
Noname manuscript No.
(will be inserted by the editor)

Production Workload Management on Leadership
Class Facilities

Do you have a subtitle?
If so, write it here

First Author · Second Author

Received: date / Accepted: date

Abstract Insert your abstract here. Include keywords, PACS and mathemat-
ical subject classification numbers as needed.

Keywords First keyword · Second keyword · More

1 Introduction

Traditionally, the ATLAS experiment at LHC has utilized distributed re-
sources as provided by the WLCG to support data distribution and enable the
simulation of events. For example, the ATLAS experiment uses a geograph-
ically distributed grid of approximately 200,000 cores continuously (250,000
cores at peak), (over 1,000 million core-hours per year) to process, simulate,
and analyze its data (today’s total data volume of ATLAS is more than 300
PB). After the early success in discovering a new particle consistent with the
long awaited Higgs boson, ATLAS is starting the precision measurements nec-
essary for further discoveries that will become possible by much higher LHC
collision energy and rates from Run2. The need for simulation and analysis
will overwhelm the expected capacity of WLCG computing facilities unless
the range and precision of physics studies will be curtailed.

Over the past few years, the ATLAS experiment has been investigating
the implications of using high-performance computers – such as those found

Grants or other notes about the article that should go on the front page should be placed
here. General acknowledgments should be placed at the end of the article.

F. Author
first address
Tel.: +123-45-678910
Fax: +123-45-678910
E-mail: fauthor@example.com

S. Author
second address

2 First Author, Second Author

at Oak Ridge leadership class facility (ORNL). This steady transition is a
consequence of application requirements (e.g., greater than expected data pro-
duction), technology trends and software complexity.

Our approach to the exascale involve the BigPanDA workload manage-
ment system which is responsible for coordination of tasks, orchestration of
resources and job submission and management. Historically, BigPanDA was
used to for workload management across multiple distributed resources on the
WLCG. We describe the changes to the BigPanDA software system needed to
enable BigPanDA to utilize Titan. We will then describe how architectural,
algorithmic and software changes have also been addressed by ATLAS com-
puting.

We quantify the impact of this sustained and steady uptake of supercom-
puters via BigPanDA: For the latest 18 month period for which data is avail-
able, Big Panda has enabled the utilization of ∼400 Million Titan core hours
(primarily via Backfill mechanisms 275M, but also through regular “front end”
submission as part of the ALCC project 125M). This non-trivial amount of
400 million Titan core hours has resulted in 920 million events being anal-
ysed. Approximately 3-5% of all of ATLAS compute resources now provided
by Titan; other DOE supercomputers provide non-trivial compute allocations.
In spite of these impressive numbers, there is a need to further improve the
uptake and utilization of supercomputing resources to improve the ATLAS
prospects for Run 3.

In spite of these impressive numbers, there is a need to further improve
the uptake and utilization of supercomputing resources to improve the ATLAS
prospects for Run 3. The aim of this paper to (i) . . . (ii) . . . (iiii) . . . (iv) We will
outline how we have steadily made the ATLAS project ready for the exascale
era . . .

2 PanDA Workload Management System: Software System
Overview

PanDA is a Workload Management System (WMS) [1] designed to support
the execution of workloads in grid-like distributed computing environment
via pilots [2]. Pilot-capable WMS enable high throughput of task execution
via multi-level scheduling while supporting interoperability across multiple
sites. This is particularly relevant for Large Hadron Collider (LHC) experi-
ments, where millions of tasks are executed across multiple sites of the World-
wide LHC Computing Grid (WLCG) every month, analyzing and producing
petabytes of data. The design of PanDA WMS started in 2005 to support
ATLAS.

2.1 Design

PanDA’s application model assumes tasks grouped into workloads. Tasks rep-
resent a set of homogeneous operations performed on datasets stored in a set

Production Workload Management on Leadership Class Facilities 3

of input files. Tasks are decomposed into jobs, where each job consists of the
task’s operations performed on a partition of the task’s data set. PanDA acts
as a unified interface to distributed computing resources, enabling users of the
ATLAS project to submit datasets for processing. Data can be processed by
a single job or by one or more tasks created for each dataset, where each task
is partitioned into one or more jobs. Jobs are distributed across the available
resources for concurrent execution. So-called “production workflows” are sets
of transformations of collected and simulated data into the formats required
for user analysis. These workflows are rendered into a set of tasks and therefore
executed as a set of jobs on diverse computing infrastructures.

PanDA’s security model is based on separation among authentication, au-
thorization, and accounting for both single users and groups of users. Both
authentication and authorization are based on digital certificates and on the
virtual organization abstraction [3]. Currently, PanDA’s execution model is
based on four main abstractions: task, job, global queue, and pilot. Both tasks
and jobs are assumed to have attributes and states and to be queued into
a global queue for execution. Prioritization and binding of jobs are assumed
to depend on the attributes of each task and job. PanDA has a global queue
where all jobs are registered and one resource queue for each target comput-
ing resource. PanDA assigns specific sets of jobs from the global queue to the
resource queues, depending on the jobs requirements, and each resource ca-
pability and availability. When pilots become available on the target compute
resource, PanDA sends jobs on each pilot from the resource queue associated
with that target compute source.

In PanDA’s data model, each datum refers to a recorded or simulated
measurement of a physical process. Data are stored in files that are grouped
into datasets, with a many-to-many relationship between files and datasets. As
with jobs, data have both attributes and states, and some of the attributes are
shared among events and jobs. Raw, reconstruction, and simulation data are
all assumed to be distributed across multiple storage facilities and managed
by the ATLAS Distributed Data Management (DDM) [4]. When necessary,
input files required by each job are assumed to be replicated over the network,
both for input and output data. PanDA’s design supports provenance and
traceability for both jobs and data. Attributes enable provenance by linking
jobs and data items, providing information like ownership or project affiliation.
States enable traceability by providing information about the past and present
stages of the execution for each job and data file.

2.2 Implementation and Execution

The implementation of PanDA WMS consists of several interconnected sub-
systems, most of them built from off-the-shelf and Open Source components.
Subsystems communicate via messaging using HTTP and dedicated APIs, and
each subsystem is implemented by one or more modules. Databases are used

4 First Author, Second Author

to store eventful entities like tasks, jobs, and input/output data and to store
information about sites and resources.

Currently, PanDA’s architecture has five main subsystems: JEDI/PanDA
Server [5,6], PanDA Pilot [7], Schedconfig [8], AutoPyFactory [9] and PanDA
Monitoring [10]. JEDI and PanDA Server process tasks into jobs and broker
their distributed execution. PanDA Pilot is a pilot system that executes jobs
on computing infrastructures, managing the stage-in and stage-out of their
data. Schedconfig is an information system implemented within PanDA to
store PanDA queue (resource) descriptions. Schedconfig synchronizes with the
ATLAS Grid Information system (AGIS) [11] to obtain information about
distributed resources. AutoPyFactory is the system used to submit pilots to
grid sites. PanDA Monitoring is a web application to monitor the execution of
workloads in a distributed computing environment. Other subsystems are used
by some of ATLAS workflows (e.g., ATLAS Event Service [12] and ATLAS
Production System [13]), but their discussion is omitted here because they are
irrelevant to understanding how PanDA has been ported to supercomputers.
For a full list of subsystems, see Ref. [14].

Figure 1 shows a diagrammatic representation of PanDA’s main subsys-
tems, highlighting the execution process of tasks while omitting monitoring
details to improve readability. During the first data collection period at the
LHC (LHC Run 1), PanDA required users to perform a static conversion be-
tween tasks and jobs; tasks were described as a set of jobs and then submitted
to the PanDA Server. This introduced inefficiency both with usability and
resource utilization. Ideally, users should conceive analyses in terms of one
or more potentially related tasks, while the workload manager (i.e., PanDA)
should partition tasks into jobs, depending on the amount of data (i.e., number
of input files and events) that need to be processed and the task requirements.

PanDA registers three types of workloads for execution: a set of tasks
submitted by the ATLAS Production system (Fig. 1:1); a single user task
when a whole dataset is submitted for processing (Fig. 1:2); and a single job
submitted by the user, usually with a single input file (Fig. 1:3).

The Job Generator component derives a set of jobs for each registered
task based on the amount of input data (number of files) and the amount of
processed data per job (number of events per job from task parameters). For
each task, not all jobs are generated in one interaction. In this way, the job
buffer is kept to a manageable size, enabling tuning of task parameters based
on initial job results and, if needed, task prioritization (Fig. 1:4).

Once derived, jobs are collected into the Job Buffer, waiting to be bound
to a specific resource for execution (Fig. 1:5). The Brokerage component pulls
jobs from the Job Buffer (Fig. 1:6), binding each job to a computing resource
based on job requirements, resource capability (Fig. 1:7 and (Fig. 1:8), and
data availability (Fig. 1:9). Note that the Resource Configuration component
is also called Schedconfig.

