Implementing delayed weighting fields in GARFIELD+

J. Hasenbichler, W. Riegler, H. Schindler, A. Wang

RD50 Workshop, 13 June 2019



What's GARFIELD+?

o Development of the C++ version of GARFIELD started ~ 2011.
o Main differences with respect to the Fortran version include

GARFIELDH is a C+ toolkit for the detailed simulation of particle detectors that are
based on ionization measurement in gases or semiconductors.

It inherits many concepts and techniques from the Fortran program GARFIELD
(https://cern.ch/garfield), which is widely used for simulating gas-based detectors.

o focus on microscopic electron transport in gases,
e user interface,
o option to simulate silicon detectors.

For more details, see https://cern.ch/garfieldpp.
The source code is available on https://gitlab.cern.ch/garfield/garfieldpp.

Pre-compiled libraries are available on cvmfs.



https://cern.ch/garfield
https://cern.ch/garfieldpp
https://gitlab.cern.ch/garfield/garfieldpp

detector description

material properties

@ gas — Magboltz

@ silicon

field calculation
@ analytic
@ field maps
@ neBEM

7z N
, N charge transport
primary ionization ¥ X

@ microscopic
@ Heed ( Track ] [ Drift ] @ MC integration
@ SRIM

transport @ RKEF integration

v 51

Microscopic simulation of electron avalanches in a GEM (left) and around a wire (right).



o lonization by fast charged particles can be simulated using the program HEED
(interfaced to GARFIELD+), based on the photoabsorption ionization (PAI) model.
o |. B. Smirnov, Nucl. Instr. Meth. A 554 (2005), 474 — 493 (link).
o HEED simulates not only the deposited energy, but also atomic relaxation and ¢ electron
transport. As a result, one obtains the position of all “conduction” electrons/holes.
o For simulating the ionization by ions, one can import results calculated using SRIM.
o http://garfieldpp.web.cern.ch/garfieldpp/examples/srim/
o It is also possible to interface GEANT4 and GARFIELDH.

o D. Pfeiffer et al., Nucl. Instr. Meth. A 935 (2019), 121-134 (link).
o https://garfieldpp.web.cern.ch/garfieldpp/examples/geant4-interface/

Electric fields

o For simple structures, can use parameterizations provided by the user.
o For more complex devices, one typically imports field maps calculated using TCAD:

o either by probing the electric field/potential in SVisual on a regular grid and exporting the
values to a text file, which can then be read by GARFIELDH, or
o by importing directly the mesh (.grd file) and solution (.dat file).

o Can import maps of mobility, lifetimes and other parameters at the same time.



https://doi.org/10.1016/j.nima.2005.08.064
http://garfieldpp.web.cern.ch/garfieldpp/examples/srim/
https://doi.org/10.1016/j.nima.2019.04.110
https://garfieldpp.web.cern.ch/garfieldpp/examples/geant4-interface/

Signals in a sensor with zero conductivity

o Given the coordinates x; of each point along a simulated drift line, the induced current
is calculated using the usual Shockley-Ramo formalism,

i(tj) = —qEw (%) - vj,

where E,, is the static weighting field.

o For calculating E., the same approaches as for the (drift) electric field can be followed.
o Analytic expressions for strip and pixel weighting fields are pre-implemented.

@ The front-end response can be modelled by convoluting i (t) with a transfer function.

Example: Signal in a 100 pm thick n-on-p sensor with 55 pm pixel pitch.

sgnd [1C/ng
sgnd 1€

5 15 £
time(ng time(ns)

Weighting potential. Induced current from a charged particle track. Front-end output (after convolution).



Signals in a sensor with finite conductivity

o The weighting field is split in a prompt weighting field and a delayed weighting field.
@ The prompt contribution is calculated in the same way as in the static (o = 0) case.

o The delayed weighting field for a drift path segment x (t), t; < t’ < tj41 is given by
t
i(tj+1t)= —q/dt’EW (x(¢),t=t)-v(¥).
0

o We assume that the velocity along a drift line step is constant.

4

Simple example

@ As an illustration/proof of principle, consider an underdepleted planar pad sensor with a
thickness of 300 pm and a depleted depth of 200 pm.

o We'll start with an analytic model of the electric field and the (static) weighting field.

vy




// Thickness of the semsor [cm].
constexpr double gap = 300.e-4;
// Depletion depth [cm].
constexpr double d = 200.e-4;

void efield(const double /*x*/, const double y, const double /*z*/, double& ex, double& ey, double& ez)
ex = ez = 0.;
constexpr double v = -25.2;
ey=y<d?2x* (v/d * @. -y/d :0.;

void wfield(const double /*x*/, const double /*y*/, const double /*zx/,
double& wx, double& wy, double& wz, const std::string /*label*/) {
wx =wz = 0.3
wy = 1. / gap;
}

int main(int argc, char *argv[]) {
Garfield::MediumSilicon sij;
Garfield::GeometrySimple geo;
Garfield::SolidBox box(0, 0.5 * gap, 0, gap, 0.5 * gap, gap);
geo.AddSolid (&box, &si);
/7. ..
Garfield::ComponentUser cmp;
cmp. SetGeometry (&geo) ;
// Set the function to be called for calculating the drift field.
cmp.SetElectricField(efield);
// Set the function to be called for calculating the weighting field.
cmp.SetWeightingField(wfield);

/...




