
J Grid Computing manuscript No.
(will be inserted by the editor)

Modeling Allocation Utilization Strategies on Supercomputers

Alexey Poyda · Mikhail Titov · Alexei Klimentov · Jack C. Wells ·
Sarp Oral · Kaushik De · Danila Oleynik · Shantenu Jha

Received: date / Accepted: date

Abstract In the current era of compute-intensive ap-1

plications and exa-scale processings, HPCs and super-2

computers along with such technologies as grid (HTC)3

and cloud computing play an important role. Thus the4

organization of the calculation and execution processes5

within these instruments require a particular attention.6

Sharing of computing resources between its clients such7

as individual users and groups that represent certain8

projects is determined by predefined usage policies, re-9

source quota per user/group and its dynamic work-10

load based on usage activities. Thus, the load on a11

supercomputer depends on the number and parame-12

ters of computing jobs running there: the number of re-13

quired nodes, required execution time (walltime), and14

jobs generation rate. Predefined job parameters such as15

its number, size, length, rate, are referred as an execu-16

tion strategy.17

The aim of this work is to identify execution strate-18

gies geared towards the goal of maximizing the proba-19

bility of utilization of allocated resources per defined20

project on a supercomputer in a given time period.21

A. Poyda
National Research Centre Kurchatov Institute, Moscow, Russia
E-mail: poyda@wdcb.ru
M. Titov
Lomonosov Moscow State University, Moscow, Russia
E-mail: mikhail.titov@cern.ch
A. Klimentov · S. Jha
Brookhaven National Laboratory, Upton, NY, USA
J.C. Wells · S. Oral
Oak Ridge National Laboratory, Oak Ridge, TN, USA
K. De · D. Oleynik
University of Texas at Arlington, Arlington, TX, USA
S. Jha
Rutgers University, Piscataway, NJ, USA