Once bound, jobs are passed to the Job Scheduler to be scheduled on the
assigned resource and executed (Fig. 1:10). Before scheduling each job, the

Production Workload Management on Leadership Class Facilities 5

Grid SiteGrid Site

PanDA/JEDI
DB

ATLAS Production
system

User tasks
(multiple input)

User jobs
(single input)

PanDA/JEDI
REST API REST API

Task Buffer

Job
Generator

Job Buffer

Brokerage

Job
Scheduler

REST API
Job Dispatcher

Resource
configuration

ATLAS GRID
Information system

REST API

Data Service

ATLAS DDM

Grid Site

Storage
Element

Compute
Element
LRMS

Working nodeWorking nodeWN

PanDA Pilot

AutoPyFactory

CondorG

1 2 3

4

5

6

7

8

9
10

11
12

14
13

15

16

Fig. 1 PanDA WMS architecture. Numbers indicate the JEDI-based execution process
described in section 2.2. Several subsystems, components, and architectural and communi-
cation details are abstracted to improve clarity.

Job Scheduler checks whether input data are available and, if needed, requests
a transfer to the storage associated with the target resource (Fig. 1:11).

Meanwhile, AutoPyFactory defines PanDA Pilots on the basis of the num-
ber of jobs bound and ready to execute, and it submits these pilots to a
Condor-G agent (Fig. 1:12). Condor-G schedules these pilots on the required
sites (Fig. 1:13). Once active, pilots interact with the Job Dispatcher to pull
jobs for execution (Fig. 1:14). Depending on task and job parameters, failed
jobs can be rescheduled with a new Job ID (Fig. 1:15).

Once all the jobs of a task have been executed and, depending on the fail-
ure policy, all or most of the output data have been collected, tasks are marked
as done. Thus, no more jobs will be generated for that task, and ATLAS Pro-
duction System or single users will be informed about the completion of their
tasks (Fig. 1:16). Tasks can also be marked as failed, depending on whether a
user-defined threshold for number of failures has been exceeded.

2.3 Job State Definitions in PanDA

The life cycle of the job in the PanDA system is split into a series of sequentially
changing states. Each state is literally coupled with the PanDA job status used
by the different algorithms and monitoring. The status reflects the current step
of the job processing since the time that the job was submitted to the system,
transferred to the particular resource and finally executed. Figure 2 illustrates
the life cycle of jobs submitted to PaNDA WMS.

Jobs are injected into the system by JEDI in ATLAS or by the PanDA
client in the general case as a “job parameters” object with a “Pending” status.

6 First Author, Second Author

Fig. 2 This is a job state transitions model diagram for PanDA.

Initially, this object is represented by a string containing unsorted parameters.
Next, the string is processed and the parameters of the job are sorted into ded-
icated database fields, and the status is changed to “Defined.” After that, the
job is processed through the brokerage algorithm and assigned to a particular
resource (PanDA queue), and the status is changed to “Assigned”. Then, the
status is changed to “Waiting” while the PanDA server checks the availability
of the input data and the required software at the resource before changing
the job’s status to “Activated”. An activated job is ready to be dispatched to
the next corresponding pilot. When the job is dispatched and taken by the
pilot, the job’s status is changed to “Sent”. At this time, the handling of the
job processing has not been delegated to the pilot, and thus, the next few job
states correspond to the steps of the job processing on the assigned resource.
When the job status changes to “Starting”, the pilot is starting the job on a
worker node or local batch system, after which the status becomes “Running”
when the job begins running on a worker node. At this time, the progression
of states is once again handled by the server instead of by the pilot. When
the job finishes executing and output and log files are transferred, then the
PanDA server is responsible to register the files in the file catalog. At the same
time, the pilot returns the final status of the job to the server by communicat-
ing that the job either succeeded or failed. During this process, the job has a
“Holding” status. The PanDA server check the output files regularly by using
cron, and it assigns the final “Finished” or “Failed” status to the job. There
are also some other statuses, the two most important of which are “Cancelled”
for manually killed jobs and “Closed” for jobs which were terminated by the
system before completion so they could be reassigned to other sites.

Production Workload Management on Leadership Class Facilities 7

2.4 Brokerage Characterization

Resources (queues) presented in the database together with the wide set of
static parameters such as walltime, CPU cores, memory, disk space etc. Same
parameters can be provided within job definition to specify strict demands to
the resource where the job can be executed. Both resources (queues) and jobs
with parameters stored in the PanDA database.

Also PanDA server maintains in the DB the dynamic information for
queues about the number of defined, activated and running jobs and also
the pilots statistics - number of requests of different types like “get job” or
“update job status”.

PanDA Broker - key component of the BigPanDA workflow automation
- is an intelligent module designed to prioritize and assign PanDA jobs (job
passed the brokerage transitioning from “defined” to the “assigned” state) to
available computing resources on the basis of job type, software availability,
input data and its locality, real-time job statistics, available CPU and stor-
age resources and etc. Users are able to specify explicitly the resource while
job submission or they can rely on automated brokerage engine. Full power
of the PanDA brokerage integrated with another distributed computing and
data management tools (internal and external with respect to the PanDA) is
actively used in ATLAS experiment. In this paper we will present and will
benchmark the basic brokerage functionality.

The basic brokerage algorithm works the following way. It takes the lists
of submitted jobs and available queues. Then each job is checked against each
queue by set of parameters if the queue meets the jobs static demands like
number of CPU core or the walltime. All queues passed the round are pro-
ceeding to the short list where for each queue Broker calculates the weight on
the basis of current job statistics for given queue according to the formula (1).
Job finally assigning to the queue with bigger weight. Weight calculation algo-
rithm fo ATLAS is more complicated and taking into account clouds default
weights, network bandwidth, sharing policies etc.

The basic brokerage algorithm works the following way. Having the list of
the submitted jobs, each job is checked against available resources as shown
in SELECT CAND (Alg.). Available resources presented as the set of defined
PanDA queues: res = queue1, . . . , queuen. For each queue in the set (3) we
checking if it’s satisfying the parameters of job (4). Successfully passed queues
are concatenating to the list of candidate-queues (5).

SATISFY JOB function (Alg.) is used to check if the queue attributes
can scope job parameters. Set of the job parameters defined as par1, . . . ,
parm represents the software/hardware demands to the resource like CPU core
count, walltime, SW releases etc. Each of these parameters can be mapped to
the set of queue attributes defined as atr1, . . . , atrn, where n ≥ m. So for each
job parameter (2) we check if it can be satisfied with the corresponding queue
attribute (3). Finally queue passes the test if it copes all the jobs parameters
(5).

8 First Author, Second Author

The procedure SATISFY REQ (Alg.) is responsible to testing if the value
of the job parameter is in the set of allowed values val1, . . . , valk of the queue
attribute (2).

Listing 1 Caption

Require : par ; a t r = (va l 1 , . . . , v a l k)
Ensure : True or Fa lse
1. procedure SATISFY REQ(par , a t r)
2. i f par . va lue in a t r then :
3. re turn True
4. re turn False

This f i l e corresponds to the \ l s t i n p u t l i s t i n g example added by Matteo .
Require : par ; a t r = (va l 1 , . . . , va l k)

Require: par; atr = (val1, . . . , valk)
Ensure: True or False
1: procedure SATISFY REQ(par, atr)
2: if par.value in atr then:
3: return True
4: return False

Require: job = {par1, . . . , parm}; queue = {atr1, . . . , atrn}
Ensure: True or False
1: procedure SATISFY JOB(queue, job)
2: for all par in job do:
3: if SATISFY REQ(par, atr)= False then
4: return False
5: return True

Require: job; res = (queue1, . . . , queuen)
Ensure: cand
1: procedure SELECT CAND(job, res)
2: cand ← NONE
3: for all queue in res do:
4: if SATISFY JOB(queue, job) = True then
5: cand ∪ queue
6: return True

As it was shown SELECT CAND procedure provides generates the short
list of the candidates queues. SELECT QUEUE (Alg.) taking the short list of
the candidate-queues as the set queue1, . . . , queuen. For each queue (4) Broker
calculates the weight (5) on the basis of current job statistics for given queue
according to the formula (1). Job finally assigning to the queue with bigger
weight (6-7). Weight calculation algorithm fo ATLAS is more complicated
and taking into account clouds default weights, network bandwidth, sharing
policies etc

Production Workload Management on Leadership Class Facilities 9

Require: cand = (queue1, . . . , queuen)
Ensure: res queue
1: procedure SELECT QUEUE(cand)
2: res queue ←queue1
3: max weight ← 0
4: for all queue in cand do:
5: queue.weight ← WEIGHT CALC(queue)
6: if queue.weight > max weight then
7: res queue← queue
8: return res queue

manyAssigned = max(1,min(2,
assigned

activated
)),

weight =
running + 1

(activated + assigned + sharing + defined + 10) ∗manyAssigned
(1)

Response time of the brokerage in general can be estimated as (2). Basically
it’s time the job transits from “defined” to assigned state.

T =

Q∑
i=1

J∑
j=1

Tij (2)

In formula (2) Q is the number of available queues, J is the number of
concurrently submitted jobs and Tij is the time to process job j for queue i.
The processing time includes the check if queue meet demands of the job. Then
for successfully selected queues the weight is calculating and job assigning for
the queue with bigger weight. Hence the time T can be presented as sum (3).

T = t1 + t2 + t33 + C (3)

In formula 3, t1 is the time to make checks if queue meet demands of the
job, t2 is the time for weight calculation and finally t3 is the time spent to
assign job to the resulted queue.

Under the assumption that all jobs can run on the same average number
of queues N then we can transform equation as (4).

