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ATLAS and LHC high luminosity
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 LHC: 14 TeV proton-proton collider at CERN, Geneva
 ATLAS: one of the four main experiments at the LHC
 General purpose detector for discovery of new physics and 

precise measurements
 Layered detector: tracker, electromagnetic calorimeter, 

hadronic calorimeter, Muon spectrometer
 LHC will be upgraded in 2024-2026 to High Luminosity LHC 

 HL-LHC
 Instantaneous luminosity higher than present conditions 

 To maintain performance ATLAS will be upgraded (phase-II) 
for HL-LHC
 The inner detector will be replaced (ITk project)
 New readout electronics for EM and Hadronic calorimeters
 Upgraded muon detector
 TDAQ system will be completely re-worked
 New end-cap timing pixel detector: HGTD



HGTD position in ATLAS
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High Granularity Timing Detector (HGTD) 
will replace current MinBias detector

Requirements
 Time resolution < 30-50ps per track
 Occupancy < 10%
 Radiation hardness up to 5.4E15 Neq/cm2



HGTD sensors - LGADs
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 LGAD: silicon detector with a thin (<5μm) and highly doped 
(~1016 P++) multiplication layer
 High electric field in the multiplication layer

 LGADs have intrinsic modest internal gain (10-50)
 G = 𝑄𝑄𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

𝑄𝑄𝑃𝑃𝑃𝑃𝑃𝑃
(collected charge of LGAD vs same size PiN)

 Better signal to noise ratio, sharp rise edge
 50 μm, 35 μm thin detectors

 Thinner detectors have shorter rise time and less Landau 
fluctuations

 Time resolution < 30 ps

 Several vendors of thin LGADs for HGTD
 HPK (Japan), FBK (Italy), CNM (Spain), BNL (USA), IHEP (China)



LGADs timing resolution
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Sensor time resolution main terms

 Time walk: 
 Minimized by using for time reference the % CFD 

(constant fraction discriminator) instead of  time 
over threshold

 In HGTD electronics TOA (Time of Arrival) of the 
signal is corrected with TOT (Time over threshold)

 Landau term: 
 Reduced for thinner sensors (50,35 μm)

 Jitter:
 Proportional to �1 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
 Reduced by increasing S/N ratio with gain



Radiation damage on LGADs
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 Most widely accepted radiation damage explanation 
for LGADs is acceptor removal
 M. Ferrero et al. arXiv:1802.01745, G. Kramberger et al. JINST 10 (2015) P07006

 Radiation damage for LGADs can be parameterized
 𝑁𝑁𝐴𝐴(𝜙𝜙) = 𝑔𝑔𝑒𝑒𝑒𝑒𝑒𝑒𝜙𝜙 + 𝑁𝑁𝐴𝐴(𝜙𝜙=0)𝑒𝑒−𝑐𝑐𝑐𝑐

 Acceptor creation: 𝑔𝑔𝑒𝑒𝑒𝑒𝑒𝑒𝜙𝜙
 By creation of deep traps

 Initial acceptor removal mechanism: 𝑁𝑁𝐴𝐴(𝜙𝜙=0)𝑒𝑒−𝑐𝑐𝑐𝑐
 Ionizing radiation produces interstitial Si atoms 
 Interstitials inactivate the doping elements (Boron) via 

kick-out reactions that produce ion-acceptor complexes
 Reduction of gain

Multiplication layer

Bulk

Y. Zhao et al. 10.1016/j.nima.2018.08.040

5E15 Neq/cm2

Pre-rad

Y. Zhao presentation at ULITIMA conference
https://indico.fnal.gov/event/ANLHEP1390/session/8/contribution/68/material/slides/0.pdf

https://indico.fnal.gov/event/ANLHEP1390/session/8/contribution/68/material/slides/0.pdf


Irradiation campaigns on LGADs
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 Irradiation campaign on LGADs
 Sensors were irradiated at 