Resources allocation is a number of provided cores or22

computing nodes for a limited time (cores × hours),23

also mentioned as an allocation time. This work also24

gives a possibility to estimate a potential resource uti-25

lization based on provided job parameters for a given26

time period and the current supercomputer workload.27

A simplified model for utilization of allocation time and28

a simulator based on Queueing Theory were designed.29

The model was tested on both synthetic and real log30

data over several months of the supercomputer work31

(the Titan supercomputer work was examined), and32

identified strategies were compared with other possible33

strategies. Experiments conducted using the simulator,34

showed that in most cases identified strategies increase35

the probability of utilizing allocation faster than a ran-36

dom choice of job processing parameters.37

Keywords Supercomputers · Utilization modeling ·38

Execution strategy · The Titan supercomputer39

1 Introduction40

Most supercomputers are represented as computational41

facilities of collective use, providing access to comput-42

ing resources on a competitive basis. In these condi-43

tions an individual user or a project group, with a large44

quota of allocated resources at the supercomputer, con-45

fronts the real task: what strategy to choose in or-46

der to utilize this quota successfully. Resource utiliza-47

tion is an actual usage of a partial or full amount of48

allocated resources within the time that is equal or49

less to the time for which these resources were allo-50

cated, so ResourceUtilization ≤ ResourceAllocation,51

(cores×hours). The term “successfully” is understood52

as an user’s ability to utilize the allocated quota in the53

range of the requested time. First of all, this is affected54

2 Alexey Poyda, Mikhail Titov et al.

by a dynamically changing supercomputer load (i.e.,55

number of busy nodes at a certain time), by competi-56

tion for computing resources with other users and by57

the local policy of a particular supercomputer which58

sets the rules for this competition.59

Meanwhile, user is able to vary a number of param-60

eters, which would be called as variable parameters, at61

jobs launch on the supercomputer, which can eventually62

strongly influence the amount of computing resources63

consumed during the requested time. In the first place,64

such parameters include size and length of the job, ex-65

pressed in requested number of nodes and walltime, re-66

spectively, since the values of these parameters can af-67

fect the job waiting time in the supercomputer’s queue.68

And this in turn can affect the total number of jobs69

that will be launched on a supercomputer in a specified70

time and, as a result, the total amount of consumed71

resources. A set of specific values of variable parame-72

ters defined by a specified user or a project group will73

be referred to as a job launch strategy for this user or74

group.75

Of course, in some projects, not all variable param-76

eters can change their values. For example, there are77

projects that can not work with more than one node.78

But for other projects such choice is possible. In this79

case, the task of choosing a strategy, which increases80

probability of successful utilization of a large allocated81

quota of supercomputer time, becomes relevant.82

Finding the strategy that outperforms any arbitrary83

one is a complex task due to dependence of the cor-84

responding variable parameters on a great number of85

dynamically varying factors that are difficult to pre-86

dict because of activities of other users. The task can87

be simplified by looking for a static execution strategy,88

which means a strategy with values of variable param-89

eters that do not change over time. Our hypothesis,90

which should also be tested, is that in most cases the91

static execution strategy will give a higher probability92

of successful utilization of a large allocated quota of93

supercomputer time than, for example, a random dy-94

namic strategy.95

There is no only one such outperforming strategy96

that would work for all supercomputers or will fit all97

users and project groups needs, since every strategy98

depends on a particular computing workflow and needs99

of one who requests this strategy.100

Therefore, an effective utilization of allocated re-101

sources relies on well-defined execution strategy. Ex-102

ecution strategy should guarantee an achievement of103

the requested utilization over defined time interval, thus104

such strategy will maximize the probability of utilizing105

a particular allocated resources completely. It is also106

possible that the utilization of the whole allocation time107

is not feasible, in this case the appropriate execution108

strategy will facilitate to increase the utilization in com-109

pare to no strategy at all. Furthermore, such approach110

is applicable for the estimation of probable utilization111

value of potentially allocated resources according to de-112

fined job launch parameters, supercomputer load, and113

chosen execution strategy.114

This paper provides key points of design and de-115

velopment of an approach to and technique of find-116

ing static strategies of jobs launch for a given project117

on given supercomputer resources, which increases the118

probability of successful utilization of a large allocated119

quota of supercomputer time.120

2 Related works121

Efforts to increase the efficiency of jobs processings (i.e.,122

to maximize the chance of utilization of the total allo-123

cation time) at supercomputers/HPCs could be catego-124

rized into the following classes of approaches: i) queue125

time predictions, also could be referred as batch queue126

prediction; ii) runtime prediction or prediction of job127

execution time; iii) meta-scheduling, which is performed128

by the corresponding workload management system or129

service and is responsible for jobs placement according130

to its internal mechanisms.131

One of the latest works related to the area of queue132

time prediction was presented by Murali and Vadhi-133

