
1/15

Implementing delayed weighting fields in Garfield++

J. Hasenbichler, W. Riegler, H. Schindler, A. Wang

RD50 Workshop, 13 June 2019

1 / 15



2/15

What’s Garfield++?
Garfield++ is a C++ toolkit for the detailed simulation of particle detectors that are
based on ionization measurement in gases or semiconductors.
It inherits many concepts and techniques from the Fortran program Garfield
(https://cern.ch/garfield), which is widely used for simulating gas-based detectors.
Development of the C++ version of Garfield started ∼ 2011.
Main differences with respect to the Fortran version include

focus on microscopic electron transport in gases,
user interface,
option to simulate silicon detectors.

For more details, see https://cern.ch/garfieldpp.
The source code is available on https://gitlab.cern.ch/garfield/garfieldpp.
Pre-compiled libraries are available on cvmfs.

2 / 15

https://cern.ch/garfield
https://cern.ch/garfieldpp
https://gitlab.cern.ch/garfield/garfieldpp


3/15

Medium
material properties

gas → Magboltz
silicon

detector description

Geometry

Component
field calculation

analytic
field maps
neBEM

Sensor

transport

Drift

charge transport
microscopic
MC integration
RKF integration

Track

primary ionization
Heed
SRIM

Microscopic simulation of electron avalanches in a GEM (left) and around a wire (right).

3 / 15



4/15

Primary ionization
Ionization by fast charged particles can be simulated using the program Heed
(interfaced to Garfield++), based on the photoabsorption ionization (PAI) model.

I. B. Smirnov, Nucl. Instr. Meth. A 554 (2005), 474 – 493 (link).
Heed simulates not only the deposited energy, but also atomic relaxation and δ electron
transport. As a result, one obtains the position of all “conduction” electrons/holes.
For simulating the ionization by ions, one can import results calculated using SRIM.

http://garfieldpp.web.cern.ch/garfieldpp/examples/srim/

It is also possible to interface Geant4 and Garfield++.
D. Pfeiffer et al., Nucl. Instr. Meth. A 935 (2019), 121–134 (link).
https://garfieldpp.web.cern.ch/garfieldpp/examples/geant4-interface/

Electric fields
For simple structures, can use parameterizations provided by the user.
For more complex devices, one typically imports field maps calculated using TCAD:

either by probing the electric field/potential in SVisual on a regular grid and exporting the
values to a text file, which can then be read by Garfield++, or
by importing directly the mesh (.grd file) and solution (.dat file).

Can import maps of mobility, lifetimes and other parameters at the same time.

4 / 15

https://doi.org/10.1016/j.nima.2005.08.064
http://garfieldpp.web.cern.ch/garfieldpp/examples/srim/
https://doi.org/10.1016/j.nima.2019.04.110
https://garfieldpp.web.cern.ch/garfieldpp/examples/geant4-interface/


5/15

Signals in a sensor with zero conductivity
Given the coordinates xj of each point along a simulated drift line, the induced current
is calculated using the usual Shockley-Ramo formalism,

i (tj ) = −qEw (xj ) · vj ,

where Ew is the static weighting field.
For calculating Ew , the same approaches as for the (drift) electric field can be followed.

Analytic expressions for strip and pixel weighting fields are pre-implemented.
The front-end response can be modelled by convoluting i (t) with a transfer function.

Example: Signal in a 100 µm thick n-on-p sensor with 55 µm pixel pitch.

0 0.005 0.01 0.015
x [cm]

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

y 
[c

m
]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Weighting potential.

0 5 10 15 20
time [ns]

2−

1.5−

1−

0.5−

0

si
gn

al
 [

fC
 / 

ns
]

Induced current from a charged particle track.

0 5 10 15 20
time [ns]

1−

0.8−

0.6−

0.4−

0.2−

0

si
gn

al
 [

fC
]

Front-end output (after convolution).