T = J ∗

Q−N∑
i=1

t1j +

N∑
j=1

(tmax + t2j) + t3

 + C, t1 < tmax (4)

Here N is the average number of queues which met all demands of each
job. As shown in the SATISFY JOB algorithm the function returns FALSE
as soon as the first discrepancy in the job parameter and queue attributes is
met. Hence for for all other Q-N queues the time to make checks t1 will be
less than tmax.

10 First Author, Second Author

Fig. 3 Response time dependency on number of concurrently submitted jobs

Here N is the average number of queues which met all demands of each
job. As shown in the SATISFY JOB algorithm the function returns False as
soon as the first discrepancy in the job parameter and queue attributes is met.
Hence for for all other Q-N queues the time to make checks t1 will be less than
tmax.

Again taking assumption that the times for different queues are equal we
can streamline the equation like (5)

T =J ∗ ((Q−N) ∗ t1 + N ∗ (tmax + t2) + t3) + C

=J ∗ (Q ∗ t1 + N ∗ (tmax− t1 + t2) + t3) + C,where (tmax− t1) > 0
(5)

In order to estimate dependency of brokerage response time from the num-
ber of concurrently submitted jobs we deployed a dedicated test instance of
PanDA server at ORNL. PanDA was configured to use ten testing queues.
Two of the queus was configured to provide 8 CPU cores and eight remain-
ing queues provide 2 cores. All other parameters are configured equal for all
queues.

Job submission client was configured to generate and send to the server
the lists of equal jobs where each job demands 4 CPU cores. PanDA testing-
instance was adjusted to simulate the brokerage two queues will be selected as
meeting the criteria of cores number. Then due to simulation of job statistics
on that selected queues the jobs will be assigned to the queue with bigger
weight. Brokerage time dependency on number of concurrently submitted jobs
is shown in figure.

For this experiment we measured the response time for a jobs to transit
from the “Defined” status to the “Activated”. As in the test environment the
JEDI system wasn’t used and injection of the jobs was done using the simple

Production Workload Management on Leadership Class Facilities 11

python client interaction with PanDA REST API the first stated of the job
indicated in PanDA is “Defined” and corresponds to the creation time. Also
during this measurements we used no-input jobs. Hence the status of the jobs
progressed to the “Activated” immediately after “Defined”. In general the time
to check input files can be considered as constant for the constant number of
input files. So omitting the “Assigned” state in this testing environment is
acceptable.

3 Deploying PanDA Workload Management System on Titan

Consistent with its leadership-computing mission of enabling applications of
size and complexity that cannot be readily performed using smaller facilities,
the OLCF prioritizes the scheduling of large capability jobs (or “leadership-
class” jobs). OLCF uses batch queue policy on the Titan systems to support
the delivery of large capability-class jobs [15]. OLCF deploys Adaptive Com-
puting’s MOAB resource manager. MOAB resource manager supports features
that allow it to directly integrate with Cray’s Application Level Placement
Scheduler (ALPS), a lower-level resource manager unique to Cray HPC clus-
ters [16]. MOAB will schedule jobs in the queue in priority order, and priority
jobs will be executed given the availability of required resources. As a DOE
Leadership Computing Facility, the OLCF has a mandate that a large portion
of Titan’s usage come from large, leadership-class (aka capability) jobs. To
ensure the OLCF user programs achieve this mission, OLCF policies strongly
encourage through queue policy users to run jobs on Titan that are as large
as their code will warrant. To that end, the OLCF implements queue policies
that enable large jobs to be scheduled and run in a timely fashion [15]. As a
result, leadership-class jobs advance to the high-priority jobs in the queue. If
a priority job does not fit, i.e., required resources are not available, a resource
reservation will be made for it in the future when availability can be assured.
Those nodes are exclusively reserved for that job. When the job finishes, the
reservation is destroyed, and those nodes are available for the next job. Reser-
vations are simply the mechanism by which a job receives exclusive access to
the resources necessary to run the job [16]. However, if policy desires a priority
reservation to be made for more than one job, one can specify the creation of
reservations for the top N priority jobs in the queue by increasing the keyword
RESERVATIONDEPTH to be greater than one. The priority reservation(s)
will be re-evaluated (and destroyed/re-created) every scheduling iteration in
order to take advantage of updated information.

Beyond the creation of reservations for the top priority jobs, Moab now
switches to backfill mode and continues down the job queue until it finds a job
that will be able to start and won’t disturb the priority reservations made for
the highest priority queued jobs, specified by the value of RESERVATION-
DEPTH. As time continues and the scheduling algorithm continues to iterate,
Moab continues to evaluate the queue for the highest priority jobs. If the high-
est priority job found will not fit within the available resources, its reservation

12 First Author, Second Author

is updated, but left where it is. Switching to “backfill mode”, Moab searches for
a job in the queue that will be able to start and complete without disturbing
the priority reservations. If such jobs are started, they will run within back-
fill. If no such backfill jobs are present in the queue, then available compute
resources will remain unutilized.

In describing how the PanDA Workload management system is deployed
on Titan, we necessarily describe it integration with the Moab Workload man-
agement system. In so doing, two rather different approaches to interfacing the
PanDA managed work on Titan are availed: “Batch Queue Mode” and “Back-
fill Mode”. In “Batch Queue Mode”, PanDA interacts with Titan’s Moab
scheduler in a static, non-adaptive manner to executing the work to be per-
formed. In “Backfill Mode”, PanDA dynamically shapes the size of the work
deployed on Titan to capture resources that may otherwise go unused be-
cause the size of the backfill opportunity is otherwise too small or to brief in
duration.

In doing so, we demonstrate how Titan is more efficiently utilized by the
injection and mixing of small and short-lived tasks in backfill with regular
payloads. Cycles otherwise unusable (or very difficult to use) are used for
science, thus increasing the overall utilization on Titan without loss of overall
quality-of-service. The conventional mix of jobs at OLCF cannot be effectively
backfilled because of size, duration, and scheduling policies. Our approach is
extensible to any HPC with “capability scheduling” policies.

3.1 PanDA integration with Titan

As we described in previously PanDA is a pilot based WMS. On the Grid pilot
jobs are submitted to batch queues on compute sites and wait for the resource
to become available. When a pilot job starts on a worker node it contacts
the PanDA server to retrieve an actual payload and then, after necessary
preparations, executes the payload as a sub process. The PanDA pilot is also
responsible for a job’s data management on a worker node and can perform
data stage-in and stage-out operations.

Taking advantage of its modular and extensible design, the PanDA pilot
code and logic has been enhanced with tools and methods relevant for work
on HPCs. The pilot runs on Titan’s data transfer nodes (DTNs) which allows
it to communicate with the PanDA server, since DTNs have good (10 GB/s)
connectivity to the Internet. The DTNs and the worker nodes on Titan use a
shared file system which makes it possible for the pilot to stage-in input files
that are required by the payload and stage-out produced output files at the end
of the job. In other words, the pilot acts as a site edge service for Titan. Pilots
are launched by a daemon-like script which runs in user space. The ATLAS
Tier 1 computing center at Brookhaven National Laboratory is currently used
for data transfer to and from Titan, but in principle that can be any ATLAS
site. Figure 4 shows schematic view of PanDA interface with Titan. The pilot
submits ATLAS payloads to the worker nodes using the local batch system

Production Workload Management on Leadership Class Facilities 13

(Moab) via the SAGA (Simple API for Grid Applications) interface [17]. It
also uses SAGA for monitoring and management of PanDA jobs running on
Titan’s worker nodes. One of the features of the described system is the ability
to collect and use information about Titan status, e.g., free worker nodes in real
time. The pilot can query the Moab scheduler about currently unused nodes on
Titan, using the “showbf” command, and check if the free resource availability
time and size are suitable for PanDA jobs, and conforms with Titan’s batch
queue policies. The pilot transmits this information to the PanDA server, and
in response gets a list of jobs intended for submission on Titan. Then based
on the job information, it transfers the necessary input data from the ATLAS
Grid, and once all the necessary data is transferred the pilot submits jobs to
Titan using an MPI wrapper.

The MPI wrappers are Python scripts that are typically workload specific
since they are responsible for setup of the workload environment, organization
of per-rank worker directories, rank-specific data management, optional input
parameters modification, and cleanup on exit. When activated on worker nodes
each copy of the wrapper script after completing the necessary preparations
will start the actual payload as a subprocess and will wait until its completion.
This approach allows for flexible execution of a wide spectrum of Grid-centric
workloads on parallel computational platforms such as Titan.

Since ATLAS detector simulations are executed on Titan as discrete jobs
submitted via MPI wrapper, parallel performance can scale nearly linearly,
potentially limited only by shared file system performance (discussed below).
Currently up to 20 pilots are deployed at a time, distributed evenly over 4
DTNs. Each pilot controls from 15 to 350 ATLAS simulation ranks per sub-
mission. This configuration is able to utilize up to 112,000 cores on Titan. We
expect that these numbers will grow in the near future.

Figure 5 shows Titan core hours consumed per month by the ATLAS
Geant4 simulations from January 2017 to September 2018. Please note that
during this time our Director’s Discretionary project ran 24/7 in pure backfill
mode with lowest priority and no defined allocation. In 2017-2018 average
resource utilization exceeded 10M core-hours per month and for February and
March of 2018 reached 22M core-hours per month. We expect that average
monthly utilization will grow due to further optimization of the workload
management system.

