

iDDS
− intelligent Data Delivery Service −

Tadashi Maeno (BNL)
on behalf of iDDS/ESS project

2

Introduction
➢ The first prototype of Event Streaming Service (ESS) reported in ADC

Jumboree
– Rapid development for proof of concept
– Workflow of ESS

1. Panda sends a request to ESS Head Svc
2. ESS Head Svc forwards the request to a regional ESS Edge Svc
3. The Edge Svc downloads files and splits them to smaller segment files
4. Segment files are uploaded to a cache storage like object store
5. ESS Head Svc notifies Panda so that pilots get started
6. Each pilot gets event ranges from PanDA and resolves them to TURLs

of segment files by checking with ESS Head or Edge Svc
7. The pilot or payload downloads segment files from

the cache storage
– Issues in the prototype

• Only fine-grained processing is considered
➢ Enhancement for other use-cases could be

cumbersome
• Too ATLAS/PanDA specific
• A dedicated CPU cluster for each regional

ESS Edge Svc would be required
➢ 1 sec to produce 1 segment file per event

→ ~11 days for 1M event input data on
 SCORE

➢ Could be expensive to scale

https://docs.google.com/presentation/d/1mysBcl0CA69Q7mgYLs9xcs-qiL0i96amNLq2oSCYSno/edit#slide=id.p
https://docs.google.com/presentation/d/1mysBcl0CA69Q7mgYLs9xcs-qiL0i96amNLq2oSCYSno/edit#slide=id.p

3

Introduction (cntd)
➢ Requirements

– Experiment agnostic
– Flexibility to support more use-cases and backend systems
– Easy and cheaper deployment

➢ iDDS : intelligent Data Delivery Service
– A joint project between IRIS-HEP and ATLAS

• CMS use-cases should be taken into account from the beginning of the
initial design stage

– An intelligent service to preprocess and deliver data to consumers
• Data = files, file fragments, file information, or sets of files
• Not a storage, WFMS, or DDMS

– Generalization of ESS concept/workflow
• Fine grained processing is one of major use-cases
• More use-cases even in ATLAS (to be shown later)

– Workflow with iDDS
1. A requester sends a request to iDDS Head
2. iDDS agent downloads data from a source storage and preprocesses

them to produce temporary data
3. Temporary data are uploaded to a destination storage
4. iDDS Head notifies the requester, so that consumers get started
5. Consumers get information of temporary data from iDDS and consume

those data from the destination storage or via a cache storage
6. Temporary data are deleted if no further usage is foreseen

4

Requester iDDS
Head

Consumer

request

notify

download

upload

consume

ge
t +

 re
po

rt

Source
Storage

Destination
Storage

preprocess

delete

External
service

Cache /
Hop Storage

consume

Generalized Workflow with iDDS

● “Preprocess” is splitting for ESS-like
use-cases, but it is not only or always
splitting for other use-cases

● “Preprocess” and Consumer could
asynchronously run in parallel for
urgent processing

Input data

Temporary
data

Data info

● Requester = PanDA/JEDI
Consumer = the pilot
in ATLAS context

● Source and destination storages
can be the same

iDDS
agent

5

Types of Preprocessing
➢ Splitting

– To split files into small segment files
➢ Concatenation

– To concatenate or merge small files into large files
➢ Transformation

– To convert from a cold storage optimized format to a warm data
format, change compression level on the fly, marshal internal
data structure to a simplified GPU/ML friendly format, etc

➢ Thinning
– To remove objects from data which are unnecessary for

subsequent processing
➢ Extraction

– To obtain information from files which are used in subsequent
processing. For example, mapping from event numbers to offsets
+ data chunk sizes in files

➢ Filterling
– To select a subset of data used in subsequent processing

➢ Pre-staging
– To pre-stage files from slow disk/tape systems to warm storages

➢ Mixing
– To combine multiple source data to a single data

Not exclusive. Can be combined

6

Analogy to Media Streaming
1. An influencer uploads a RAW file to Amazon S3 and sends a
 request to iDDS

– Original data = the RAW file
– Source storage = Amazon S3

2. iDDS runs an agent close to Amazon S3 to convert the RAW
 file to many small TS files

– Preprocessing = encoding with H.264 + AAC (transformation) +
MPEG-2 transport stream segmentation (splitting)

– Temporary data = TS files
3. TS files are uploaded to a storage behind an HTTP server

– Destination storage = the storage behind HTTP
4. The influencer gets notified, so that he/she invites followers
5. Each follower launches a web browser and gets an m3u8 file
 from iDDS

– Information of temporary data = the m3u8 file
– Consumer = web browser

6. The web browser asynchronously downloads TS files through
 HTTP server + CDN/proxy to play video and audio

– Cache = CDN/proxy
– Subsequent processing = playing video and audio

≃ Fine-grained processing with temporary data

7

Keys of iDDS
➢ Plugin structure

– To be experiment agnostic and to be easily extended to newly emerging
use-cases

➢ Preprocessing agents
– Flexibility

• To support various (new) types of preprocessing
– Potentially very resource intensive

• The ESS prototype ran agents locally on the same node where ESS Head
Svc was running
➢ FTS like deployment model : A dedicated resource pool is required

per ESS node
– One possibility is to delegate execution of preprocessing to WFMS

• Resources, data transfer mechanism, and workload scheduling for free
➢ PandaMover like deployment model