yar [1], and is about an integrated adaptive framework,134

Qespera, used for prediction of queue waiting times on135

parallel systems. This framework uses algorithm based136

on spatial clustering for predictions using history of job137

submissions and executions. Thus, the proposed ap-138

proach includes such processes as finding similarities139

between the target job and the history jobs using a140

weighted distance metric, clustering to characterize the141

feature neighborhood of the target job based on the cal-142

culated distances, calculating the predicted queue wait-143

ing time by one of the following methods: an SDM, NN144

method, and ridge regression. Among the works using145

the statistical method can be noted the research work146

of Nurmi et al. [2] about a forecasting system QBETS147

(Queue Bounds Estimation from Time Series) that gen-148

erates a predicted bound on the queue waiting time149

for the target job using a stationary history of previ-150

ous jobs which have similar quantitative characteris-151

tics. The identification of similarity is estimated based152

on hierarchical clustering algorithm, and queue length-153

based downtime detection algorithm is used to identify154

system failures that affect job queuing delay.155

Another approaches for efficient resources utiliza-156

tion is to apply forecasting for jobs runtime. One of such157

approaches was presented by Yang et al. [3] with the158

Modeling Allocation Utilization Strategies on Supercomputers 3

proposed observation-based prediction. Authors demon-159

strated that short partial executions of an application160

are usable for the prediction generation, while using161

method approaching cross-platform performance trans-162

lation based on relative performance between two plat-163

forms. This is applicable since most parallel codes are164

iterative and behave predictably manner after a mini-165

mal startup period. Guo et al. [4] propose a data-driven166

approach for predicting job statuses on HPC systems.167

The binary classification problem (having either under-168

estimation of runtime or not) is addressed, and ma-169

chine learning algorithms, such as XGBoost and Ran-170

dom Forests, are applied. Thus, the proposed model171

can be used to accurately predict whether a job can be172

completed before its estimated runtime expires.173

Meta-scheduling is mostly inherent to Grid com-174

puting, but it is expandable into heterogeneous infras-175

tructure and multicluster systems. It uses both metrics176

estimated from gathered jobs meta-information (e.g.,177

queue waiting time, run-time) and parameters assigned178

by the system itself or the user (e.g., priorities, min/max179

processing requirements, etc.). Its goal is to minimize180

the average job turnaround time in a non-dedicated181

environment. Work of Lerida et al. [5] presents meta-182

schedulers for multi-clusters systems with focus on Met-183

aLoRaS, a two-level meta-scheduler that assigns appli-184

cations (PVM, MPI) according to forecasted turnaround185

time in each particular cluster. Proposed meta-scheduling186

techniques take the dynamics of the local workload into187

account (including job simulation in all clusters that is188

the base for the prediction algorithm) with further com-189

parison of their effects on system performance. Sotiri-190

adis et al. [6] give an overview of meta-scheduling ap-191

proaches with focus on inter-cloud schedulers, require-192

ments, topologies, scheduling algorithms, etc. Later in193

this paper we will introduce a workload management194

system (Section 4.1.2) which is considered as a meta-195

scheduler. Its jobs that are predetermined for the exe-196

cution at a supercomputer are used in analysis to de-197

velop the corresponding strategy of their execution at198

the particular supercomputer.199

3 Approach for static strategy selection200

3.1 General description201

For the proposed approach the following parameters are202

significant (these parameters, as mentioned earlier, de-203

fine execution strategy): job size, requested job wall-204

time, job launching scheme (e.g., number of parallel205

job launching streams, launching interval for consecu-206

tive jobs, etc.). Speaking of a static strategy we mean207

that parameters mentioned above stay constant during208

the total assessed period of time. In the current imple-209

mentation of the approach, launching scheme is defined210

by user, and we assess job size and walltime that better211

fit for the given scheme.212

Static strategy is already an improvement, but has213

its own limitations, which are characterized by slow re-214

action on the following changes:215

– workload changes;216

– resources availability (changes status from online to217

offline and backward), where time scale over avail-218

ability of resources is constant.219

Of course, if it would be possible to predict workload220

changes, then the strategy for such expected workload221

changes would be adapted dynamically, thus move from222

static to dynamic strategy. But it would require a pre-223

diction with high accuracy, which is not presented in224

this field.225

As for resources availability changes, we believe that226

for large and stable supercomputers (e.g., Titan), com-227

missioning or decommissioning significant amounts of228

computing resources is quite rare that can be ignored229

for one or two year time period.230

One more restriction for static strategy implementa-231

tion is large research time interval, which equals to large232

number of launched jobs and large amount of used allo-233

cated computing time. This is necessary to smooth local234

spikes of key parameters on large time interval. By our235

estimate, namely hundreds of thousands of core-hours236

and more.237

The designed approach, which is applied for super-238

computers (follows job processing scheme presented in239

Figure 1), consists of the following steps:240

– Choose job launching scheme (e.g., number of paral-241

lel job launching streams, launching interval for con-242

secutive jobs, etc.), time interval during which the243