 JSI (Lubiana) with ~1 MeV neutrons
 PS-IRRAD (CERN) with 23 GeV protons
 Los Alamos (US) with 800 MeV protons
 CYRIC (KEK, Japan) with 70 MeV protons
 X-rays at IHEP (China)

 Neutron irradiation for fluence
 From 1E13 Neq/cm2 1E16 Neq/cm2

 Proton (and X-ray) irradiation for fluence and 
ionizing dose
 Up to 4MGy



Sensor testing – Sr90 telescope
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 Dynamic laboratory testing
 Using MiP electrons Sr90 β-source
 Signal shape, noise, collected charge, gain, time 

resolution

 β-telescope
 Sensors mounted on analog readout board designed at 

UCSC (Ned Spencer, Max Wilder, Zach Galloway) with fast amplifier 
(22 ohm input impedance, bandwidth > 1GHz)

 Trigger sensor (fast timing trigger) on the back
 DUT (Device Under Test) is read in coincidence

 Setup in climate chamber to run cold and dry
 20C/-20C/-30C

 (no position information)

LGAD



HGTD sensors under study
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 HPK Type 3.1
 50 um detector, thin gain layer

 HPK Type 3.2
 50um, deep and thin gain layer

 HPK G30 (prototype)
 35um
 Will be updated soon with new production

 FBK UFSD3
 50um, Carbon implantation

 4 sensors in consideration for HGTD at the moment
 Hamamatsu (HPK) and Fondazione Bruno Kessler (FBK)



Mitigation of radiation damage on LGADs
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 Studies ongoing to mitigate the effect of radiation 
damage on multiplication layer

 Gallium as dopant instead of Boron (proven not 
effective and more expensive)

 Carbon infusion (FBK)
 Carbon is electrically inactive (no effect pre-irradiation)
 Slight reduction of gain pre-rad because of implantation 

procedure
 Reduces acceptor removal after irradiation

1.5E15 Neq/cm2

Boron+Carbon sensor
Gain ~10

1.5E15 Neq/cm2

Boron sensor
Gain ~3

S.M. Mazza et al. arXiv:1804.05449

M. Ferrero et al. arXiv:1802.01745
Y. Zhao et al. 10.1016/j.nima.2018.08.040



Deep multiplication layer
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 Thin but highly doped multiplication 
layer (HPK 3.1, HPK 3.2)
 Higher initial doping concentration would 

take more time to be inactivated

 Deep multiplication layer (HPK 3.2)
 High field for larger volume
 Very high gain pre-rad, operational issues

 Multiplication layer between 1um to 
2um in instead of 0.5-1 um

“Regular” LGAD



Collected charge
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 HPK 3.1 behaves good until 
1.5E15 Neq

 HPK 3.2 is generally better 
after irradiation than 3.1 up to 
3E15 Neq

 FBK shows the higher 
collected charge for 3E15 Neq

 HPK 30um shows the lowest 
collected charge (because of 
thickness)
 However operates at lower 

voltages (less power dissipation)

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LArHGTDPublicPlots#2018_2019_Sensor_Performance_TDR

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LArHGTDPublicPlots#2018_2019_Sensor_Performance_TDR


Other facilities with proton irradiation
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 HPK 3.1 tested also at proton 
irradiation facilities
 Los Alamos (US) with 800 MeV protons
 CYRIC (KEK, Japan) with 70 MeV 

protons

 The two proton irradiation match in 
term of NIEL factor at 1e15 Neq

 Unfortunately we received HPK 3.1 
sensors after CERN IRRAD facility 
shutdown

 Results are in agreement with neutron 
data in terms of equivalent fluence



Collected charge for FBK carbon
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 High fluence data updated since 
TDR public plots