– Data reduction by preprocessing is important to decrease data traffic over
WAN and improve overall data processing throughput

➢ Scheduling of preprocessing agents
– Mostly rely on WFMS
– Additional hints for smarter brokerage, such as consumer’s location, reduction

factor of preprocessing, priorities of subsequent processing, and so on
➢ Placement of temporary data

– Two obvious placement policies: Close to the original data or to consumers
– Intelligent data placement based on scientific data contents, current

network/storage metrics and prediction, and subsequent processing
– To leverage cache hierarchy in data pulls

8

Requester iDDS
Head

Consumer

request

notify
co

ns
um

e

ge
t +

 re
po

rt

Source
Storage

preprocess

External
service

consume

Fine-grained Processing without Temporary Files

Input data

Data info

● Data info could be, for example,
mapping from event numbers to
offsets + data chunk sizes in files

Cache /
Hop Storage

9

Requester iDDS
Head

Consumer

request

notify

consume

Source
Storage

Destination
Storage

preprocess

delete

External
service

consume

Dynamic Data Placement (PD2P) or Tape Carousel

● Data moved by DDMS
● “Preprocess” does nothing
● Intelligence for data placement

and deletion mechanism could
help here

Input data

Data
replica

Cache /
Hop Storage

Input data

preprocess

10

Requester iDDS
Head

Consumer

request

notify

consume

ge
t +

 re
po

rt

Source
Storage

Destination
Storage

delete

External
service

consume

Marshalling to GPU/ML-friendly Format

● E.g. tracks would be extracted from
multiple events and would be combined
into a track set

● GPU would process per track set
instead of per event

Temporary
data

A list of events

Tracks

A list of track sets

Data info

● One-time marshalling by iDDS rather
than repeating real-time marshalling in
each consumer per iteration

Cache /
Hop Storage

11

iDDS
Head

Harvester

request

notify

download

upload

ge
t +

 re
po

rt

Local
DATADISK

Local/Regional
Object Store

preprocess

Remote Object
Store

fetch

iDDS + Harvester for ATLAS HPC

Input data

Temporary
data

Data info

● PanDA/JEDI is a requester in addition
to backend engine for preprocessing

● The pilot is a preprocessing agent
● WAN transfer by Rucio/FTS
● On-demand data motion to shared FS

at HPC while jobs are running

pilot

submit
task

schedule

Tr
an

sf
er

ov

er
 W

AN

transfer
request

Shared FS

HPC

fetch

job

12

Requester

Receptor Notifier

Request Notification

Converter Submitter

Monitor

External Svc

Callback

Consumer

External Svc

Preprocessing
Task

Dispatcher

Collector
DB

Object between
iDDS and Actor

Daemon
In iDDS

iDDS

Collect information

Check + Retrieve

Polling

Sweeper
Delete files

Data
Information

Get + Report

Preprocessing
Agent

Preprocessing
resource provider

iDDS Architecture (Preliminary)

13

Current Status and Plans
➢ Conceptual modeling of iDDS has been done based on

the assessment for ESS prototype
➢ Requirements document to be finished by the end of

the month
– Full architecture design
– Database structure
– Definition of daemons, agents, and API

➢ Development model to be established
– Coding rule
– HSF hosted github repository
– Regular meeting
– Mailing list hsf-event-processing-wg@googlegroup.com
– Manpower
– Milestones
– ...

➢ Details will be discussed in WFMS TIM in Ljubljana
next month

14

Appendix

➢ ESS prototype
https://docs.google.com/presentation/d/1mysBcl0CA69Q7mgYLs9xcs-qiL
0i96amNLq2oSCYSno/edit?usp=sharing

➢ ESS git repository
https://github.com/PanDAWMS/ESS

➢ JLab meeting notes
https://docs.google.com/document/d/1S-BUncPBZmbTCffeI3BVevtorLO
Gm_o8riAbc_Y_S08/edit#heading=h.g4t3nsmnzgch

➢ iDDS requirements document (to be finished)
https://docs.google.com/document/d/1asIefhqvGfkD6aiWH9QgGN7np_t
IC_3m7CfDaocGeJw/edit?usp=sharing

https://docs.google.com/presentation/d/1mysBcl0CA69Q7mgYLs9xcs-qiL0i96amNLq2oSCYSno/edit?usp=sharing
https://docs.google.com/presentation/d/1mysBcl0CA69Q7mgYLs9xcs-qiL0i96amNLq2oSCYSno/edit?usp=sharing
https://github.com/PanDAWMS/ESS
https://docs.google.com/document/d/1S-BUncPBZmbTCffeI3BVevtorLOGm_o8riAbc_Y_S08/edit#heading=h.g4t3nsmnzgch
https://docs.google.com/document/d/1S-BUncPBZmbTCffeI3BVevtorLOGm_o8riAbc_Y_S08/edit#heading=h.g4t3nsmnzgch
https://docs.google.com/document/d/1asIefhqvGfkD6aiWH9QgGN7np_tIC_3m7CfDaocGeJw/edit?usp=sharing
https://docs.google.com/document/d/1asIefhqvGfkD6aiWH9QgGN7np_tIC_3m7CfDaocGeJw/edit?usp=sharing