4 Performance Characterization on Titan

In 2013, the PanDA team began working to incorporate the Titan supercom-
puter at Oak Ridge National Laboratory as a grid site for the Worldwide LHC
Compute Grid, on behalf of the ATLAS Collaboration. The team has oper-
ated under several different project identifiers, including CSC108, HEP110,
and HEP113. The HEP110 and HEP113 projects represent traditional ASCR
Leadership Computing Challenge (ALCC) allocations, but the CSC108 project
operates exclusively in what the team has colloquially referred to as “backfill

14 First Author, Second Author

Fig. 4 Schematic view of PanDA WMS integration with Titan supercomputer at OLCF

Fig. 5 This figure shows the monthly consumption of resources on Titan by the two methods
used by PanDA.

mode”, which is outlined in Section 3. The goal of CSC108 has been to con-
sume idle resources on Titan which would otherwise have gone to waste, while
making a good-faith effort not to disturb the rest of Titan’s ecosystem. The
focus of this section is to assess the degree to which CSC108 has accomplished
this goal and especially to analyze the impact of the project on Titan.

Before proceeding, however, it is important to summarize the relevant poli-
cies at OLCF for running jobs on Titan. There are three queues on Titan:
batch, debug, and killable. There is no actual backfill queue on Titan; instead,
smaller jobs from each queue are scheduled into spaces that cannot be used by
larger jobs. The batch queue is the default queue for submitted jobs, and it is
the only queue considered in this analysis. Jobs submitted to the batch queue

Production Workload Management on Leadership Class Facilities 15

Table 1 OLCF policies sort jobs into numbered bins based on the requested number of
nodes, and each bin has its own set of constraints.

Bin Requested Nodes Maximum Wall Time Aging Boost

1 11,250 - 18,688 24 hours 15 days
2 3,750 - 11,249 24 hours 5 days
3 313 - 3,749 12 hours 0
4 126 - 312 6 hours 0
5 1 - 125 2 hours 0

are grouped into five “bins” according to the number of requested nodes, and
each bin has a maximum wall time. The definitions and rules for each bin are
shown in Table 1. Jobs that request fewer nodes have correspondingly lesser
maximum wall times. Nodes are assigned exclusively to one job at a time.
Because Titan is a leadership class machine and priority is a function of wait
time, the batch scheduler awards aging boosts to jobs in bins 1 and 2 in order
to prioritize larger jobs over smaller ones. Once jobs in the batch queue begin
to run, however, they will not be killed when new jobs arrive, regardless of
their priority. Sometimes, jobs small enough to use currently idle resources on
Titan are scheduled to run immediately, and this is what we refer to as “back-
fill opportunity”. CSC108 takes advantage of the “showbf” command in order
to query the Moab scheduler directly for currently available backfill opportu-
nity and then tailors its own submissions to Titan accordingly. CSC108 has a
special policy applied to guarantee that its jobs run with lesser priority than
all others on Titan, to ensure that its jobs consume only backfill resources.
Finally, “Titan core hours” are the billable units used at OLCF; they convert
at a rate of 30 Titan core hours per 1 node hour.

As a convention, we will sometimes make use of a common scheduling
metaphor in which jobs waiting to run on a computer are represented by rocks
that are being used to fill a jar. Capability class jobs on Titan are the largest
rocks, and the scheduler typically fills the remaining space around the largest
rocks with smaller rocks. CSC108 attempts to fill whatever space remains,
thanks to its having been given the lowest possible priority.

4.1 Compression study

Recall that the goal of CSC108 is to consume idle resources that will otherwise
go to waste. As shown in Figure 5, CSC108 has successfully consumed hundreds
of millions of core hours on Titan, and because there is no pre-emption of any
kind on Titan, all resources that were consumed were guaranteed to have
been idle. What remains to be shown is that these resources would otherwise
have gone to waste. The simple bar plot shown in Figure 6 seems to show, at
first glance, that utilization by CSC108 has increased at the same time that
utilization by other projects has decreased, which is suggestive of competition
for resources. As a simple test of the hypothesis that CSC108 has no effect on

16 First Author, Second Author

Fig. 6 This bar plot visualizes the yearly utilization of Titan core hours, separated into two
categories: CSC108’s utilization of Titan core hours through backfill opportunities (shown
in red), and all other utilization of core hours on Titan (shown in blue).

Titan, three years’ worth of job traces from Titan were “compressed”, with and
without CSC108’s jobs, as a way to measure “displacement” due to CSC108.

The data used for this experiment are historical traces for all jobs on
Titan during the years 2016, 2017, and 2018. These data were provided in
anonymized form by OLCF so that job, project, and user identifiers were in-
cluded only for the three PanDA projects on Titan. Otherwise, the job traces
consist only of job submission time, start time, completion time, the number
of requested nodes, and the amount of wall time requested. The experimental
programs were written in Python using the well-known Matplotlib, NumPy,
and SciPy libraries via Anaconda. Data were originally provided as text files
but were imported into a SQLite database.

What we mean by “compressing” job traces is rescheduling the jobs that
ran on Titan while preserving the original execution order, under the assump-
tion of 100% availability (all nodes up and running all the time). Doing this
once while including CSC108’s jobs and once with CSC108’s jobs removed al-
lows effects on throughput and utilization to be estimated simply, using the
same logic as measuring the displacement of rocks in a jar by measuring the
volume in the jar with and without those rocks. Throughput was defined as
jobs completed per day, and utilization was defined as the percentage of avail-
able core hours which were consumed.

The rescheduling algorithm is shown as pseudo-code in Listing 2.

Listing 2 Job traces are assumed to be sorted in order of original start time.

a c t i v e j o b s = []
cu r r ent t ime = date (”January 1 , 2016”)

Production Workload Management on Leadership Class Facilities 17

Table 2 Compression study results

Without CSC108 With CSC108 Percent change

Time to completion (days) 1021.2 1034.5 1.30
Throughput (jobs per day) 1324.93 1515.19 14.36
Utilization (percent) 92.36 94.15 1.94

j o b t r a c e s = o r i g i n a l t r a c e s . s o r t b y s t a r t t i m e ()
max nodes = 18688

for job in j o b t r a c e s :
while count ac t i v e node s () + job [” reques ted nodes ”] > max nodes :

cu r r ent t ime = get nex t comp l e t i on t ime () # from ac t i v e node s
e v i c t a n d l o g c o m p l e t e d j o b s ()

a c t i v e j o b s . append (job)

while len (a c t i v e j o b s) > 0 :
cu r r ent t ime = get nex t comp l e t i on t ime ()
e v i c t a n d l o g c o m p l e t e d j o b s ()

The results, which are shown in Table 2, suggest that the hypothesis that
CSC108 has no effect on Titan should be rejected. If CSC108 had no effect,
then the percent changes in time to completion, throughput, and utilization
would all have been zero. The 1.30% increase in the time to completion demon-
strates that CSC108’s jobs displaced other projects’ jobs in this study, but the
1.94% change in utilization indicates that CSC108’s jobs must have consumed
resources which would otherwise have gone to waste. These results suggest that
CSC108 has impacted Titan both positively and negatively in real life, and
that the positive impact may justify the negative. More importantly, however,
these results suggest that CSC108 has successfully consumed idle resources
which would otherwise have gone to waste.

4.2 Simple linear relationships

Recall that the goal of CSC108 has been to consume idle resources on Titan
which would otherwise have gone to waste, while also making a good faith
effort not to disturb the rest of Titan’s ecosystem. The results of Section 4.1
suggested that CSC108 has satisfied part of this goal, but that it may have
disturbed Titan’s ecosystem. In this section, we detail our explorations to
understand the impact of CSC108 on Titan and search for simple linear rela-
tionships, especially direct and inverse relationships, by using linear regression.

The data used for this experiment include the same historical trace data
used in Section 4.1, supplemented with daily availability data for Titan pro-
vided by OLCF for the same years, 2016-2018. The experimental programs
were written in Python using the well-known Matplotlib, NumPy, SciPy, and

18 First Author, Second Author

(a) All (b) Bin 3

(c) Bin 4 (d) Bin 5

Fig. 7 This figure demonstrates the relationship between CSC108 backfill throughput and
throughput of other projects on Titan, in terms of jobs completed per day. Each blue point
represents one day. Each red line is an Ordinary Least Squares (OLS) linear regression with
parameters given in Table 3. Each shaded gray area represents a 95% confidence region.
Each horizontal dotted black line represents the mean number of jobs completed on Titan
every day by projects other than CSC108, and the vertical dotted black line represents the
mean number of jobs completed every day by CSC108’s use of backfill opportunity.

scikit-learn libraries via Anaconda. Data were originally provided as text files
but were imported into a SQLite database. We plotted best-fit lines with
ordinary least squares (OLS) linear regression, constructed 95% confidence
regions around the lines, and used basic measures for goodness-of-fit such as
R-squared.

There were two main ideas used here. The first idea was to look for a
relationship between CSC108’s throughput and the throughput of all other
jobs on Titan, and second idea was to look for a relationship between CSC108’s
utilization as compared with overall utilization on Titan. Additionally, the
same ideas were repeated to look for impacts due to different sizes of CSC108’s
jobs, using the bins defined in Table 1, because jobs are assigned priority
differently by the scheduler on Titan in part due to the number of requested
nodes and length of requested wall time.