 Carbon seems to be effective up 
to 3E15 Neq

 Then performance drops quickly 
for 4E15 Neq
 At 5E15 and 6E15 Neq behaves like 

a PiN



Collected charge over fluence 
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 Shown for Vmax and 0.95*Vmax
 Indication of properties change 

with bias Voltage

 30um detector has a very “steep” 
behavior
 Collected charge changes abruptly 

with bias Voltage at high fluences

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LArHGTDPublicPlots#2018_2019_Sensor_Performance_TDR

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LArHGTDPublicPlots#2018_2019_Sensor_Performance_TDR


Time resolution
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 HPK 3.1 has <40ps of time 
resolution up to 1.5E15 Neq
 Then 55ps for 3E15 Neq

 HPK 3.2 has 45ps of time 
resolution at 3E15 Neq
 However bad pre-rad performance 

(60ps)

 FBK has worse time resolution 
pre-rad but post-rad performance 
in line with HPK

 HPK 30um has the best time 
resolution
 <20ps pre-rad and 40ps at 3E15Neq

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LArHGTDPublicPlots#2018_2019_Sensor_Performance_TDR

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LArHGTDPublicPlots#2018_2019_Sensor_Performance_TDR


Leakage current increase with fluence
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 Current for each pad of an array
 For HPK-3.1, other sensors have 

similar current

 Pre-rad current is ~1 nA
 A few uA for the highest fluence
 5uA maximum manageable per-

pad by HGTD electronic readout 
(ALTIROC)

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LArHGTDPublicPlots#2018_2019_Sensor_Performance_TDR

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LArHGTDPublicPlots#2018_2019_Sensor_Performance_TDR


Sensor testing – Laser TCT
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 Measurement of several sensors with 
different inter-pad gap
 Using IR laser

 50%-50% between pads is 70-130um
 ~40um higher than the value quoted by the 

vendor
 Also depending on bias Voltage applied to the 

sensor

 This was observed to vary with voltage



Test beam
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 Hit efficiency studied with Pions test 
beam at CERN

 Results for 2x2 CNM arrays
 Un-irradiated detectors (top)
 Efficiency ~100% in the center, ~50% in 

the edges and interpad region
 Time resolution ~30ps in the center, up to 

80ps in the edges
 After an irradiation of 6E14 Neq/cm2

 Efficiency is still ~100% in the center but 
time resolution is higher (40-50ps)

 Test beam were also conducted at 
Fermilab, SLAC and DESY

arXiv:1804.00622

Non irradiated sensors

After 6e14 Neq/cm2 of irradiation

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LArHGTDPublicPlots#2018_2019_Sensor_Performance_TDR

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LArHGTDPublicPlots#2018_2019_Sensor_Performance_TDR


Future prospect – deep + Carbon
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 Combine Carbon (FBK) with deep implantation (HPK 3.2)
 Preliminary simulation with Weightfield2 predict a collected charge of 5 fC at 6E15 Neq!
 FBK will do a production that will be ready by Dec. 2019

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LArHGTDPublicPlots#2018_2019_Sensor_Performance_TDR

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LArHGTDPublicPlots#2018_2019_Sensor_Performance_TDR


Conclusions
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 Several options to increase the radiation hardness of 
LGADs
 Carbon, thin and deep gain layer
 Reasonable performance up to 3E15Neq
 Ionization dose (Protons) does not seem to have an additional 

effect
 Next steps

 Analyze bulk irradiation (5x sensors per fluence) of HPK Type 3.1 
and 3.2

 Test irradiated HPK Type 1.1, 1.2, 2 (new 35um sensors)
 Sensor resistance after irradiation

 Sensors combining Carbon and deep implantation 
should be ready Dec. 2019

 HGTD is going forward
 TDR is being updated, it will be ready for April 2020

 New public results: 
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LArHGTDPublicPlots

RnD ends
Production starts Installation

Today

Assembly

Sensors
plans

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LArHGTDPublicPlots
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Backup
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LGADs timing resolution
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Sensor time resolution main terms

