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Outline

• Low Gain Avalanche Diode (LGAD) R&D

→High  Energy Physics and Photon Science

▪ fabrication

▪ measurements

All silicon process done in BNL Instrumentation Division Class-100 Clean Room

Furnaces for dry 

oxidations and 

annealings

Double-sided 

mask aligner

Wet bench

(HF, RCA I & II, 

piranha, 

polyetch, …)

Sputtering 

(Al, Al1%Si, 

Ti)

RTA for sintering Laser dicing

• HV silicon JFET 

→ for multiplexing in ATLAS ITk

▪ concept

▪ Measurements after irradiation 

(TRIGA, JSI, Ljubljana, Slovenia)

+ dry etching and thin-film deposition, but we need to outsource:

• Ion implantation

• Polysilicon deposition
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Si-Fab, Si-Lab, and Interconnect Lab. 

• BNL resources used for Silicon R&D 
- Silicon Fabrication Facility in BNL Instrumentation Div (Si-Fab)

- Capabilities for wire and bump bonding in BNL Instr. Div. (High Density 
Interconnect Lab.)

- Laboratory to fully characterize, design and simulate silicon sensors and exp. 
apparatuses  (Si-Lab)

Flip-Chip bonder

Wire Bonding 

Shear /Pull tester 

Bump Deposition

Reflow Oven

Micro Dot 

dispensing

Interconnect Lab 

• High Density Interconnect Lab 

➔ wire and bump bonding etc.

Si-Lab 

• Si-Lab : probe station, TCT, 
ambient chamber, rad. sources, 
instruments, DAQ equipment etc.
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LGAD fabrication at BNL

gain

n+

• 4” p-type epitaxial wafers (100), NA~<1e14cm-3, 50mm thick

(→ Vdepl ~120V). Also FZ used.

• 4 ion implantations (JTE and gain at high energy)

• 6 photolithographic masks

• p-spray isolation (patterned externally to the active area to avoid 

implant on gain region). 

• Little thermal drive-in (mainly for the JTE – Junction Termination Edge 

for protection from high E at the border of the shallow n+ implant)

• layout with pads of 1x1 mm2, 2x2 mm2, 3x3 mm2 and arrays.

0.5mm

JTE

GR termination

GR @GND

Edge of the n+ Gain layer n+
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LGAD fabrication at BNL

4 ion-implantations (Innovion, San Jose):

• JTE layer as deep as possible (~400keV) → channeling effect on 100 substrates

• p-spray (2e12cm-2), external to the active area

• Gain layer as deep as possible, within the JTE 

• N+ as shallow as possible

(to avoid compensation of gain layer)

Gain layer edge terminates on JTE 

(not necessary, though…)
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Multi Guard-Ring Termination

(over dimensioned, 

because it must be a general 

purpose termination)



I-V

BNL’s LGADs :
• Leakage current as measured on diodes (gain=1) 1x1 mm2 is ~ 10pA (1nA/cm2)

• Consistent from batch to batch

• Clearly current depends on gain layer dose, so does the breakdown voltage

• GR can stand higher voltages
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Doping profile of gain layer

Diode
LGAD

Shift of the full Vdepl

by the Vdepl, gain.

At depletion, 

capacitance as 

expected 

C=eA/thepi

Depletion of Gain Layer



Gain Measurements

Integral(waveform[Vs]) / Rfeedback

→ charge[C]

2.25V

-HV
calibration

1Ghz scope (50Ohm termination)TA board from SCIPP
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Gain Measurements -TA

signals from a 90Sr source, TA measurements

BNL, w1837, 200V

HPK, 3.1 w7, 180V

BNL, w1840, 160V

HPK 3.1, w7, 240V

Spectra from different LGADs 

mounted on SCIPP TA boards
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Broad peaks are due to multiplication noise. 

Pulser peaks are very narrow in this scale

• 251 Am, 55Fe + (Cu, Rb, Mo, Ag, Ba, Tb K lines generated by 60keV X-rays against targets) 

• Signal from 55Fe ~ ½ m.i.p. in 50mm of Silicon. 