5 / 15



6/15

Signals in a sensor with finite conductivity
The weighting field is split in a prompt weighting field and a delayed weighting field.
The prompt contribution is calculated in the same way as in the static (σ = 0) case.
The delayed weighting field for a drift path segment x (t′) , tj < t′ < tj+1 is given by

i (tj + t) = −q

t∫
0

dt′Ew
(

x
(

t′
)
, t − t′

)
· v
(

t′
)
.

We assume that the velocity along a drift line step is constant.

Simple example
As an illustration/proof of principle, consider an underdepleted planar pad sensor with a
thickness of 300 µm and a depleted depth of 200 µm.
We’ll start with an analytic model of the electric field and the (static) weighting field.

0 100 200 300
m]µ [y

2500−

2000−

1500−

1000−

500−

0

 [
V

/c
m

]
y

E

6 / 15



7/15

// Thickness of the sensor [cm].
constexpr double gap = 300.e-4;
// Depletion depth [cm].
constexpr double d = 200.e-4;

void efield(const double /*x*/, const double y, const double /*z*/, double& ex, double& ey, double& ez) {
ex = ez = 0.;
constexpr double v = -25.2;
ey = y < d ? 2 * (v / d) * (1. - y / d) : 0.;

}
void wfield(const double /*x*/, const double /*y*/, const double /*z*/,

double& wx, double& wy, double& wz, const std::string /*label*/) {
wx = wz = 0.;
wy = 1. / gap;

}

int main(int argc, char *argv[]) {
Garfield::MediumSilicon si;
Garfield::GeometrySimple geo;
Garfield::SolidBox box(0, 0.5 * gap, 0, gap, 0.5 * gap, gap);
geo.AddSolid(&box, &si);
//...
Garfield::ComponentUser cmp;
cmp.SetGeometry(&geo);
// Set the function to be called for calculating the drift field.
cmp.SetElectricField(efield);
// Set the function to be called for calculating the weighting field.
cmp.SetWeightingField(wfield);

//...
}

7 / 15



8/15

Simple example (continued)
We first compute the prompt signal induced by a e-h pair created at a depth of 150 µm.

//...
int main(int argc, char *argv[]) {

//...
Garfield::Sensor sensor;
// Set the object that calculates the drift field.
sensor.AddComponent(&cmp);
// Use 2000 time bins with a width of 25 ps.
sensor.SetTimeWindow(0., 0.025, 2000);
// Set the object that calculates the weighting field.
sensor.AddElectrode(&cmp, "readout");

Garfield::AvalancheMC drift;
drift.SetSensor(&sensor);
// Make 1 um steps.
drift.SetDistanceSteps(1.e-4);
// Switch off diffusion.
drift.DisableDiffusion();
drift.EnableSignalCalculation();
// Simulate an electron-hole pair starting at y = 150 um.
drift.DriftElectron(0, 150.e-4, 0, 0);
drift.DriftHole(0, 150.e-4, 0, 0);
//...

}

0 10 20 30 40 50
time [ns]

0

1

2

3

4

5

6

6−10×

si
gn

al
 [

fC
 / 

ns
]

Total induced current as function of time and
contributions from electron and hole.

8 / 15



9/15

Simple example (continued)
As a next step, we include the delayed component of the signal.

//...
void dwfield(const double /*x*/, const double /*y*/,

const double /*z*/, const double t,
double& wx, double& wy, double& wz,
const std::string& /*label*/) {

// Time constant [ns].
constexpr double tau = 7.9;
wx = wz = 0.;
wy = ((gap - d) / (gap * d)) * exp(-t / tau) / tau;

}

int main(int argc, char *argv[]) {
//...
// Set the function for calculating the delayed weighting field.
cmp.SetDelayedWeightingField(dwfield);
//...
sensor.EnableDelayedSignal();
// Specify the times t - t’ at which we want
// to calculate the delayed signal.
const std::vector<double> times = {0., 0.1, 0.2, 0.3, 0.4,

0.5, 0.6, 0.7, 0.8, 0.9, 1., 2., 3., 4.,
5., 6., 7., 8., 9., 10., 20., 30., 40.,

50., 60., 70., 80., 90., 100.};
sensor.SetDelayedSignalTimes(times);
//...

