Recent studies and characterization of UFSD sensors

M. Ferrero¹, R. Arcidiacono⁴, G. Borghi⁵, M. Boscardin⁵, N. Cartiglia¹, M. Costa², G.F. Dalla Betta³, F. Ficorella⁵, G.Gioachin², M. Mandurrino¹, M.M. Obertino², L. Pancheri³, G. Paternoster⁵, F. Siviero², V. Sola^{1,2}, A. Staiano¹, M. Tornago²

> 1INFN, Torino, Italy 2Università di Torino, Torino, Italy ³University of Trento and INFN, Department of Industrial Engineering, Trento, Italy 4Università del Piemonte Orientale, Novara, Italy 5Fondazione Bruno Kessler (FBK), Trento, Italy

Outline **Outline**

Ø **Gain uniformity** on FBK -UFSD3 and HPK -Exx28995 -Type3.1 productions:

- gain layer depletion voltage non -uniformity
- Collection charge
- Ø Characterization of FBK -UFSD2 **50µm** ± **1µm thick PiN diodes irradiated** at high fluences, 10¹⁵-10¹⁶ n_{eq}/cm²
	- Acceptor creation
	- Gain at high Electric field >100 kV/cm
	- Charge collection efficiency

Outline **Outline**

Ø **Gain uniformity** on FBK -UFSD3 and HPK -Exx28995 -Type3.1 productions:

- gain layer depletion voltage non -uniformity
- Collection charge
- Ø Characterization of FBK -UFSD2 **50µm** ± **1µm thick PiN diodes** irradiated at high fluences, 10¹⁵-10¹⁶ n_{eq}/cm²
	- Acceptor creation
	- Gain at high Electric field >100 kV/cm
	- Charge collection efficiency

Active acceptor density into gain layer from C-V measurements

Depletion voltage of gain layer (V_{GL}) is proportional to amount of the active doping **of the gain layer**

$$
V_{GL} = \frac{qN_Aw^2}{2\varepsilon_{Si}}
$$

$$
w \rightarrow \text{gain layer thickness}
$$

$$
N_A \rightarrow \text{Active doping concentration}
$$

Gain uniformity measurement on single wafers is based on C-V measurements on a set of sensors

Voltage foot and gain layer position

Voltage to deplete the gain layer of thickness **w**:

 $V_{GL}=\frac{Nqw^2}{2s}$ $2\varepsilon_{Si}$

Electric field at the end of the gain layer

 $E_{GL} = \frac{dV_{GL}}{dw} = 2 *$ **Nqw** $2\varepsilon_{Si}$

In the gap **d** the Electric field is a constant (assuming no doping) while the voltage increases linearly:

$$
E_{Gap} = \frac{dV_{Gap}}{dw} = 2 * \frac{Nqw}{2\varepsilon_{Si}}
$$

$$
V_{Gap} = E_{Gap} * d = 2 * \frac{V_{GL}}{W}d
$$

The voltage to deplete the foot is:

$$
V_{foot} = V_{GL} * (1 + 2 * \frac{d}{w})
$$

HPK Type 3.2 7.5 V 49 V 57.7 V

The voltage of the foot is mostly use to create the field in the gap!

TCAD simulation of VGL_{depl} Vs GL depth

Same gain layer implanted at increasing depth:

the depletion voltage of the gain layer is linear with depth

V on HP Gain uniformity on HPK and FBK UFSDs

- Measurements on **UFSD3 production (50 µm thick)**
- Three wafers measured W1/W2/W4

- **Different gain layer dose** in wafer under test
- Measurement performed on array 2x2 $(1x3 \text{ mm}^2)$

Gain uniformity on single wafer $\vert \vert$ **production**

HPK

- Measurements on **production EXX28995 (type 3.1) (45 µm thick)**
- Five wafers measured W1/W2/W3/W4/W8
- **equal gain layer shape** and **dose** in all wafers
- Measurement performed on single pad $(1x3 \text{ mm}^2)$

Gain non-uniformity in a multi wafers

 $\overline{\overline{y}}$

FBK gain uniformity on single wafer

HPK gain uniformity on single wafer

HPK gain uniformity on multi-wafers production

In a multi-wafers production a non-uniformity of p-gain dose between the wafers is summed to the non-uniformity on the single wafer

HPK shows an overall non-uniformity of ~**2.7%**

Effect of gain non-uniformity on charge collection in HPK UFSD

Four sensors selected for charge collection measurements

A bias increment of 30V is required to collect the same amount of charge in UFSD with lower p-gain dose

30V/2.7% = 11 V/% It takes ~ 11V to compensate for a 1% doping difference

Effect of gain layer doping variation on charge collection in HPK UFSD

Gain layer doping variation of few % induces a charge collection variation of 10s%

Simulation of gain vs doping

Very good agreement of data and simulation

Outline **Outline**

Ø **Gain uniformity** on FBK -UFSD3 and HPK -Exx28995 -Type3.1 productions:

- gain layer depletion voltage non-uniformity
- Collection charge
- Ø Characterization of FBK -UFSD2 **50µm** ± **1µm thick PiN diodes irradiated** at high fluences, 10¹⁵-10¹⁶ n_{eq}/cm²
	- Acceptor creation
	- Gain at high Electric field >100 kV/cm
	- Charge collection efficiency

Measurement setup

- \triangleright Particulars TCT setup:
- \triangleright IR pulsed laser 1064nm \rightarrow 10-20 µm spot diameter
- \triangleright Chiller Lauda Eco Silver Re1050 for cooling
- \triangleright InGaAs Reference diode + laser splitter 10%-90% to check laser stability
- \triangleright CIVIDEC Broadband amplifier \rightarrow 40dB
- \triangleright Lecroy Oscilloscope (BW 4GHz, 40Gsample/s) for data acquisition

Lecroy oscilloscope

Irradiation campaign

- \triangleright FBK UFSD2 single pad PiN sensors:
	- FZ bulk with active thickness of 50 μ m \pm 1 μ m (from CV measurements)
- \triangleright Neutron irradiation in Ljubljana (2018 irradiation campaign) (AIDA2020) \rightarrow thank you GK and friends!
- Fluence steps: 0,8/1,5/3/6/10*10¹⁵ n_{eq}/cm²

PiN 's operating range @-20°C:

- Not irradiated and irradiated at 8E14 \rightarrow Breakdown at \sim 400V
- Irradiated above 8E14 \rightarrow Breakdown at \sim 750V

PiN

Gain in irradiated 50µm PiN diodes

Acceptor creation in irradiated 50µm FZ bulk

$$
N_A(\emptyset) = \boldsymbol{g_{eff}}\emptyset \qquad \text{g}_{\sf eff} \sim 0.02 \text{ cm}^{-1}
$$

$$
g_{\text{eff}}\sim0.02\ \text{cm}^{\text{-1}}
$$

Expected linear acceptor creation as a function of fluence

Full depletion voltage in irradiated 50µm PiN diodes

Full depletion voltage in **PiN diodes (50µm thick, -20°C) irradiated at 6E15 and 1E16** n_{eg}/cm² are very close, not in agreement with the expected trend by acceptor creation law.

Acceptor creation in 50µm PiN diodes

Acceptor creation saturation above 6E15 n_{eq}/cm²?

Charge collection efficiency in 50µm PiN diodes

- \triangleright CCE decreases until fluence 3E15 n_{eq}/cm²
- \triangleright CCE of about 60%-80% at 1E16 n_{eq}/cm²
- CCE saturation above 3E15 n_{eq}/cm²

2D calculation of superposition

- Define a particle hit on the surface by a small square a_0 (for example 1 \AA^2)
- Calculate the probability for the $(n+1)$ th particle to hit an empty square

- 1) Probability for a particle to hit a square = a_0 / cm2 = 1E-18
- 2) Probability for a particle to miss a square: $1 1E-18$
- 3) Probability for a particle to hit a square that has been missed by the previous $n = (1 1E-18)^n$
- 4) This is a Poisson probability problem, with parameter a_{o}

After 5E15 n/cm2, the probability of hitting an Amstrong square already hit is 50%

Conclusion

Gain uniformity:

- \triangleright **FBK**-UFSD3: gain layer implant uniformity on **single wafer** \sim 2%
- Ø **HPK**-Type3.1: gain layer implant uniformity on **single wafer 0.5%-1** gain layer implant uniformity on **production** ~ **2.7%**
- \triangleright Variation of \sim % on fraction of gain layer doping is equivalent at tens% of variation in collected charge

Irradiated PiN diodes:

- Ø **Onset of gain above 600V**, up to fluences of **3E15 neq/cm2, at -20°C**
- \triangleright Same gain in PiN diodes irradiated at 6E15 and 1E16 n_{eq}/cm², lower than sensors irradiated at 3E15 n_{eq}/cm^2
- Ø Onset of **acceptor creation saturation above** fluence of **6E15 neq/cm2**
- Ø Onset of **CCE saturation above** fluence of **3E15 neq/cm2**

Acknowledgements

We kindly acknowledge the following funding agencies, collaborations:

- Ø INFN Gruppo V
- \triangleright Horizon 2020, grant UFSD669529
- \triangleright Horizon 2020, grant no. 654168 (AIDA-2020)
- Ø U.S. Department of Energy grant number DE-SC0010107
- \triangleright Dipartimenti di Eccellenza, Univ. of Torino (ex L. 232/2016, art. 1, cc. 314, 337)

Backup

CV measurements Setup precision

Extrapolation of active acceptor density into gain layer (Method)

VGL is proportional to the amount of the active doping of the gain layer

$$
V_{GL}=\frac{qN_A}{2\epsilon}w^2
$$

 N_A = Active doping concentration ω = thickness of the gain layer (\approx 1 μ m) *q* = electron electric charge *ε* = Dielectric constant of Silicon

Effect of gain layer doping variation on charge collection in HPK UFSD @ different bias

Effect of gain layer doping variation on charge collection in HPK UFSD @ different bias

Effect of gain layer doping variation on charge collection in HPK UFSD @ different bias

