

FACULTÉ DES SCIENCES Section de physique

UNIVERSITÄT BERN

TCT measurements of the H35DEMO HV-CMOS detector

Ettore Zaffaroni, J. Anders, M. Benoit, A. Fehr, S. Gonzalez-Sevilla, C. Merlassino, A. Miucci, DMS Sultan

34th RD50 workshop 12-14/06/2019

Smart Sensor Technologies and Training for Radiation Enhanced Applications and Measurements (STREAM) is a project funded by the European Commission under the Horizon2020 Framework Program under the Grant Agreement no 675587. STREAM began in January 2016 and will run for 4 years.

Outline

- H35DEMO test structures
- Transient Current Technique setup
- TCT measurements and results
 - Protons and neutrons irradiation + annealing
 - Depletion depth and $N_{\mbox{\tiny eff}}$
 - Timing characteristics

H35DEMO chip

- Designed for ATLAS ITk HV-CMOS project
 - KIT, Liverpool, IFAE, Geneva
- H35 technology by ams
 - $^-$ 350 nm HV-CMOS, 700 μm thick
- 4 pixel matrices and test structures
- 250x50 μ m² pixels
 - Large fill factor
- 4 different resistivities
 - $^-$ 20, 80, 200, 1000 Ω $^{\cdot}$ cm

Ettore Zaffaroni

mage from:

H35DEMO test structures

- In the periphery of the chip
- 3x3 pixel matrix (just the sensor diodes)
- Outermost pixel cathodes are connected together

SNTUB

DNTUB

2 channels (central and external)

HV

SP

DP

TCT (Transient Current Technique)

- Pulsed IR laser (1064 nm) with FWHM of 12 μm
- Detector at -27 °C using Peltier
- 1 μ m step size in all axes

z position

TCT (Transient Current Technique)

- DUT mounted vertically to reduce effects of swinging stages
- PCB with controlled impedance traces and correct termination to remove signal reflections

Irradiation campaigns

- Protons (measurements at Uni. Bern and Uni. Geneva)
 - BERN Inselspital cyclotron (16.7 MeV)
 - Multiple irradiation steps per sample
 - PS IRRAD (24 GeV)
 - One irradiation step per sample
- Neutrons
 - TRIGA reactor in Ljubljana
 - One irradiation step per sample
 - $^-$ Annealing 80' at 60 $^\circ \text{C}$

eTCT scans

- Edge TCT scans perfomed
- 1 μm steps in y, 5 μm steps in x
- Several voltage steps (10 to 12 normally)
 - $^-$ From 0 V to -100 or -165 V
- At each step the signal is averaged 40 times
- All results shown for central pixel

Data analysis - depletion

- Integration of current signal to get the charge
- Selection of the region

Data analysis - depletion

- Fit of the charge profiles
 - One fit per profile in the ROI
- Two contributions:
 - Smeared box function
 - Gaussian, to model the charge sharing
- Calculation of the FWHM
 - Max of the box function considered

Data analysis - N_{eff}

• $N_{\rm eff}$ is calculated by fitting the depletion vs voltage data with:

$$d = d_0 + \sqrt{\frac{2\epsilon}{e N_{eff}} V}$$

- d_0 and N_{eff} free parameters
 - *e* electron charge
 - $-\epsilon$ silicon dielectric constant

Results - N_{eff}

Results – N_{eff} (low fluences)

Results – N_{eff}

 Plots combined by particle type, for different initial resisitivities

Ettore Zaffaroni

Comments

- Significant differences between protons and neutrons and between resistivities
- Initial increase of $N_{_{eff}}$ at very low fluences (<1e14 $n_{_{eq}}/cm^2$, protons) for the 200 Ω \cdot cm sample
 - Effect competing with initial acceptor removal?
 - $^-$ Not observed in 1000 Ω \cdot cm, data not available for 20 and 80 Ω \cdot cm
- Different initial resistivities tend to the same $N_{\mbox{\tiny eff}}$ value at high fluence, for a given particle type

Results – annealing (neutrons)

 Annealing performed for 80' at 60 °C (equivalent to 3 weeks at room temperature)

Comments – annealing (neutrons)

- Annealing starts to have an effect on $N_{\rm eff}$ after 5e14 $n_{\rm eq}/cm^2$
- Consistent annealing study for protons not available
 - Small effects at low fluences (3e14 n_{eq}/cm^2)
- We will measure annealing after proton irradiation at higher fluence (1e15 $\rm n_{eq}/cm^2)$