specified strategy will be used, and the total utiliza-244

tion of computing resources that can be achieved.245

– Go through all possible combinations of job size246

and requested walltime, determining probability of247

achieving the specified disposal in a given time for248

the chosen job launching scheme for each combina-249

tion.250

– Optional step, repeat previous two steps for other251

launching schemes.252

– Choose as the outperforming static strategy three253

parameters (job launching scheme, requested num-254

ber of nodes, requested walltime), which gives the255

highest probability.256

It is almost impossible to check through all possible257

combinations of job size and requested walltime, since258

job size can vary from 1 core in 1 node to the maximum259

allowable value (e.g., it is more than 18 thousands nodes260

4 Alexey Poyda, Mikhail Titov et al.

Fig. 1: General scheme of jobs processing at supercom-
puters

in the Titan supercomputer, more details are in Section261

4.1.1), while walltime can vary from several minutes to262

several days. Therefore, we propose to group each pa-263

rameter’s range into small categories, where jobs from264

each category can be assumed having similar basic char-265

acteristics, such as, for example, utilization per a single266

job.267

In order to determine a probability of achieving a268

certain utilization in a defined time interval for a speci-269

fied pair {job_size, requested_walltime}, we have de-270

veloped a quantitative model. The model assists in cal-271

culation of probability of achieving defined utilization272

during the defined time by jobs of certain size with cor-273

responding walltime (waiting time for a job in the queue274

is estimated by other parameters). The model allows to275

set job’s size, walltime and queue waiting time as ran-276

dom variables with a given expectation and variance.277

To determine parameters of a random variable that278

specifies queue waiting time for a job of a certain size279

with corresponding walltime, one can use:280

– recorded (historical) data;281

– simulated (synthetic) data.282

By evaluating recorded (historical) data, it is pos-283

sible to filter out jobs with similar characteristics and284

estimate for them queue waiting time. The disadvan-285

tage of using only recorded (historical) data is that we286

cannot take into account changes in system’s workload287

from new jobs, that we will launch on it.288

To take into account such changes, as well as to ver-289

ify calculations of the quantitative model, it is possible290

to use synthetic data from a simulator of the supercom-291

puter load. We have developed such modeling tool (it292

will be described in details in Section 3.3).293

Figure 2 illustrates the scheme of the designed ap-294

proach. The user sets the strategy launching schemes;295

similar jobs are selected from the log for the given schemes;296

for the selected jobs, the main characteristics are de-297

fined: job size, queue waiting time, walltime; if neces-298

sary, these characteristics are refined using the simula-299

tor mentioned earlier; parameter space is divided into300

categories and for each category we calculate probabil-301

ity of achieving the specified utilization using the quan-302

Fig. 2: Workflow of the analysis process

titative model; if necessary, utilization calculated for303

the quantitative model is verified using the simulator.304

3.2 Quantitative model of utilization of allocation time305

The developed model allows to calculate the probabil-306

ity of achieving the required utilization of allocated re-307

sources in a given time by defining specific parameters308

for jobs processing. Some of these parameters are set by309

the user (e.g., the number of requested nodes and wall-310

time), while other parameters are determined by the311

workload of the supercomputer and the actions (i.e., ac-312

tivity) of other users (e.g., the waiting time of the job in313

the supercomputer’s queue before it runs on computing314

nodes).315

The base version of the model assumes that jobs,316

which utilization is under the estimation, are launched317

sequentially: every next job arrives to the supercom-318

puter queue only after the previous job has been started319

to run on computing nodes. Also, the model can be320

adapted to other schemes of jobs launching. For exam-321

ple, if jobs are launched sequentially according to the322

scheme that “the every next job enters the queue only323

after the previous job left it”, then the basic model324

can be used with “the virtual waiting time of the job”,325

which equals to the sum of their real waiting time and326

their real execution time. If the launching scheme as-327

sumes several input streams, e.g., 2-3, then the basic328

model with one stream can be used, but the defined329

time for calculated utilization will be reduced by 2-3330

times respectively. A formal description of the input331

and output data for the basic model is presented be-332

low.333

Given assumptions:334

– Jobs J of project Pr;335

– Jobs J require N nodes, where N is a random vari-336

able with expected value µN and variance σ2
N ;337

Modeling Allocation Utilization Strategies on Supercomputers 5

– Jobs J require walltime E, where E is a random338

variable with expected value µE and variance σ2
E ;339

– Execution times of jobs J equal to their walltime340

values;341

– Duration of waiting time in the queue for jobs J342

is described by a random variable Q with expected343

value µ and variance σ2;344

– Jobs J come into the supercomputer queue sequen-345

tially: next job is allocated to the queue after the346

previous one has left the queue to computing nodes.347

Values to find: P (U > U0) - the probability that348

utilization U during the time interval T0 will exceed349

the predefined value U0, where T0 is big.350

The derivation process is presented in the appen-
dices (Appendix A), and here is the final equation that
describes the quantitative model:

P (U > U0) =

∞∑
n=100

[∫ ∞

U0

f(x, nµU , nσ
2
U)dx ×(∫ T0

−∞
f(x, nµ, nσ2)dx −∫ T0

−∞
f(x, (n+ 1)µ, (n+ 1)σ2)dx

)] (1)