 Time walk: 
 Minimized by using for time reference the 

% CFD (constant fraction discriminator) 
instead of  time over threshold

 Landau term: 
 Reduced for thinner sensors (50,35 μm)

 Jitter:
 Proportional to �1 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑

 Reduced by increasing S/N ratio with gain



HGTD sensors 50 um vs 30 um
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 High gain  very low jitter 
contribution to the time 
resolution

 Time resolution is driven by 
Landau component
 Depends on sensor thickness



Radiation damage sustained
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 Total fluence for HL-LHC is 
 7.35E15 Neq/cm2 at 10 cm radius (central region).
 3.7E15 Neq/cm2 at 32 cm radius.
 Values are taking into account a ~2 safety factor.

 The inner wheel of HGTD (extending up to 32 cm 
of radius) will be replaced at mid-run of HL-LHC 
because of radiation damage.
 ~32% of sensors/ASICs will be changed

Inner wheel



Sensor testing – IV/CV
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 Current over voltage (IV)
 Verify LGAD performance, breakdown voltage

 Capacitance over voltage (CV)
 Study doping concentration profile and full depletion 

of the sensor 
 Study of the “foot” for LGADs on 1/C2: 

 1/C2 is flat until depletion of multiplication layer 
because of the high doping concentration

 Proportional to gain layer active concentration
 Bulk doping concentration proportional to the 

slope in 1/C2 

M. Ferrero et al. arXiv:1802.01745

“foot” changes with
radiation damage

Y. Zhao et al. 10.1016/j.nima.2018.08.040



ALTIROC 0v2 results at October CERN Test beam
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 Applied correction to Time of Arrival as a function of the Amplitude
 ALTIROC 0v2 (bump bonded to CNM 2x2 LGAD) shows 35ps of 

time resolution 
 After time walk correction



Readout electronics
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 Goal: maintain the time resolution of the 
sensor

 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒2 = 𝜎𝜎𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿2 + 𝜎𝜎𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗2 + 𝜎𝜎𝑇𝑇𝑇𝑇2 + 𝜎𝜎𝑇𝑇𝑇𝑇𝑇𝑇2

 𝜎𝜎𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿2 sensor only

 𝜎𝜎𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗2 + 𝜎𝜎𝑇𝑇𝑇𝑇2 are from the analog electronics

 TOA (Time of Arrival) of the signal is 
corrected with TOT (Time over threshold)
 Emulate the effect of % CFD in the ASIC

 After correction 𝜎𝜎𝑇𝑇𝑇𝑇< 10ps

 If 𝜎𝜎𝑇𝑇𝑇𝑇𝑇𝑇 is ~20ps it will increase the total 
time resolution by 5ps (acceptable)

Two different amplifiers

One pixel cell



Readout electronics
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 Preamplifier: broad band amplifier
 Size of input transistor optimized to minimize noise and 

power consumption
 Rise time ~0.5-1 ns (as the sensor) to minimize the jitter
 Designed for 1-2 μA leakage current of the sensor

 Bunch by bunch luminosity measurement capability
 Sums of hits in two time windows to evaluate the background 

bunch by bunch
 (Only a subsets of ASICS is used for luminosity calculation)

 ASIC has to withstand high radiation levels
 Inner circle will be replaced with the LGADs
 Irradiation campaign will be done also on the ALTIROC chip



Readout electronics
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 ToA and ToTTDCs with slow and fast delay line with 
20ps (ToA) and 40ps (TOT) time measurement bins 

 Per pixel hit buffer memory, passed over only if there 
is signal from L0/L1 triggers

 ALTIROC 0v2 tested at CERN October test beam
 Applied correction to Time of Arrival as a function of the 

Amplitude
 ALTIROC 0v2 (bump bonded to CNM 2x2 

LGAD) shows 35ps of time resolution after 
time walk correction

 ALTIROC 1: working with 5 × 5 LGAD arrays, testing will 
start soon with a test FPGA developed by SLAC
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