
training mode

• Software stack for machine learning that
would help port machine learning algorithms
across different hardware
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PanDA System and DNNs

• How  the PandDA ecosystem can handle 
DNN applications as part of the HEP 
workflow?

• How PandDA can facilitate the training 
process of DNNs especially with respect to 
improving its performance?

• Distributed Learning Working Group
• Bi-weekly meetings
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Single Model Single Node DNN 
training

• Simple Case: One model per accelerator

• Hyper-parameter optimization:
• Tuning DNNs’ parameters to improve the 

performance

• O(n6) depending on what kind of model is being 
used
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Single Model Single Node DNN 
training
• CERN has done experiments for 

hyperparameter optimization

• Using containerized software stack

• Using PanDA to distribute the models with 
different parameter across different nodes

• Doing linear search to find the best model

• Feedback is good
• Results are not available

• PanDA is useful for such kind of problems

5



Distributed Learning using more 
than one GPUs

• Need it to manage huge data and reduce 
training time

• HEP community is already using it:
• MPI_Learn ( from CERN)

• Horovod (from Uber)

• LBANN (Livermore Big Artificial Neural Network) 
Toolkit
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MPI_Learn Framework
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• Robust framework for 

distributed training using MPI 

for distribution

• Different communication models

• Doesn’t scale well beyond 600 

nodes



Horovod Framework
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• Established itself as robust 

framework for distributed 

learning

• Good scaling beyond 400 

nodes

• Uses NCCL2 and cuda-

aware MPI



Detailed Performance Analysis of 
3D GANs (Generative Adversarial 
Networks) on Summit

• Using MPI_Learn and Horovod for 
distributed learning

• Using data from CERN

• Able to run with 1200 GPUs (V100) on 
Summit
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Scalability Results

• MPI_Learn scales linearly

• Used only one epoch for 
analysis

• Horovod shows better 
results

Scalability of MPI_Learn on Summit



Running 3D GANs on Summit
MPI_Learn
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MPI_Learn performance

Number of processors

Time in seconds

• Through put 

performance analysis

• The communication cost 

becomes very high after 

600 GPUs

• Need to optimize the 

communication model

• NCCL and CUDA-

AWARE MPI is the first 

step



Running 3D GANs on Summit 
using Horovod
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Horovod performance

Number of processors

Time in seconds

• Through put 

performance analysis

• Better performance than 

MPI_Learn

• NCCL and CUDA-

AWARE MPI 



Detailed Performance Analysis 
of 3D GANs on Summit

• Inter node and intra node performance

• Computational and communication cost

• Resource utilization

• GANs computational and communication 
characteristics

• Scalability 

• Accuracy and throughput performance

• Variables that control the search space for 
hyper-parameter optimization
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Detailed Performance Analysis

• Horovod is giving better results in terms of 
through put

• Accuracy needs to be looked into
• Checkpointing

• Not enough data

• Score-p Vampire toolkits for more detailed 
analysis

• Manual instrumentation of the code
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Work in progress

• Debugging the code
• Frameworks are breaking

• Check pointing for 3D GANs
• For accuracy analysis

• More data for scalability

• Manual instrumentation of python code
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Possible next step

• Advanced GANs architecture from HEP 
(CERN)

• Real data to test the scalability and 
accuracy

• Running and simple Hyperparameter 
optimization for 3D GANs using PanDA
• Linear scanning for the best model
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Summary
• Distributed learning is important for 

applying ML techniques in HEP

• We need to look into the distributed 
frameworks for distributed learning

• Hyper-parameter optimization is an 
important problem

• The PanDA ecosystem can play an 
important part in distributed learning

• Detailed performance analysis of 
Distributed 3D GANS
• Interest from the other groups (NERSC ML 

group, MLPerf HPC group)
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Thanks

• Questions!
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