The outcome of the Equation 1 is the probability351

that the utilization of resources, which is achieved by a352

sequential set of processed jobs using capabilities of the353

supercomputer during the time interval T0, is greater354

than the predefined value U0. It implies that:355

– Utilization of every single job is described by a ran-356

dom variable with the expected value µU and the357

variance σ2
U ;358

– The time interval between launches of sequential359

jobs is described by a random variable with the ex-360

pected value µ and the variance σ2.361

3.3 Simulator362

This designed analysis tool is aimed to simulate the363

workload on a supercomputer and to produce job traces364

for a given workload, as well, it is used for the quanti-365

tative model validation and adjustment. There are two366

modes to run the simulator: i) set operational parame-367

ters, such as job generation rate and job execution rate,368

to produce synthetic data only; ii) use historical data369

for key parameters of the job, such as timestamp of job370

arrival to the queue and job execution time, to produce371

simulated data of real job processing lifecycle.372

The simulator is based on Queueing Theory [7] and373

according to the Kendall’s Notation [8] for queues, usu-374

ally referred as A/B/C/D/E, it is characterized as fol-375

lowing:376

– A -arrival process is represented by streams that are377

responsible for job generation and is described either378

by a Poisson process or by a deterministic model;379

– B - service/server process is represented by a set380

of nodes that simulate job execution process and is381

described either by a Poisson process or by a deter-382

ministic model as well;383

– C - number of servers that corresponds to the num-384

ber of computing nodes (in terms of the Titan su-385

percomputer);386

– D - capacity of the queue or system overall, which387

is “on”, if the queue limit is set (either per stream388

or for the total number of jobs in the queue) and389

queue buffer is not used, otherwise the capacity is390

unlimited;391

– E - queueing discipline is provided in two options:392

FIFO or Priority.393

Some of the parameters are set as requirements and394

restrictions applied to a specific supercomputer and its395

policy, e.g., the total number of computing nodes that396

are available for computing jobs, the limit of the num-397

ber of jobs in the queue per user/group, etc.398

3.3.1 Simulator description399

Implementation of the simulator (Queueing System Sim-400

ulator) [9] was done by using Python1, and the following401

key classes and generators were designed (to emulate402

internal supercomputer processes):403

– Job - contains parameters to describe job’s process-404

ing lifecycle, such as arrival timestamp, start ex-405

ecution timestamp, completion timestamp that is406

based on walltime / execution time along with the407

previous parameter, number of required nodes for408

its execution, stream (i.e., source name), label (i.e.,409

project name), priority and priority group name;410

– Stream - generates jobs with the predefined param-411

eters as an input for the simulator;412

– Queue Manager - emulates buffer ahead of the queue,413

the queue itself, and manages jobs while waiting for414

their execution, it lets to define the queue discipline415

such as FIFO and Priority, and set the limits per416

input job stream;417

– Schedule Manager - emulates a backfill mode - gets418

information about job sizes, assigns corresponding419

nodes for execution, gives a schedule when each job420

starts to be executed;421

– QSS - the core class that manages and tracks job’s422

processing lifecycle.423

1 High-level programming language Python, https://docs.
python.org/2.7/ [accessed on 2019-04-15]

6 Alexey Poyda, Mikhail Titov et al.

Fig. 3: Job state transitions at the simulator

3.3.2 State model424

Job lifecycle (in terms of the simulator, Figure 3) in-425

cludes the following states: Generated - Holding (i.e.,426

Titan notation: blocked) [buffer] - Pending (i.e., Titan427

notation: eligible-to-run) [queue] - Starting - Executing428

- Finished. Some of the states might be skipped if cer-429

tain components are turned off (e.g., if the queue buffer430

is not used then there is no state “holding”) or if there431

is some initial restriction (e.g., state “starting” is ne-432

glected, since the assumption that job execution starts433

right after it leaves the queue).434

3.4 Testing and validation435

3.4.1 Model validation using utilization estimation436

The validation of the designed quantitative model was437

conducted based on a simplified model for which uti-438

lization is computed using theoretical calculations. The439

following conditions have been applied:440

– Starting rate of jobs is defined as a random variable441

with distribution denoted as SRD;442

– Execution time of jobs is defined as a random vari-443

able with distribution denoted as ETD;444

– Number of nodes used (requested) by examined jobs445

is defined as a random variable with distribution446

denoted as NND.447

With this model it is possible to estimate the ex-448

pected utilization achieved in a given long period of449

time. The expected utilization U(t) depends on par-450

ticular values of the random values in it, therefore it is451

mutable. But for big numbers of the time t it is possible452

to take advantage of the law of large numbers (LLN).453

In this case, it can be argued that the value of U(t) will454

tend to the same value, regardless of particular values455

of the random variables within it.456

The theoretically calculated utilization for large val-
ues of t can be estimated by the following equation:

U(t) ≈ t× E(SRD)× E(ETD)× E(NND) (2)

where E(x) is the expected value (mathematical ex-457

pectation) of a random variable. The next step was to458

compare the outcome of Equation 1 (model) and Equa-459

tion 2 (theoretical estimation). Thereby, the expected460

value was calculated approximately, while going from461

the distribution function of a random variable to the462

utilization derivation.463

Parameters of the experiment:464

– Starting rate is a random variable with the Poisson465

distribution, the event rate (i.e., rate parameter and466

considered as an expected value) λ = 100;467

– Execution time is a random variable with the Nor-468

mal distribution, mean of the distribution µ = 4;469

– Number of nodes used by a single job is a random470

variable with the Poisson distribution, λ = 8;471

– Examined time interval is half a year ≈ 4320 hours.472

Results of the experiment: the utilization calculated473

using Equation 1 is equal to 13, 822, 864, while the uti-474

lization calculated using Equation 2 (theoretical, based475

on expected values of SRD, ETD, NND only) is equal476

to 13, 824, 000. Thus, the results are very close, and the477

little difference is due to approximations related to con-478

ducted computations.479

3.4.2 Model validation based on mathematical480

calculations and synthetic data from the simulator481

The further analysis of the quantitative model and the482

simulator is a simplified validation process that demon-483

strates equal results of both with the same input data.484

The following common parameters are chosen:485

– the total number of nodes is equal to 1;486

– expected value (µ) and variance (σ2) for random487

parameters of job’s waiting and execution times re-488

spectively are equal to 1;489

– the total processing time is equal to 5000 time units490

(hours).491

Simulation process follows additional specific pa-492

rameters:493

– job waiting time is defined according to the Poisson494

distribution;495

– job execution time is defined according to the Nor-496

mal distribution;497

– job launching scheme: one stream and there is al-498

ways one job in the queue;499

– the total number of simulation runs is equal to 100.500

Figure 4 shows the plot with two lines that represent501

the probability that a given utilization will be achieved502

in a given time interval (that is defined by the total pro-503

cessing time): the blue line corresponds to the results504

obtained using the simulator, while the red line corre-505

sponds to calculations with the quantitative model.506

Modeling Allocation Utilization Strategies on Supercomputers 7

Fig. 4: Probability (axis Y) that utilization will reach
the corresponding utilization value (axis X) during the
time of 5000 hours

4 Experiments507

4.1 Background of the study508

4.1.1 The Titan supercomputer509

One of the supercomputers that we consider as a use510

case for modeling allocation utilization is Titan that is511

located at the Oak Ridge Leadership Computing Fa-512

cility (OLCF) in the Oak Ridge National Laboratory513

(USA). Titan2 is a hybrid-architecture Cray XK7 sys-514

tem that contains both CPUs (16-core AMD Opteron)515

and GPUs (NVIDIA Kepler). It features 18,688 com-516

pute nodes, a total system memory of 710 TB, and517

Cray’s high-performance Gemini network. Titan’s the-518

oretical peak performance exceeding 27 petaFLOPS.519

The general overview of jobs processing at the Ti-520

tan supercomputer is presented by the following plots521

(Figures 5, 6) that demonstrate metrics such as waiting522

and execution times, as well as requested and eventu-523

ally used nodes per job (Figure 7) during the defined524

period of time.525

Quantitative characteristics of the presented plots526

are the following:527

– waiting time (hours) - mean=6.21, std=29.77;528

– execution time (hours) - mean=0.61, std=1.51;529

– number of nodes per job - mean=135.07, std=712.31.530

These numbers give a general overview of jobs key char-531

acteristics while processing at the Titan supercomputer,532

and which are compared with the simulation results533

(outcome of the simulator).534

2 The Titan supercomputer, https://www.olcf.ornl.gov/
olcf-resources/compute-systems/titan/ [accessed on 2019-
04-15]

Fig. 5: Waiting times for jobs in the queue at the Titan
supercomputer (562,079 computing jobs from May 2017
to April 2018)

Fig. 6: Execution times for jobs processing at the Titan
supercomputer (562,079 computing jobs from May 2017
to April 2018)

Fig. 7: Number of nodes per job at the Titan super-
computer (562,079 computing jobs from May 2017 to
April 2018)