The plots shown in Figures 7a, 7b, 7c, and 7d visually suggest that CSC108
has little to no effect on other projects’ throughputs, but the numbers in
Table 3 show that linear relationships explain very little of the variability in

Production Workload Management on Leadership Class Facilities 19

Table 3 The table contains the parameter values for the Ordinary Least Squares (OLS)
linear regression models regarding throughput. The first column corresponds to the figure
depicting the model, and the second column corresponds to the OLCF bin number, as
defined in Table 1. The second and third columns correspond the coefficients β1 and β0 in
the model y = β1x+ β0.

Figure OLCF Bin Slope β1 Intercept β0 R2

7a All 0.4106 1164.2561 0.0040
7b 3 0.4419 1322.0784 0.0005
7c 4 1.9819 1211.3384 0.0027
7d 5 0.3072 1195.6684 0.0018

(a) All (b) Bin 3

(c) Bin 4 (d) Bin 5

Fig. 8 This figure demonstrates the relationship between CSC108 backfill utilization and
overall utilization on Titan, as percentages of available node-hours each day. Each blue point
represents one day. Each red line is an Ordinary Least Squares (OLS) linear regression with
parameters given in Table 4. Each shaded gray area represents a 95% confidence regions.
Each horizontal dotted black line represents the mean utilization every day on Titan, and
each vertical dotted black line represents the mean utilization of backfill opportunity every
day by CSC108.

20 First Author, Second Author

Table 4 The table contains the parameter values for the Ordinary Least Squares (OLS)
linear regression models regarding utilization. The first column corresponds to the figure
depicting the model, and the second column corresponds to the OLCF bin number, as
defined in Table 1. The second and third columns correspond the coefficients β1 and β0 in
the model y = β1x+ β0.

Figure OLCF Bin Slope β1 Intercept β0 R2

8a All -0.5258 93.3404 0.0330
8b 3 -1.0977 94.0609 0.1359
8c 4 -1.1472 92.7870 0.0378
8d 5 4.3328 87.5839 0.1046

the data. The R2 values, which represent goodness-of-fit on a scale of 0 to 1,
are very close to 0, indicating poor fit.

Similar problems exist for the utilization results, but they raise one very
interesting question. The plots shown in Figures 8a, 8b, and 8c all clearly sug-
gest an inverse relationship, but 8d suggests a direct relationship, by virtue
of its positive slope. Unfortunately, once again, the numbers show that lin-
ear relationships explain very little of the variability in the data, as shown in
Table 4, because the R2 values are very close to 0, on a scale of 0 to 1. This
raises the question, what has caused the sign change? It can be tempting to
assign blame and credit in such a case, such as to say that CSC108’s consump-
tion in bin 5 causes an increase in overall utilization, while its consumption in
other bins decreases overall utilization. Here, however, we are only looking for
relationships in the data, and the goodness-of-fit values are uniformly poor.

4.3 Blocking probability

Having struggled to find simple linear relationships using throughput and uti-
lization as indicators, we next defined an event called a “block” and looked for
its occurrence in the data. A block is said to occur when an eligible job in the
batch queue waits due to insufficient resources on Titan for it to begin run-
ning; some other job(s) must be using the resources, and therefore the eligible
job has been “blocked” by an already-running job. This event is interesting
because it can indicate competition for resources even when there are large
amounts of idle resources. It also serves as a way to symbolize the event when
a user checks the system queue and sees that there are active jobs that are
causing the user’s job to wait. The goal was to try to detect CSC108’s impact
by focusing on times of great competition.

The data used for this experiment include the same historical trace data
used in Section 4.1 and the daily availability data for Titan used in Section 4.2,
but this time are supplemented with live snapshot data of the system queue for
Titan. Snapshots were gathered by sampling live data from the Moab sched-
uler by polling with Python scripts launched by cron jobs on a data transfer
node. These scripts recorded XML output from the “showbf” and “showq”

Production Workload Management on Leadership Class Facilities 21

commands into files, and more cron jobs launched other Python scripts to im-
port these files’ sample data into SQLite. These tables contain data about the
exact state of the queues at given times, including active jobs, blocked jobs,
eligible jobs, recently completed jobs, and system information such as active
nodes and available backfill opportunities. Then, experimental programs were
written in Python using the same libraries and database as the previous sec-
tions.

Formally, the definitions for a block and a blocking probability follow. Let
Ci be the abstract resources in use by CSC108 at the ith sample point in time,
and let Ui be the unused (idle) resources remaining on Titan. We then define
a boolean Bi representing a “block” to be 1 if there exists at least one job
at the ith sample point which requests (Ci + Ui) resources or less when Ci

is non-zero; we define Bi to be zero otherwise. Summing Bi over all i gives
a count of sample points at which a block occurred, and dividing that count
by the number of total sample points yields a quantity we call a “blocking
probability”. The blocking probability is a rational number between 0 and 1.

Informally, blocking probability represents the proportion of samples in
which a block occurred. The idea here is that when blocking probability in-
creases, it indicates that the system is experiencing greater competition for its
resources. Blocking probability does not predict the probability that a partic-
ular job will be blocked, but rather the probability that a given sample will
contain a block.

To apply this abstract model to a real data set, we have initially defined
the resources in one-dimensional “spatial” and “temporal” manners, by con-
sidering only jobs’ requested numbers of nodes in the former and only jobs’
requested wall times in the latter. An eligible job in the batch queue is said
to be spatially blocked when the jobs number of requested nodes is too large
to fit within the nodes available through backfill opportunity, so that the job
must wait to run. Similarly, an eligible job in the batch queue is said to be
temporally blocked when the jobs requested wall time is too long to fit within
the duration available through backfill opportunity. Similarly, a job is said to
be blocked “due to CSC108” if at least one job which was blocked would no
longer be blocked if CSC108’s jobs were removed. Thus, a job is only said to
be blocked due to CSC108 if it requests resources with are greater than Ui but
less than (Ci + Ui). Figures 9a and 9b demonstrate how spatial and temporal
blocking probabilities vary from month to month, and Figure 10 shows that
the two quantities relate to each other in an intuitive way, namely, that time
periods of greater spatial blocking often correspond to time periods of greater
temporal blocking as well.

Three indicators of system performance were chosen this time, as well, to
assess the impact of CSC108 on Titan: wait times, throughput, and utilization.
In order to map wait time to a value that can be attributed to a day, wait time
was defined in terms of an average wait time. Average wait time was defined
as the total number of hours spent waiting during a given day, per job that
appeared on that day. For example, a job which was submitted one day but
which did not run until the next day would contribute part of its wait time

22 First Author, Second Author

(a) Spatial blocking (b) Temporal blocking

Fig. 9 These plots depict the spatial and temporal blocking probabilities by month for
samples in which CSC108 was actively utilizing backfill opportunity. The total height of the
bars indicates the blocking probability for the month, which is the proportion of samples
in which at least one eligible job was blocked. The red region indicates the percentage of
samples in which at least one eligible job would no longer be blocked if CSC108’s jobs were
removed.

Fig. 10 This figure demonstrates the relationship between spatial and temporal blocking
probabilities. Each blue point represents one day. The red line is an Ordinary Least Squares
(OLS) linear regression (y = β1x + β0) with a slope β1 of 0.2503 and an intercept β0 of
68.7731. The shaded gray areas represent 95% confidence regions. The horizontal dotted
black line represents the mean spatial blocking probability for all points, and the vertical
dotted black line represents the mean temporal blocking probability for all points. The R2

value is 0.4410.

to the first day and the rest to the second day, and it would be considered to
have appeared on both days. Throughput was defined as the number of jobs
completed per day, as before. Utilization was also defined as before, as the
percentage of core hours consumed out of the total core hours available.

Production Workload Management on Leadership Class Facilities 23

(a) Spatial blocking (b) Temporal blocking

(c) Spatial blocking by CSC108 (d) Temporal blocking by CSC108

Fig. 11 These plots demonstrate the relationships between the average wait times on Titan
and one-dimensional blocking probabilities. Each blue point represents one day. Each red
line is an Ordinary Least Squares (OLS) linear regression with parameters given in Table 5.
Each shaded gray area represents a 95% confidence region. Each horizontal dotted black line
represents the mean wait times for all points in that plot, and each vertical dotted black
line represents the mean blocking probability for all points in that plot.

Having established the two measures of blocking probability and their re-
lationship to one another, we followed the same techniques used in Section 4.2
to create best-fit lines with 95% confidence intervals, to investigate the rela-
tionships between blocking probabilities and wait times experienced by jobs on
Titan. Figures 11a and 11b illustrate the effects of spatial and temporal block-
ing probability on wait times, and Figures 11c and 11d show how CSC108’s
contribution to blocking impacts wait times. More specifically, in Figures 11c
and 11d, the values used for the blocking probabilities correspond to the red
regions in Figures 9a and 9b, which indicate the percentage of samples in
which at least one eligible job would no longer be blocked if CSC108 freed
its resources. The qualitative interpretation for the wait time plots is that,
as competition for resources increases on Titan, average wait times decrease,
but when competition with CSC108 for nodes increases, average wait times
increase. Unfortunately, the goodness-of-fit values are again very poor.

Figures 12a, 12b, 12c, and 12d are all in agreement that increasing com-
petition corresponds to increasing throughput, in units of jobs completed per

24 First Author, Second Author

Table 5 The table contains the parameter values for the Ordinary Least Squares (OLS)
linear regression models regarding blocking probabilities and average wait times. The first
column corresponds to the figure depicting the model, while the second and third columns
correspond the coefficients β1 and β0 in the model y = β1x+ β0.

