An update on measurements with Si detectors irradiated to extreme fluences

V. Cindro, A. Gorišek, B. Hiti, G. Kramberger, <u>I. Mandić</u>, M. Mikuž, M. Zavrtanik et al.

Jožef Stefan Institute, Ljubljana, Slovenia University of Ljubljana, Slovenia

Introduction

Motivation

RD50 Prolongation Request: May 2018

5.2.2 Extreme fluences: Explore the macroscopic device properties (I-V, C-V-f, CCE) on different p-type silicon materials up to fluence values ranging from **1e16 to 5e17** n_{ea} cm⁻² and beyond with neutrons and protons of different energies.

Previous work at 1e17 and above:

- G Kramberger et al., Charge collection studies on custom silicon detectors irradiated up to 1.6E17 n_{eq}/cm², 2013 JINST 8 P08004
- Marko Mikuž et al., Silicon Sensors at Extreme Radiation Fluences, AIDA2020 Topical Workshop on Future of Tracking, Oxford, April 2nd, 2019 <u>https://indico.cern.ch/event/781403/contributions/3314657/</u>
- I. Mandić et al., First measurements with silicon detectors irradiated above 3e17 n/cm² 32nd RD50 Workshop, Hamburg, 2018 <u>https://indico.cern.ch/event/719814/contributions/3022499</u>

Introduction

At extreme fluences:

- high leakage current
- low CCE
- large drop of carrier mobility
- •

Marko Mikuž at AIDA2020 Topical Workshop on Future of Tracking, Oxford, April 2nd, 2019:

- Conclusion: Low fluence extrapolations do not work at all !
- ... go out and *measure* to get anything working at *extreme* fluences !!!

Introduction

- Continuation of the work presented at 32nd RD50 Workshop in Hamburg, 2018 <u>https://indico.cern.ch/event/719814/contributions/3022499</u>
- new measurements will be presented in this contribution:

→ charge collection with Sr-90 up to higher bias voltages

- improved cooling measurements at -30°C
- adapt Ortec 142 amplifier (replaced bias resistor)

→ E-TCT measurements

Samples

- CNM LGAD
- 50 µm epitaxial on Cz substrate (0.1 Ωcm)
- chip thickness $\sim 600 \ \mu m$
- Irradiated with reactor neutrons to 2.8e16, 1e17 and 3e17 n/cm²

Measurement of detector thickness \rightarrow 612 μ m

- Large (3x3 mm) pad detector and small collimator holes enable recording of a clean sample of waveforms
 → no "empty triggers" → can measure average charge collected after passage of a (almost) MIP also at small signal/noise
- New since last year: a) replaced bias resistor in ORTEC 142 → 1 MΩ instead of 10 MΩ
 b) improved cooling (measure at -30 C)

Can measure up to higher bias voltages

LGAD (50 um) Average of 2500 waveforms at highest bias voltage

 \rightarrow MIP signal: sample at peak of the waveform(~ 160 ns)

I. Mandić, 34th RD50 workshop, June 2019, Lancaster, UK

I. Mandić, 34th RD50 workshor

Signal [1000.0 mV]

G. Kramberger *et al,* 2013 *JINST* **8** P08004

"Magic formula" (300 um spaghetti $\Phi > 1e15$):

 $Q_{MPV} = k \cdot \Phi^b \cdot V_{r}$

k = 26.4 el/V, b = -0.683 Φ in 1e15 n/cm², V in volts

At high fluence, when drift distance short we can approximate:

 $Q \sim (dq/dx \cdot D) \cdot (1/D) \cdot L,$

- D cancels
- $L = v \cdot \tau$, charge collection distance
- v increases with E (until saturation)
- at high ϕ , saturation at higher V
- more charge multiplication because of higher *E*

 \rightarrow ~ 2.5 times more charge with 50 μ m LGAD compared to 300 μ m spaghetti

- sample 3e16 steep increase of noise above 500 V \rightarrow multiplication (breakdown)
- 1e17 and 3e17 increase less steep

Edge-TCT with pad detectors

1000 V over 50 μm results in very high electric field

→ high fluences: mobility drops -> impact ionization coefficient smaller

- what is the actual detector thickness?
 - → maybe there is a significant voltage drop over the substrate at these fluences
- Check with E-TCT
- difficult to measure E-TCT with pad detectors
 → laser light enters the device also from top
 - → strange charge collection profiles
 - → simple solution: measure induced current on guard ring instead of pad main electrode (pad)
 → region of charge collection is better defined, focus can be set below the guard ring electrode

Edge-TCT with pad detectors

 \rightarrow It seems that charge is collected from top ~ 50 μ m

→ substrate sufficiently conductive so that electric field in the substrate ($y > 50 \mu$ m) not high

Edge-TCT with pad detectors

- Sample irradiated to 1e17: very high pulses when laser near the top electrode
 - \rightarrow looks like charge multiplication already at 100 V!

Current and charge similar voltage dependence:

Initially this detector could be biased to 1000 V → high current observed after several

measurements and after

few weeks at RT

Same detector, measurements repeated after few weeks at RT

- → same charge but at much lower bias voltage
- → but also noise and current increased
 - \rightarrow charge multiplication at lower bias voltage

• Detector irradiated to 1e17 changed behavior after few weeks at RT

Conclusions:

Charge collection:

• dependence of collected charge on fluence and bias bias voltage follows the "magic" formula up to 3e17

 $Q \propto \Phi^{b} V$, (b = -0.683, Φ in 1e15 n/cm², V in volts)

• more charge at same bias voltage collected with 50 μ m thick detector compared to 300 μ m:

→ 50 µm : ~ 6000 el at 3e16 at 650 V, ~ 3000 el at 1e17 and ~ 1800 el at 3e17 at 1100 V

- significant change in voltage dependence of collected charge observed for the sample irradiated to 1e17
 → higher charge multiplication at much lower bias voltage
 - → transition after some time at RT

Edge TCT:

- charge collection from the top 50 μm of the structure
 - → high electric field in the substrate not observed also after 3e17 n/cm²

Very preliminary measurements, unusual effects observed \rightarrow systematic studies needed!

Calibrate modified amplifier with: Micron, p-type, 300 um thick, Bias = 100 V

→ looks ok