4.1.2 Production and Distributed Analysis system535

PanDA536

The PanDA (Production and Distributed Analysis) sys-537

tem is a workload management system (WMS) for job538

scheduling on the distributed computational infrastruc-539

ture [10], it federates hundreds of heterogeneous com-540

puting resources (including Grid, supercomputers, and541

public and private computing clouds) into a unique job542

submission system. It was originally developed for US543

physicists and adopted as the ATLAS [11] wide WMS544

8 Alexey Poyda, Mikhail Titov et al.

in 2008 (in use for all computing applications of the545

ATLAS experiment at the Large Hadron Collider).546

Key features of PanDA are the following: i) pilot-547

based job execution system with late binding (i.e., there548

is a lightweight process scheduled on computing nodes549

that interacts with the core to schedule computing jobs);550

ii) central job queue; iii) fair-share or policy driven pri-551

orities for thousands of users and hundreds of resources;552

iv) automated brokerage based on CPU and storage re-553

sources.554

PanDA started to use Titan as one of its resources555

several years ago under the project of integration with it556

by enhancing with tools and methods relevant to work557

on HPC [12]. Thus, the pilot runs on Titan’s data trans-558

fer nodes (DTNs) and submits corresponding payloads559

to the worker nodes. It uses the local job scheduling560

and management system (Moab) via the SAGA (Simple561

API for Grid Applications) interface [13] for monitor-562

ing and management of PanDA jobs running on Titan’s563

worker nodes.564

In 2017, under the ALCC3 program it was allo-565

cated computational resources (computing hours) at566

the OLCF supercomputer Titan for ATLAS payload567

via PanDA.568

4.2 Simulator with Titan log data569

The following parameters correspond to the Titan su-570

percomputer: 1) number of nodes is 18,688; 2) the limit571

of jobs in the queue per stream is 4; 3) the queue buffer572

is on - that corresponds to no dropped jobs.573

Obtained Titan log data (for the period from May574

2017 to April 2018) were used in simulator to test it.575

Certain job parameters were used for deterministic mod-576

els for arrival and service processes in the simulator,577

thus Titan log data provided the following jobs char-578

acteristics: arrival timestamp (timestamp of queueing),579

number of requested nodes per job, real execution time.580

Also, there are restrictions and requirements applied to581

the queue (according to the Titan Scheduling Policy4):582

i) priority discipline in the queue - job’s age in the queue583

increases its priority accordingly; ii) there are 5 groups584

of jobs (in Titan notation: bins) according to job size585

(requested wall time and the number of nodes), and586

several of that groups have initial priority; iii) every587

stream (in Titan notation: user) has the limit of 4 jobs588

3 ALCC: the ASCR (Advanced Scientific Computing Re-
search) Leadership Computing Challenge, https://science.
energy.gov/ascr/facilities/accessing-ascr-facilities/
alcc/ [accessed on 2019-04-15]

4 Titan Scheduling Policy, https://www.olcf.ornl.gov/
for-users/system-user-guides/titan/titan-user-guide/
#titan-scheduling-policy [accessed on 2019-04-15]

Fig. 8: Job waiting times based on Titan log data and
Simulator log data with initial parameters from Ti-
tan log data (waiting time, hours - Titan: mean=6.21,
std=29.77; Simulator: mean=30.51, std=97.34)

Fig. 9: The load of simulated service nodes (18,688
nodes)

in the queue, if the limit is reached then jobs stay in the589

queue buffer. Figure 8 shows jobs waiting times taken590

from Titan logs and from Simulator logs. This shows591

that the simulator is not able to reconstruct the ex-592

act workflow of the supercomputer, but gives a certain593

estimations about jobs processing.594

Figure 9 shows the load of the simulated nodes (i.e.,595

the number of busy nodes at every simulated time unit,596

seconds) during the simulation process of jobs described597

earlier. The average utilization rate of the set of service598

nodes is 88.2 %.599

Modeling Allocation Utilization Strategies on Supercomputers 9

4.3 Analysis of Titan log data600

Conducted experiments are based on obtained the Ti-601

tan supercomputer log data that were used for the quan-602

titative model. The following information was extracted603

from the log: i) job arrival timestamp (time when the604

job was queued); ii) execution start timestamp (i.e.,605

startTime); iii) completion timestamp (i.e., endTime);606

iv) the number of requested nodes (1 node = 16 cores607

in Titan); v) requested walltime.608

As the first approach in analysis there were no sepa-609

ration of jobs from different projects, jobs were grouped610

only based on their sizes. Further analysis was applied611

on jobs from just one project to extend the potential612

applicability of our model.613

4.3.1 Analysis using log data of all projects614

The following analysis actions are applied:615

– all jobs are divided into categories according to the616

number of required nodes and the volume of wall-617

time requested (every category corresponds to a par-618

ticular Titan’s bin, where bin is a group of jobs that619

are treated equally);620

– for each category the following values are calculated:621

the expected value and variance of random variables622

describing waiting time in the queue and the utiliza-623

tion achieved by a single job;624

– obtained values were used as input data in equation625

for the quantitative model to calculate the proba-626

bility that jobs of a given category will be able to627

utilize provided allocation in 3 months;628

– job launching scheme: one stream and there is al-629

ways one job in the queue.630

The outcome of the performed analysis is presented631

by the set of 5 plots (one per Titan’s bin) in Figure 10632

(outperformed groups are highlighted at the legend).633

Log data was collected for the period from May 2017634

to April 2018.635

4.3.2 Analysis using log data of one project (HEP110)636

Project HEP110 is associated with ALCC program, and637

computing jobs running under this project are from638

PanDA for the ATLAS experiment at LHC, CERN (ac-639

tual ATLAS data wasn’t in use for the current analy-640

sis, neither any data from PanDA). The outcome of the641

performed analysis for the project HEP110 is presented642

by the set of 2 plots (using jobs “execution time” and643

“walltime”/“requested processing time”) in Figure 11.644

(a) Bin-1 | nodes: [11,250:18,688]; walltime, h: [0:24]