Figure Slope β1 Intercept β0 R2

11a -0.0810 11.8610 0.0737
11b -0.0401 7.7491 0.1265
11c 0.0219 3.2420 0.0509
11d -0.0102 5.3217 0.0147

(a) Spatial blocking (b) Temporal blocking

(c) Spatial blocking by CSC108 (d) Temporal blocking by CSC108

Fig. 12 These plots demonstrate the relationships between throughput on Titan and one-
dimensional blocking probabilities. Each blue point represents one day. Each red line is an
Ordinary Least Squares (OLS) linear regression with parameters given in Table 6. Each
shaded gray area represents a 95% confidence region. Each horizontal dotted black line
represents the mean wait times for all points in that plot, and each vertical dotted black
line represents the mean blocking probability for all points in that plot.

day. The goodness-of-fit values are poor, however, as shown in Table 6, so
these qualitative results may only be said to be suggestive.

Finally, we searched for simple linear relationships between the different
blocking probabilities and overall utilization on Titan. Figures 13a, 13b, 13c,
and 13d do not “agree” like the throughput plots did, but three plots sug-
gest an interpretation in which increasing competition, indicated by increas-
ing blocking probability, corresponds to decreased utilization. The fourth plot,

Production Workload Management on Leadership Class Facilities 25

Table 6 The table contains the parameter values for the Ordinary Least Squares (OLS)
linear regression models regarding blocking probabilities and throughput. The first column
corresponds to the figure depicting the model, while the second and third columns correspond
the coefficients β1 and β0 in the model y = β1x+ β0.

Figure Slope β1 Intercept β0 R2

12a 16.2402 252.3652 0.0122
12b 1.7196 1544.9669 0.0010
12c 13.4683 730.0687 0.0790
12d 10.0245 1134.0212 0.0587

(a) Spatial blocking (b) Temporal blocking

(c) Spatial blocking by CSC108 (d) Temporal blocking by CSC108

Fig. 13 These plots demonstrate the relationships between utilization on Titan and one-
dimensional blocking probabilities. Each blue point represents one day. Each red line is an
Ordinary Least Squares (OLS) linear regression with parameters given in Table 7. Each
shaded gray area represents a 95% confidence region. Each horizontal dotted black line
represents the mean wait times for all points in that plot, and each vertical dotted black
line represents the mean blocking probability for all points in that plot.

which indicates competition with CSC108, relates increased competition to in-
creased utilization. Once again, the goodness-of-fit values are poor, as shown
in Table 7.

Thus, the use of blocking probability provided additional insight regarding
the impact of CSC108 on Titan, but just like in Section 4.2, the best-fit lines

26 First Author, Second Author

Table 7 The table contains the parameter values for the Ordinary Least Squares (OLS)
linear regression models regarding blocking probabilities and utilization. The first column
corresponds to the figure depicting the model, while the second and third columns correspond
the coefficients β1 and β0 in the model y = β1x+ β0.

Figure Slope β1 Intercept β0 R2

13a -0.3766 123.8332 0.1543
13b -0.1654 103.1603 0.2084
13c 0.0617 86.5830 0.0391
13d -0.0518 93.6845 0.0370

all displayed very poor goodness-of-fit, rendering the interpretations somewhat
weak.

4.4 Summary

Recall that the goal of CSC108 has been to consume idle resources on Titan
which would have otherwise gone to waste, while making a good-faith effort
not to disturb the rest of Titan’s ecosystem.

The results of the compression study in Section 4.1 suggested that CSC108
successfully accomplishes its goal of consuming idle resources which would
otherwise have gone to waste, and also they suggested that CSC108 may have
an impact on Titan. The results of searching for simple linear relationships
in Section 4.2 between indicators like throughput and utilization provided
additional insight, but the interpretations were weak statistically because of
the poor goodness-of-fit values. Finally, blocking probability was used as a
means to identify and analyze times of great competition for resources, but
again the interpretations were weak due to poor goodness-of-fit.

These overall results underscore the difficulty of the main problem of this
section, which was to identify and analyze the impact of the CSC108 project
on Titan. The original hypothesis stated that CSC108 has no effect on Titan.
We can see that it has had an impact on Titan in the form of consuming
hundreds of millions of core hours. Results suggest that CSC108 negatively
impacts Titan by increasing wait times, that CSC108 positively impacts Ti-
tan by increasing throughput, and that CSC108 positively impacts Titan by
increasing utilization. Interestingly, the inability to find simple relationships
by using blocking probability suggests that users’ judging system performance
by monitoring the batch queue is similarly incapable. In any case, the diffi-
culty in confirming any impact may simply provide evidence that the CSC108
project has impacted Titan minimally, at least with respect to the indicators
used.

Finally, we note here that the phenomenon of “draining” on Titan may play
a role in some of the counterintuitive results, such as those depicted in Figures
8a, 8b, and 8c. Draining is technically a node state in the Moab scheduler, but
it is used here colloquially to refer to the process by which the scheduler allows

Production Workload Management on Leadership Class Facilities 27

busy nodes to finish executing workload before keeping them idle, in order
to prepare for a capability class (bin 1) job. During this process, utilization
would normally decrease monotonically, but because Titan has enabled backfill
scheduling, these idle resources may actually be used for small, short jobs,
provided that they will complete before those nodes will be needed for the
large job. Because CSC108’s consumption increases during times of increased
backfill opportunity, the data will show that times of decreased utilization are
correlated with increased utilization, unless CSC108 is able to consume all
of the backfill opportunity. Even if the project had an infinite supply of new
workloads to submit to Titan, it is limited to 20 concurrently executing jobs.
Thus, CSC108 will appear to increase in utilization at the same time that
all other utilization decreases, even though CSC108 is not actually displacing
other projects’ workloads. Future work will examine draining in greater detail,
to determine if these times have an identifiable signature so that comparisons
can be made, in much the same manner as followed in the blocking probability
study. This will allow us to understand whether the results of Figure 8d imply
that CSC108 should restrict its individual jobs to use only bin 5, for example.

5 Workload Management Beyond HEP

The objective of each subsection is to: (i) describe the science; and (ii) detail
what customizations had to be done – either on PanDA or the Titan end to
support the science driver. We will then conclude this section with a summary.

5.1 PanDA WMS beyond HEP

Traditionally computing in physics experiments at the basic level is usually in-
dependent processing of the input files to produce the output. This processing
in referring in the paper as a job. Processing algorithm usually utilizes some
experiment-specific software which may require parameterization and even ad-
ditional configuration files. In the case if such a configuration file is specific
for each job it can be defined in a job as another input file. Also experiment
software may produce some additional files along with the primary output
and they need to be stored. For instance PanDA pilot itself produces the tar-
archive file containing the logs its own logs and the experiments software logs.
Processing algorithm (referenced as “transformation script”) responsible for
the correct launching the experiment software and provide all necessary input
information including the configuration and run parameters. PanDA job def-
inition is only defines the launching command for the transformation script.
This launching command is referring as a payload.

The following components are usually provided and controlled by the ex-
periment groups outside from PanDA core components.

– Transformation scripts. User groups should define a complete set of the
transformations scripts to cover all possible SW usage. In the case if the

28 First Author, Second Author

same software is used and only the run parameters, configuration and in-
put/output file names are changing, the single transformation script should
be able to cope this.

– Input/output files conventions. The size of the input files often adjusted in
a way to balance of the total processing walltime and flexibility in order
to cope the failure risks. There is often case that the equal sized input
files are required relatively equal processing time and produce equal sized
output. Also input files are often named conventionally and grouped in the
datasets by some attributes. PanDA job definition allows to provide name
for the input/output datasets.

The real workflow for each scientific group provides a lot of additional
requirements and constraints. A common example is a specific order of the
jobs execution. Also implementation of the dedicated workflows demands an
integration with existing experiment computing infrastructure or even devel-
opment an additional components. This includes the issues with data manage-
ment, user authentication, monitoring, workflow control and etc.

PanDA system may be the best solution for the new experiments and
scientific groups by diversity of provided advantages. The main motivations
for users are:

– Powerful workload management. Automation of the jobs handling, moni-
toring and logging.

– Streamlining the usage of the computing resources. Possibility for users
to run their jobs on diversity of the computing resources. Local resource
schedulers, and policies are transparent for the users.

– PanDA native data handling. PanDA provides a diverse set of the plugins
to support data stage-in/-out from the remote storages and different data
movement tools of different types.

– Close integration with OLCF. Being integrated with OLCF PanDA system
also became attractive for many scientific groups already utilizing OLCF
resources or those who wish to get use them.

Currently, there are few PanDA instances in use by different experiments
and groups. In this paper, we have considered three instances. The original
instance is installed at CERN, and it is used exclusively for the ATLAS exper-
iment. Another instance is installed at OLCF, and it is dedicated to supporting
projects on Titan, subject to OLCF policies. Finally, an instance on Amazon’s
EC2 cloud infrastructure provides access to multiple independent experiments
from different disciplines, and it has the least restrictive security and usage
policies.