Data analysis - timing characteristics

- For each waveform
 - Rise time (10%-90%)
 - Pulse duration
- Dominated by amplifier bandwidth (2 GHz)

Results – rise time (20 $\Omega \cdot cm, n$)

Results – pulse length (20 $\Omega \cdot cm$, n)

"Slower band" (possible) explanation

- p-well over deep n-well
 - Connected to GND
- Forms a diode in parallel with the sensor

GND

GND

sub

Ettore Zaffaroni

Comments

- Rise time and pulse length become slightly longer with irradiation
- At higher fluences a slower signal zone appears at the bottom of the depletion region
 - $^-$ Visible for the 80 Ω \cdot cm samples as well
 - Very little charge collected there
- Signals in the region below the p-well are slower
 - This effects is enhanced with irradiation

Conclusions

- H35DEMO characterized with TCT
- $N_{\mbox{\tiny eff}}$ evolution varies a lot with resistivity and particle type
- Annealing effects (from neutron irradiation) visible after 5e14 $n_{\rm eq}/cm^2$
- Timing characteristics of pulses vary with irradiation

Backup

Charge sharing (1000 $\Omega \cdot \text{cm}$ @ 5e13 n_{eq})

Ettore Zaffaroni

25

Electric field (1000 $\Omega \cdot cm$)

Electric Field (0neq_1000ohm_-120V)

Electric field (200 $\Omega \cdot cm$)

Electric Field (0neq_200ohm_-120V)

Electric field (80 $\Omega \cdot cm$)

Electric Field (0neq_80ohm_-120V) 0 50 Y 100 Abs(ElectricField-V) [V*cm^-1] 2.00e+05 1.45e+05 9.00e+04 3.50e+04 150 -2.00e+04 50 100 150 200 0 Х

Electric field (20 $\Omega \cdot cm$)

Samples – protons 16.7 MeV

sample	resistivity	particle	irr. steps
pb-20-t01	20	p (16.7 MeV)	5
pb-20-t04	20	p (16.7 MeV)	9
pb-80-t03	80	p (16.7 MeV)	13
pb-200-t03	200	p (16.7 MeV)	13
pb-200-t04	200	p (16.7 MeV)	6
pb-1000-t03	1000	p (16.7 MeV)	12
pb-1000-t04	1000	p (16.7 MeV)	6

Samples – protons 24 GeV

sample	resistivity	particle	irr. steps
pp-20-4.45	20	p (24 GeV)	1
pp-20-13.33	20	p (24 GeV)	1
pp-20-24.53	20	p (24 GeV)	1
pp-20-61.32	20	p (24 GeV)	1
pp-80-4.45	80	p (24 GeV)	1
pp-80-13.33	80	p (24 GeV)	1
pp-80-24.53	80	p (24 GeV)	1
pp-80-61.32	80	p (24 GeV)	1
pp-200-4.45	200	p (24 GeV)	1
pp-200-13.33	200	p (24 GeV)	1
pp-200-24.53	200	p (24 GeV)	1
pp-200-61.32	200	p (24 GeV)	1
pp-1000-4.45	1000	p (24 GeV)	1
pp-1000-13.33	1000	p (24 GeV)	1
pp-1000-24.53	1000	p (24 GeV)	1
pp-1000-88.77	1000	p (24 GeV)	1

Samples - neutrons

sample	res.	particle	irr. steps
n-20-1e13-b1	20	n	1
n-20-5e13-b1	20	n	1
n-20-1e14-b1	20	n	1
n-20-1e14-b2	20	n	1
n-20-5e14-b2	20	n	1
n-20-5.5e14-b1	20	n	1
n-20-1e15-b2	20	n	1
n-20-2e15-b1	20	n	1
n-20-2e15-b2	20	n	1
n-80-1e13-b1	80	n	1
n-80-5e13-b1	80	n	1
n-80-1e14-b1	80	n	1
n-80-1e14-b2	80	n	1
n-80-5e14-b2	80	n	1

sample	res	particle	irr. steps
n-80-5.5e14-b1	80	n	1
n-80-1e15-b2	80	n	1
n-80-2e15-b1	80	n	1
n-80-2e15-b2	80	n	1
n-200-1e13-b1	200	n	1
n-200-5e13-b1	200	n	1
n-200-1e14-b1	200	n	1
n-200-5.5e14-b1	200	n	1
n-200-2e15-b1	200	n	1
n-1000-1e13-b1	1000	n	1
n-1000-5e13-b1	1000	n	1
n-1000-1e14-b1	1000	n	1
n-1000-5.5e14-b1	1000	n	1
n-1000-2e15-b1	1000	n	1