Gain Measurements - CSA

signals from X-ray sources
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Next steps - 1

Upgrading of the probe station for 

“cold” I-V & C-V of irradiated devices
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chuck

platen

~air-tight cap

peltier

Irradiation campaigns:
• Los Alamos (800-MeV protons)

• Tandem Van der Graaff (BNL) (26-MeV protons)

• TRIGA JSI (neutrons)

• Up to 1e16 n/cm2, in steps

platen

chuck



Next steps - 2

Telescope for timing measurements:

Beta scope as SCIPP
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SCIPP TA on 3D-printed support

climate chamber

3D-printed telescope

90Sr holder

Also multi-channel TA from FermiLab



G. Giacomini, et al., “Fabrication and Electrical Characterization of High-Voltage Silicon JFETs”, 2019 JINST 14 P05007.

G. Giacomini, et al., “High-Voltage Silicon JFET for HV Multiplexing for the ATLAS MicroStrip Staves” POS(TWEPP2018)030.

G. Giacomini, et al., “A HV Silicon vertical JFET: TCAD simulations,” Nucl. Instrum. Methods A, vol. 919, 2019 , pp. 119-124.

Irradiated at the TRIGA reactor at JSI with 4e14, 8e14, 1.5 e15 neq/cm2
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The vertical HV Silicon JFET

We can modify the structure of the standard JFET by making a gap in the bottom-gate.

Over the gap, the top-gate. The channel and the source as in the standard JFET. The drain is the back contact.

The current flows (= drifts) from source to drain through the gap in the bottom-gate.

The high voltage applied to the drain falls in the thick substrate, being the bottom-gate almost a planar implant.
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Originally, conceived as a rad-hard switch to be used in the ATLAS ITk HV-Mux.

GaN JFETs are very rad-hard, so HV-Mux will go with GaN.

bottom gate

top gatesource drain

channel length

bottom gate

source source

channel length

top gate

drain

hole

Substrate (epi, FZ)

The highest electric field develops at the 

junction top-gate/channel, so special care 

in the choice of the parameters (hole width, 

channel doping concentration).

GR termination also needed at the border 

of the bottom-gate.



The layout

Interdigitated design to increase the gate width and thus the ON current (especially after irradiation).

The active area is 1x1 mm2, which sets the gate width to 20 cm.

Triode configuration, top-gate connected to the bottom-gate.

6 photolithographic masks, 4 implants.

Both n-type and p-type JFET, on 4” epitaxial wafers (TOPSIL): 50mm thick, NC~ 1e14cm-3.
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I-V characteristics before irradiation

Splittings on the channel dose.

At the lower doses, the channel was pinched-off already at Vgate=0V

The higher the dose, the lower VBD.
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Irradiation results

Neutrons at TRIGA, JSI
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Conclusions and Outlook

• Silicon Clean Room has fabricated LGAD with good performances

Still, some place for improvement (shallower implants, ..)

• Silicon lab testing capabilities to be expanded (cold probe station, 

beta scope)

X-ray gain measurements to be closely investigated

• HV-JFET fabricated tested and irradiated.

irradiation results to be understood by means of TCAD



BACK-UP



p-type epi-layer

Low-r p++ substrate

oxide

JTE
Guard Ringp+ Gain Layer

p-spray (or p-stop)

n+

metal contact
to FEE

Substrate metal contact

30-50 mm: the thin substrate of a few tens of 
microns allow fast carrier collection.

LGAD are intended to be used in HEP thanks to their fast-timing properties, (timing detectors for the 

upgrades of the ATLAS and CMS at the High Luminosity LHC) . 

• Same principle of APD but lower gain, without breakdown

• Electrons must initiate the avalanche, not holes → p-type substrates/gain layers

• Multiplication layer must be uniform (no pixel or strips in the multiplication region: only pads ~mm2)

The main characteristic is a thin and highly-
doped p+ gain layer under the pad that 
enhances the Electric Field and provides 
internal and moderate gain (~ 10-20), that 
boosts the signal. 

LGAD structure 3
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