5.2 PanDA instance at OLCF

In March 2017, we implemented a new PanDA server instance within OLCF
operating under Red Hat OpenShift Origin [18] - a powerful container cluster
management and orchestration system in order to serve various experiments

Production Workload Management on Leadership Class Facilities 29

at Titan supercomputer. By running on-premise Red Hat OpenShift built on
Kubernetes [19], the OLCF provides a container orchestration service that
allows users to schedule and run their HPC middleware service containers
while maintaining a high level of support for many diverse service workloads.
The containers have direct access to all OLCF shared resources such as parallel
filesystems and batch schedulers. With this PanDA instance, we implemented
a set of demonstrations serving diverse scientific workflows including physics,
biology studies of the genes and human brain, and molecular dynamics studies:

– Biology / Genomics. In collaboration with Center for Bioenergy Innova-
tion at ORNL the PanDA based workflow for epistasis researches was es-
tablished. Epistasis is the phenomenon where the effect of one gene is
dependent on the presence of one or more “modifier genes”, i.e. the genetic
background. GBOOST [20] is a GPU-based tool for detecting gene-gene
interactions in genome-wide case control studies, was used for initial tests.

– Molecular Dynamics. In collaboration with the Chemistry and Biochem-
istry department of the University of Texas Arlington, we implemented a
test to try out PanDA to support the Molecular Dynamics study “Simulat-
ing Enzyme Catalysis, Conformational Change, and Ligand Binding/Re-
lease”. The CHARMM (Chemistry at HARvard Macromolecular Mechan-
ics) [21] a molecular simulation program was chosen as a basic payload
tool. CHARMM design for hybrid MPI/OpenMP/GPU computing.

– IceCube. Together with experts from the IceCube experiment we imple-
mented the demonstrator PanDA system. IceCube [22] is a particle detec-
tor at the South Pole that records the interactions of a nearly massless
subatomic particle called the neutrino. Demonstrator includes the use of
NuGen package (a modified version of ANIS [23] that works with Ice-
Cube software) - GPU application for atmospheric neutrinos are simula-
tions packed in Singularity container and remote stage-in/-out the data
from GridFTP [24] storage with GSI authentication.

– BlueBrain. In 2017, a R&D project was started between BigPanDA and
the Blue Brain Project (BBP) [25] of the Ecole Polytechnique Federal de
Lausanne (EPFL) located in Lausanne, Switzerland. This proof of concept
project is aimed at demonstrating the efficient application of the BigPanDA
system to support the complex scientific workflow of the BBP which relies
on using a mix of desktop, cluster, and supercomputers to reconstruct and
simulate accurate models of brain tissue. In the first phase of this joint
project we supported the execution of BBP software on a variety of dis-
tributed computing systems powered by BigPanDA. The targeted systems
for demonstration included: Intel x86-NVIDIA GPU based BBP clusters
located in Geneva (47 TFlops) and Lugano (81 TFlops), BBP IBM Blue-
Gene/Q supercomputer [26] (0.78 PFLops and 65 TB of DRAM memory)
located in Lugano, the Titan Supercomputer with peak theoretical per-
formance 27 PFlops operated by the Oak Ridge Leadership Computing
Facility (OLCF), and Cloud based resources such as Amazon Cloud.

30 First Author, Second Author

– LSST. A goal of LSST (Large Synoptic Survey Telescope) project is to con-
duct a 10-year survey of the sky that is expected to deliver 200 petabytes of
data after it begins full science operations in 2022. The project will address
some of the most pressing questions about the structure and evolution of
the universe and the objects in it. It will require a large amount of sim-
ulations, which model the atmosphere, optics and camera to understand
the collected data. For running LSST simulations with the PanDA WMS
we have established a distributed testbed infrastructure that employs the
resources of several sites on GridPP [27] and Open Science Grid (OSG) [28]
as well as the Titan supercomputer at ORNL. In order to submit jobs to
these sites we have used a PanDA server instance deployed on the Amazon
AWS Cloud.

– LQCD. Lattice QCD (LQCD) [29] is a well-established non-perturbative
approach to solving the quantum chromodynamics theory of quarks and
gluons. Current LQCD payloads can be characterized as massively parallel,
occupying thousands of nodes on leadership-class supercomputers.
In 2017, as a part of SciDAC-4 funded project, a collaboration was formed
between several US LQCD groups and BigPanDA team with the goal to
adopt PanDA WMS for the needs of the SciDAC-4 LQCD computational
program.
LQCD payloads have been successfully tested on Titan as well as on other
sites. Production campaigns were executed on BNL Institutional Cluster
through a dedicated instance of Harvester installed on the front node of
this site. During the period between April and June 2018 13 TB of input
data were processed, producing output of 176 GB. LQCD jobs used around
15,000 GPU hours with average job duration around 12 hours.

– nEDM. Precision measurements of the properties of the neutron present
an opportunity to search for violations of fundamental symmetries and to
make critical tests of the validity of the Standard Model of electroweak
interactions. These experiments have been pursued [30] with great energy
and interest since the discovery of neutron in 1932. The goal of the nEDM
[31] experiment at the Fundamental Neutron Physics Beamline at the Spal-
lation Neutron Source (Oak Ridge National Laboratory) is to further im-
prove the precision of this measurement by another factor of 100.

To isolate the workflows of different groups and experiments, dedicated
queues were defined at the PanDA server. Presumably in next steps we will
provide the security mechanisms that will provide the access to each queue for
job submission and dispatching only for authorised users. Also, the PanDA
server provides the tools to customise environment variables, system settings
and workflow algorithms for different user groups. Also this split of the different
groups workflows on the level of PanDA queues simplifies jobs monitoring via
the web based PanDA tool.

In collaboration with the dedicated scientific groups representatives, we
implemented the “transformation” scripts containing complete definition of
the processing actions (set of specific software and general system commands)

Production Workload Management on Leadership Class Facilities 31

Table 8 Please write your table caption here

Experiment Payload Jobs Nodes Walltime Input data Output data

Genomics GBOOST 10 2 30 min 100 MB 300 MB
Molecular Dynamics CHARMM 10 124 30-90 min 10 KB 2-6 GB
IceCube NuGen 4500K 1 120 min 500 KB 10KB - 4GB
LSST/DESC Phosim 20 2 600 min 700 MB 70 MB
LQCD QDP++ 10 8000 700 min 40 GB 150 MB
nEDM GEANT 10 200 20 min 120 MB 20 MB

are has to be applied to the input data to produce the output. The transfor-
mation script then can be addressed by its name. Client tool provided to the
users allows to submit jobs to the PanDA server with authentication based on
grid certificates.

Responsible group representative also authorized to run pilots launcher
daemon. Daemon launches the pilots. Number of parallel running pilots can be
configured. Pilots are running and interacts with the PBS under user account
and with Titan group privileges of the responsible representative.

The most important parameters of conducted tests are presented in the
table

5.3 Summary

The overview of the successfully implemented demonstrations of diverse work-
flows implementation via PanDA shows that PanDA model can cope the chal-
lenges of the different experiments and user groups and also provide possibility
for extensions beyond the core components set. The proof of concept was re-
ceived from all considered experiments representatives and results that PanDA
is considered as a possible solution. Preproduction utilization of PanDA is
now under investigation with BlueBrain, IceCube, LSST, nEDM experiments,
LQCD uses PanDA for Production.

Acknowledgements If you’d like to thank anyone, place your comments here.

References

1. C. Marco, C. Fabio, D. Alvise, G. Antonia, G. Francesco, M. Alessandro, M. Moreno,
M. Salvatore, P. Luca, P. Francesco, in International Conference on Grid and Pervasive
Computing (2009), pp. 256–268

2. M. Turilli, M. Santcroos, S. Jha, ACM Computing Surveys (accepted, in press), arXiv
preprint arXiv:1508.04180v3 (2017)

3. I. Foster, C. Kesselman, S. Tuecke, International journal of high performance computing
applications 15(3), 200 (2001)

4. V. Garonne, G.A. Stewart, M. Lassnig, A. Molfetas, M. Barisits, T. Beermann, A. Nairz,
L. Goossens, F.B. Megino, C. Serfon, et al., in J. Phys.: Conf. Ser., vol. 396 (2012),
vol. 396, p. 032045

32 First Author, Second Author

5. T. Maeno, K. De, T. Wenaus, P. Nilsson, G. Stewart, R. Walker, A. Stradling, J. Ca-
ballero, M. Potekhin, D. Smith, et al., in J. Phys.: Conf. Ser., vol. 331 (2011), vol. 331,
p. 072024

6. M. Borodin, K. De, J. Garcia, D. Golubkov, A. Klimentov, T. Maeno, A. Vaniachine,
et al., in J. Phys.: Conf. Ser., vol. 664 (2015), vol. 664, p. 062005

7. P. Nilsson, J. Caballero, K. De, T. Maeno, A. Stradling, T. Wenaus, A. Collaboration,
et al., in J. Phys.: Conf. Ser., vol. 331 (2011), vol. 331, p. 062040

8. P. Nilsson, M. Potekhin, T. Maeno, J. Caballero, K. De, T. Wenaus, PoS p. 027 (2008)
9. J. Caballero, J. Hover, P. Love, G. Stewart, in J. Phys.: Conf. Ser., vol. 396 (2012),

vol. 396, p. 032016
10. A. Klimentov, P. Nevski, M. Potekhin, T. Wenaus, in J. Phys.: Conf. Ser., vol. 331

(2011), vol. 331, p. 072058
11. A. Anisenkov, A. Di Girolamo, A. Klimentov, D. Oleynik, A. Petrosyan, A. Collabora-

tion, et al., in Journal of Physics: Conference Series, vol. 513 (IOP Publishing, 2014),
vol. 513, p. 032001