}

0 10 20 30 40 50
time [ns]

0

1

2

3

4

5

6

7

8

6−10×

si
gn

al
 [

fC
 / 

ns
]

Total induced current as function of time
and delayed component.

9 / 15



10/15

Simple example (continued)
In a realistic simulation we will of course want to switch on diffusion.

int main(int argc, char *argv[]) {
//...
// drift.DisableDiffusion();
//...

}

0 10 20 30 40 50
time [ns]

0

1

2

3

4

5

6

7

8

6−10×

si
gn

al
 [

fC
 / 

ns
]

0.01− 0 0.01
x [cm]

0

0.005

0.01

0.015

0.02

0.025

0.03

y 
[c

m
]

electron

hole

10 / 15



11/15

Simple example (continued)
Let’s now do the same simulation using field maps for the drift and weighting fields.
In order to calculate the weighting fields in TCAD, we use the following recipe.

Calculate the quasi-stationary solution E0 with all electrodes at their “real” potentials.
Run a transient simulation applying a short triangular voltage pulse (duration 2 × ∆t, peak
∆V ) at the electrode we want to read out. Save the field E+ at different moments in time.
The prompt weighting field is given by

1
∆V

[E+ (t = ∆t) − E0] .

The delayed weighting field is given by
1

∆V ∆t
E+ (t > 2∆t) .

0 0.5 1 1.5 2
time [ns]

24

24.2

24.4
24.6

24.8
25

25.2
25.4

25.6
25.8

26

po
te

nt
ia

l [
V

]

11 / 15



12/15

int main(int argc, char *argv[]) {
//...
Garfield::ComponentVoxel cmp;
cmp.SetMesh(nX, nY, 1, xMin, xMax, yMin, yMax, zMin, zMax);
cmp.LoadElectricField("Efield.txt", "XY", false, false);
cpmp.LoadWeightingField("Weighting_00.txt", "XY", false);
for (unsigned int i = 0; i < nTimes; ++i) {

char filename[50];
sprintf(filename, "Weighting_%02d.txt", i + 1);
cmp.LoadWeightingField(filename, "XY", times[i], false);

}
cmp.EnableInterpolation();
//...

}

0 10 20 30 40 50
time [ns]

0

1

2

3

4

5

6

7

8

6−10×

si
gn

al
 [

fC
 / 

ns
]

12 / 15



13/15

Simple example (continued)
Finally, let’s simulate the induced signal from a charged particle track.

int main(int argc, char *argv[]) {
//...
TrackHeed track;
track.SetSensor(&sensor);
// Set the particle type and momentum [GeV/c].
track.SetParticle("muon");
track.SetMomentum(10.e9);
// Simulate a track at perpendicular incidence.
track.NewTrack(0, 0, 0, 0, 0, 1, 0);
double xc = 0., yc = 0., zc = 0., tc = 0., ec = 0., extra = 0.;
int nc = 0;
while (track.GetCluster(xc, yc, zc, tc, nc, ec, extra)) {

for (int i = 0; i < nc; ++i) {
double xe = 0., ye = 0., ze = 0., te = 0., ee = 0.;
double dx = 0., dy = 0., dz = 0.;
track.GetElectron(i, xe, ye, ze, te, ee, dx, dy, dz);
drift.DriftElectron(xe, ye, ze, te);
drift.DriftHole(xe, ye, ze, te);

}
}
//...

}

13 / 15



14/15

0 10 20 30 40 50
time [ns]

0

0.05

0.1

0.15

0.2

0.25

si
gn

al
 [

fC
 / 

ns
]

0.01− 0 0.01
x [cm]

0

0.005

0.01

0.015

0.02

0.025

0.03

y 
[c

m
]

14 / 15



15/15

Summary and outlook
Garfield++ is a toolkit that can be used for the detailed simulation of silicon sensors.
We have implemented the calculation of induced signals in resistive geometries based on
the delayed weighting field formalism.
Some optimisation in terms of speed and accuracy remains to be done.
As a next step, apply the method to realistic devices.

15 / 15