(b) Bin-2 | nodes: [3,750:11,249]; walltime, h: [0:24]

(c) Bin-3 | nodes: [313:3,749]; walltime, h: [0:12]

(d) Bin-4 | nodes: [126:312]; walltime, h: [0:4]

(e) Bin-5 | nodes: [1:125]; walltime, h: [0:2]

Fig. 10: Probability distributions of utilization of allo-
cation time during 3 months per Titan’s bins (based on
Titan log data for 12 months)

10 Alexey Poyda, Mikhail Titov et al.

(a) Based on provided real execution time

(b) Based on requested wall time

Fig. 11: Probability distributions of utilization of allo-
cation time during 3 months for HEP110 project at the
Titan supercomputer (based on Titan log data for 6
months)

5 Conclusion and discussion645

Developed tools provide possibility to adjust jobs pa-646

rameters to regulate and improve the probability of647

utilizing a given allocation for a given project. Fur-648

ther work for the proposed approach improvement in-649

cludes reinforcement of applied requirements (i.e., de-650

crease the number of applied assumptions for the devel-651

oped model and simulator). The model and simulator652

are preliminary and require further tuning, to under-653

stand the accuracy and sensitivity (to initial conditions,654

training duration, workload types). This early work will655

be extended to consider different kinds of workflows as656

well as different types of workloads of heterogeneous657

resources.658

Acknowledgements659

References660

1. P Murali and S Vadhiyar, Qespera: an adaptive framework661

for prediction of queue waiting times in supercomputer sys-662

tems, Concurrency and Computation: Practice and Experi-663

ence, 28, 2685–2710 (2016)664

2. D Nurmi, J Brevik, R Wolski, Job Scheduling Strategies665

for Parallel Processing (Lecture Notes in Computer Science,666

4942), 76–101. Springer, Berlin, Heidelberg (2008)667

3. L T Yang, X Ma, F Mueller, Cross-Platform Performance668

Prediction of Parallel Applications Using Partial Execution,669

SC05: Proceedings of the 2005 ACM/IEEE Conference on670

Supercomputing (2005)671

4. J Guo, A Nomura, R Barton, H Zhang, S Matsuoka, SCFA672

2018: Supercomputing Frontiers (Lecture Notes in Computer673

Science, 10776), 179–198. Springer, Cham (2018)674

5. J L Lérida, F Solsona, F Giné, M Hanzich, J R García, P675

Hernández, EuroPVM/MPI 2007: Recent Advances in Paral-676

lel Virtual Machine and Message Passing Interface (Lecture677

Notes in Computer Science, 4757), 195–203. Springer, Berlin,678

Heidelberg (2007)679

6. S Sotiriadis, N Bessis, N Antonopoulos, Towards Inter-cloud680

Schedulers: A Survey of Meta-scheduling Approaches, Inter-681

national Conference on P2P, Parallel, Grid, Cloud and Inter-682

net Computing, 59–66 (2011)683

7. R B Cooper, Introduction to Queueing Theory, 2nd Ed.684

Elsevier/North-Holland (1981)685

8. D G Kendall, Some Problems in the Theory of Queues, Jour-686

nal of the Royal Statistical Society. Series B (Methodologi-687

cal), 13 (2), 151-185 (1951)688

9. M Titov et al. Queueing System Simulator (QSS) [software],689

https://github.com/ATLAS-Titan/allocation-modeling690

[accessed on 2019-04-15]691

10. T Maeno et al, PanDA for ATLAS distributed computing692

in the next decade, Journal of Physics: Conference Series, 898,693

052002 (2017)694

11. G Aad et al [ATLAS Collaboration] The ATLAS Experi-695

ment at the CERN Large Hadron Collider, JINST, 3, S08003696

(2008)697

12. F Barreiro Megino et al, Integration of Titan supercom-698

puter at OLCF with ATLAS Production System, Journal of699

Physics: Conference Series, 898, 092002 (2017)700

13. T Goodale et al, SAGA: A Simple API for Grid Appli-701

cations. High-level application programming on the Grid,702

Computational Methods in Science and Technology, 21, 7–703

20 (2006)704

Modeling Allocation Utilization Strategies on Supercomputers 11

A Derivation of the quantitative model705

Given assumptions:706

1. Project Pr;707

2. Jobs J of project Pr;708

3. Jobs J require N nodes, where N is a random variable with709

expected value µN and variance σ2
N ;710

4. Jobs J require walltime E, where E is a random variable711

with expected value µE and variance σ2
E ;712

5. Execution times of jobs J equal to their walltime values;713

6. Jobs J come into the supercomputer queue sequentially:714

next job is allocated to the queue after the previous one715

has left the queue to computing nodes;716

7. Duration of waiting time in the queue for jobs J is described717

by a random variable Q with expected value µ and variance718

σ2.719

Values to find: P (U > U0) - the probability that utilization U720

during the time interval T0 will exceed the predefined value U0,721

where T0 is big.722

Solution. Using the Law of total probability we can write
the following equation:

P (U > U0) =
∞∑

n=1

P (U(n) > U0)P (n) (3)

where U(n) is a random variable for utilization achieved by n723

sequential jobs J ; P (n) is a probability that during the time724

T0 exactly n jobs J will be running. We assume that T0 is big,725

so values of P (n) for the first several n (e.g., for n from 1 to726

99) are equal to zero, thus the sum would start with n = 100.727

To calculate P (n) let’s consider a random variable T (n)
describing the time required to run n sequential jobs J . Taking
into account one of the assumptions (6) we can write:

T (n) =
n∑

i=1

Qi (4)

where Qi = Q is a random variable describing duration of
waiting time in the queue for the job Ji. And, using Central
limit theorem we can write for big values of n:
n∑

i=1

Qi ≈ N(nµ, nσ2) (5)

where N(µ, σ2) is a normal distribution with expected value µ728

and variance σ2; µ is an expected value of a random variable729

Q describing duration of waiting time in the queue for jobs J ;730

σ2 is a variance of a random variable Q describing duration of731

waiting time in the queue for jobs J .732

The probability P (n) can be rewritten as following:

P (n0) = P (n ≥ n0)− P (n ≥ n0 + 1) (6)

where P (n0) is a probability that during the time T0 precisely
n0 jobs J will be running; P (n ≥ n0) is a probability that
during the time T0 not less than n0 jobs J will be running.
We can mention that the event n ≥ n0 (during the time T0

not less than n0 jobs J will be running) is equal to the event
T (n0) ≤ T0 (the time required to run n0 jobs J is less than
or equal to the time T0). Considering that we have: P (n ≥
n0) = P (T (n0) ≤ T0) and P (n ≥ n0 + 1) = P (T (n0 + 1) ≤
T0). Thus, inserting these equations into Equation 6 and using
Equations 4 and 5 we can have the following:

P (n0) = P (N(n0µ, n0σ
2) ≤ T0) −

P (N((n0 + 1)µ, (n0 + 1)σ2) ≤ T0)
(7)

This equation can be updated by using the probability den-
sity of the normal distribution:

P (n0) =

∫ T0

−∞
f(x, n0µ, n0σ

2)dx −∫ T0

−∞
f(x, (n0 + 1)µ, (n0 + 1)σ2)dx

(8)

where f(x, µ, σ2) is a function of probability density of the733

normal distribution N(µ, σ2).734

To calculate value of P (U(n) > U0) in Equation 3 let’s
write a random variable U(n) as a sum of random variables Ui

describing utilization of the single job Ji: U(n0) =
∑n0

i=1 Ui.
Assuming that all random variables Ui have the same expected
values (let’s denote them as µU) and variances (let’s denote
them as σ2

U) and using as before the Central limit theorem we
can write for big values of n:

U(n0) =
n0∑
i=1

Ui ≈ N(n0µU , n0σ
2
U) (9)

Using the probability density of the normal distribution and
Equation 9 we can write P (U(n) > U0) in a way:

P (U(n) > U0) =

∫ ∞

U0

f(x, nµU , nσ2
U)dx (10)

To get the final equation we insert Equations 8 and 10 into
the Equation 3:

P (U > U0) =
∞∑

n=100

[∫ ∞

U0

f(x, nµU , nσ2
U)dx ×

(∫ T0

−∞
f(x, nµ, nσ2)dx −∫ T0

−∞
f(x, (n+ 1)µ, (n+ 1)σ2)dx

)] (11)

The outcome of the Equation 11 is the probability that the735

utilization of resources, which is achieved by a sequential set of736

processed jobs using capabilities of the supercomputer during737

the time interval T0, is greater than the predefined value U0. It738

implies that:739

– Utilization of every single job is described by a random740

variable with the expected value µU and the variance σ2
U ;741

– The time interval between launches of sequential jobs is742

described by a random variable with the expected value µ743

and the variance σ2.744

Generally, the distribution of a random variable that de-
scribes the size of the job in a way as the number of occupied
cores (denote this random variable as N) and the distribution
of a random variable that describes the time to complete for a
single job (denote this random variable as E) are more com-
monly known compare to the distribution of a random variable
that describes the utilization achieved by a single job (denote
this random variable as U). Since, the utilization of a single job
is a product of the amount of the used resources by the time
to complete this job, then, in case of mutual independence of
random variables N and E, the values µU and σ2

U can be found
by the following equations:

µU = µNµE (12)

where µN is the expected value of the random variable N ; µE

is the expected value of the random variable E.

σ2
U = σ2

Nσ2
E + µNσ2

E + µEσ2
N (13)

where σ2
N is the variance of the random variable N ; σ2

E is the745

variance of the random variable E.746