12. P. Calafiura, K. De, W. Guan, T. Maeno, P. Nilsson, D. Oleynik, S. Panitkin, V. Tsulaia,
P. Van Gemmeren, T. Wenaus, in J. Phys.: Conf. Ser., vol. 664 (2015), vol. 664, p.
062065

13. M. Borodin, S. Padolski, T. Wenaus, T. Maeno, K. De, D. Golubkov, R. Mashinistov,
F.H. Barreiro Megino, A. Klimentov, Atlas production system. Tech. rep., ATL-COM-
SOFT-2016-021 (2016)

14. A.P. Team. The PanDA production and distributed analysis system (2017). URL
https://twiki.cern.ch/twiki/bin/view/PanDA/PanDA

15. OLCF. Titan scheduling policy (2018). URL https://www.olcf.ornl.gov/for-users/

system-user-guides/titan/running-jobs

16. M.A. Ezell, D.E. Maxwell, D. Beer, Proc. CUG
17. R. Team. RADICAL-SAGA software toolkit (2017). URL https://github.com/

radical-cybertools/radical-saga

18. Red hat openshift web site. https://www.openshift.com. Accessed: 2019-01-18
19. Kubernetes web site. https://kubernetes.io/. Accessed: 2019-01-18
20. L. Sing Yung, C. Yang, X. Wan, W. Yu, 27, 1309 (2011)
21. B.R. Brooks, C.L. Brooks, A.D. Mackerell, L. Nilsson, R.J. Petrella, B. Roux, Y. Won,

G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A.R. Dinner,
M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma,
V. Ovchinnikov, E. Paci, R.W. Pastor, C.B. Post, J.Z. Pu, M. Schaefer, B. Tidor,
R.M. Venable, H.L. Woodcock, X. Wu, W. Yang, D.M. York, M. Karplus, Jour-
nal of Computational Chemistry 30(10), 1545 (2009). DOI 10.1002/jcc.21287. URL
http://dx.doi.org/10.1002/jcc.21287

22. F. Halzen, S.R. Klein, Rev. Sci. Instrum. 81, 081101 (2010). DOI 10.1063/1.3480478
23. A. Gazizov, M.P. Kowalski, Comput. Phys. Commun. 172, 203 (2005). DOI 10.1016/j.

cpc.2005.03.113
24. W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C. Dumitrescu, I. Raicu, I. Foster, in

Proceedings of the 2005 ACM/IEEE Conference on Supercomputing (IEEE Computer
Society, Washington, DC, USA, 2005), SC ’05, pp. 54–. DOI 10.1109/SC.2005.72. URL
https://doi.org/10.1109/SC.2005.72

25. H. Markram, 7, 153 (2006)
26. H. Markram, Nat Rev Neurosci 7(2), 153 (2006). DOI 10.1038/nrn1848. URL http:

//dx.doi.org/10.1038/nrn1848

27. T.G. Collaboration, P.J.W. Faulkner, L.S. Lowe, C.L.A. Tan, P.M. Watkins, D.S. Bailey,
T.A. Barrass, N.H. Brook, R.J.H. Croft, M.P. Kelly, C.K. Mackay, S. Metson, O.J.E.
Maroney, D.M. Newbold, F.F. Wilson, P.R. Hobson, A. Khan, P. Kyberd, J.J. Nebren-
sky, M. Bly, C. Brew, S. Burke, R. Byrom, J. Coles, L.A. Cornwall, A. Djaoui, L. Field,
S.M. Fisher, G.T. Folkes, N.I. Geddes, J.C. Gordon, S.J.C. Hicks, J.G. Jensen, G. John-
son, D. Kant, D.P. Kelsey, G. Kuznetsov, J. Leake, R.P. Middleton, G.N. Patrick,
G. Prassas, B.J. Saunders, D. Ross, R.A. Sansum, T. Shah, B. Strong, O. Synge,
R. Tam, M. Thorpe, S. Traylen, J.F. Wheeler, N.G.H. White, A.J. Wilson, I. Antcheva,
E. Artiaga, J. Beringer, I.G. Bird, J. Casey, A.J. Cass, R. Chytracek, M.V.G. Torreira,
J. Generowicz, M. Girone, G. Govi, F. Harris, M. Heikkurinen, A. Horvath, E. Knezo,

https://twiki.cern.ch/twiki/bin/view/PanDA/PanDA
https://www.olcf.ornl.gov/for-users/system-user-guides/titan/running-jobs
https://www.olcf.ornl.gov/for-users/system-user-guides/titan/running-jobs
https://github.com/radical-cybertools/radical-saga
https://github.com/radical-cybertools/radical-saga
https://www.openshift.com
https://kubernetes.io/
http://dx.doi.org/10.1002/jcc.21287
https://doi.org/10.1109/SC.2005.72
http://dx.doi.org/10.1038/nrn1848
http://dx.doi.org/10.1038/nrn1848

Production Workload Management on Leadership Class Facilities 33

M. Litmaath, M. Lubeck, J. Moscicki, I. Neilson, E. Poinsignon, W. Pokorski, A. Ribon,
Z. Sekera, D.H. Smith, W.L. Tomlin, J.E. van Eldik, J. Wojcieszuk, F.M. Brochu, S. Das,
K. Harrison, M. Hayes, J.C. Hill, C.G. Lester, M.J. Palmer, M.A. Parker, M. Nelson,
M.R. Whalley, E.W.N. Glover, P. Anderson, P.J. Clark, A.D. Earl, A. Holt, A. Jackson,
B. Joo, R.D. Kenway, C.M. Maynard, J. Perry, L. Smith, S. Thorn, A.S. Trew, W.H.
Bell, M. Burgon-Lyon, D.G. Cameron, A.T. Doyle, A. Flavell, S.J. Hanlon, D.J. Martin,
G. McCance, A.P. Millar, C. Nicholson, S.K. Paterson, A. Pickford, P. Soler, F. Speirs,
R.S. Denis, A.S. Thompson, D. Britton, W. Cameron, D. Colling, G. Davies, P. Dor-
nan, U. Egede, K. Georgiou, P. Lewis, B. MacEvoy, S. Marr, J. Martyniak, H. Tallini,
S. Wakefield, R. Walker, I.A. Bertram, E. Bouhova-Thacker, D. Evans, R.C.W. Hen-
derson, R.W.L. Jones, P. Love, S. Downing, M.P. George, A.C. Irving, C. McNeile,
Z. Sroczynski, M. Tobin, A.J. Washbrook, R.J. Barlow, S. Dallison, G. Fairey, A. Forti,
R.E. Hughes-Jones, M.A.S. Jones, S. Kaushal, R. Marshall, A. McNab, S. Salih, J.C.
Werner, V. Bartsch, C. Cioffi, P. Gronbech, N. Harnew, J.F. Harris, B.T. Huffman,
M. Leslie, I. McArthur, R. Newman, A. Soroko, I. Stokes-Rees, S. Stonjek, J. Tseng,
D. Waters, G. Wilkinson, T.R. Arter, R.A. Cordenonsi, A.S. Datta, T. Hartin, S.L.
Lloyd, A.J. Martin, S.E. Pearce, C.J. Williams, M. Gardner, S. George, B.J. Green,
S. Johal, G. Rybkine, J.A. Strong, P. Teixeira-Dias, P. Hodgson, M. Robinson, D.R.
Tovey, N.J.C. Spooner, C.R. Allton, W. Armour, P. Clarke, P. Mealor, D. Waters,
B. Waugh, B. West, Journal of Physics G: Nuclear and Particle Physics 32(1), N1
(2006). URL http://stacks.iop.org/0954-3899/32/i=1/a=N01

28. R. Pordes, D. Petravick, B. Kramer, D. Olson, M. Livny, A. Roy, P. Avery, K. Blackburn,
T. Wenaus, F. Wrthwein, I. Foster, R. Gardner, M. Wilde, A. Blatecky, J. McGee,
R. Quick, Journal of Physics: Conference Series 78(1), 012057 (2007). URL http:

//stacks.iop.org/1742-6596/78/i=1/a=012057

29. R. Babich, M.A. Clark, B. Joó, in Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and Analysis (IEEE
Computer Society, Washington, DC, USA, 2010), SC ’10, pp. 1–11. DOI 10.1109/SC.
2010.40. URL https://doi.org/10.1109/SC.2010.40

30. A.D. Sakharov, Pisma Zh. Eksp. Teor. Fiz. 5, 32 (1967). DOI 10.1070/
PU1991v034n05ABEH002497. [Usp. Fiz. Nauk161,no.5,61(1991)]

31. S.K. Lamoreaux, R. Golub, Journal of Physics G: Nuclear and Particle Physics 36(10),
104002 (2009). URL http://stacks.iop.org/0954-3899/36/i=10/a=104002

http://stacks.iop.org/0954-3899/32/i=1/a=N01
http://stacks.iop.org/1742-6596/78/i=1/a=012057
http://stacks.iop.org/1742-6596/78/i=1/a=012057
https://doi.org/10.1109/SC.2010.40
http://stacks.iop.org/0954-3899/36/i=10/a=104002

	Introduction
	PanDA Workload Management System: Software System Overview
	Deploying PanDA Workload Management System on Titan
	Performance Characterization on Titan
	Workload Management Beyond HEP