Simple example (continued)

@ We first compute the prompt signal induced by a e-h pair created at a depth of 150 pm.

//...

int main(int argc, char *argv[]) {
/...
Garfield::Sensor sensor;
// Set the object that calculates the drift field.
sensor . AddComponent (&cmp) ;
// Use 2000 time bins with a width of 25 ps.
sensor.SetTimeWindow (0., 0.025, 2000);
// Set the object that calculates the weighting field.
sensor.AddElectrode(&cmp, "readout");

Garfield::AvalancheMC drift;
drift.SetSensor (&sensor) ;

// Make 1 um steps.
drift.SetDistanceSteps(1.e-4);

// Switch off diffusion.
drift.DisableDiffusion();
drift.EnableSignalCalculation();

// Simulate an electron-hole pair starting at y = 150 um.
drift.DriftElectron(0, 150.e-4, 0, 0);
drift.DriftHole(0, 150.e-4, 0, 0);

/7. ..

x10°

signal [fC/ng]

[5) SR Er— I I
0 10 20 30 40 50

time [ns]

Total induced current as function of time and

contributions from and hole.



Simple example (continued)

o As a next step, we include the delayed component of the

signal.

/...
void dwfield(const double /*x*/, const double /*y*/,
const double /#z*/, const double t,
double& wx, double& wy, double& wz,
const std::string& /*labelx/) {
// Time constant [ns].
constexpr double tau = 7.9;
wx =wz = 0.3
wy = ((gap - d) / (gap * d)) * exp(-t / tau) / tau;
}

int main(int argc, char *argv[]) {

/.

// Set the function for calculating the delayed weighting field.

cmp . SetDelayedWeightingField (dwfield) ;

/7. ..

sensor.EnableDelayedSignal();

// Specify the times t - t’ at which we want

// to calculate the delayed signal.

const std::vector<double> times = {0., 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9, 1., 2., 3., 4.,
5., 6., 7., 8., 9., 10., 20., 30., 40.,
60., 60., 70., 80., 90., 100.};

sensor.SetDelayedSignalTimes(times) ;

/7.

¥

fal
S
&

signal [fC/ng]

Total

30 40 50

time [ns]

induced current as function of time

and



Simple example (continued)

@ In a realistic simulation we will of course want to switch on diffusion.

int main(int argc, char *argv[]) {
/7. ..
// drift.DisableDiffusion();
/7. ..

}

x10°

7 f 7 oo , r . -
Sk 4 B C ]
O F 1 = - 1
N E 0025 3
g7k . C ,
4 C ] L ]
E 002f .
E 0015 .
E C hole ]
] 001 -
E 0005 .
I e PY P P B,

20 30 20 50 001 0 001

time[ng] x [em]



Simple example (continued)

o Let’s now do the same simulation using field maps for the drift and weighting fields.
@ In order to calculate the weighting fields in TCAD, we use the following recipe.

o Calculate the quasi-stationary solution Ey with all electrodes at their “real” potentials.
e Run a transient simulation applying a short triangular voltage pulse (duration 2 x At, peak
AV) at the electrode we want to read out. Save the field E; at different moments in time.

o The prompt weighting field is given by
1

—— [E4 (t = At) — Eo] .

~ [E+ (t = A0 — Eo]
o The delayed weighting field is given by

1
——_E,(t>2A1).
avart (> 240

— 2%
Z. 258
8 x6
T 254
8252
25
248
246
244
24.2

I I I
% 0.5 1 15

FNCY PN Y Y Y N R PO PP P

o

time[ns



x10°°

int main(int argc, char *argv[]) {

}

/7. ..
Garfield::ComponentVoxel cmp;
cmp.SetMesh(nX, nY, 1, xMin, xMax, yMin, yMax, zMin, zMax);
cmp.LoadElectricField("Efield.txt", "XY", false, false);
cpmp.LoadWeightingField("Weighting_00.txt", "XY", false);
for (unsigned int i = 0; i < nTimes; ++i) {
char filename[50];
sprintf(filename, "Weighting_%02d.txt", i + 1);
cmp.LoadWeightingField(filename, "XY", times[i], false);
}
cmp.EnableInterpolation();
/...

signa [fC/ng]

a PR FRETE FERTE FERTY FERTY FRRT SRR e

time [ns]



Simple example (continued)

o Finally, let's simulate the induced signal from a charged particle track.

int main(int argc, char *argv[]) {

/7. ..

TrackHeed track;

track.SetSensor (&sensor) ;

// Set the particle type and momentum [GeV/c].

track.SetParticle("muon");

track.SetMomentum(10.e9);

// Simulate a track at perpendicular incidence.

track.NewTrack(0, 0, 0, 0, 0, 1, 0);

double x¢ = 0., yc = 0., zc = 0., tc = 0., ec = 0., extra = 0.;

int nc = 0;

while (track.GetCluster(xc, yc, zc, tc, nc, ec, extra)) {

for (int i = 0; i < nc; ++i) {

double xe = 0., ye = 0., ze = 0., te = 0., ee = 0.
double dx = 0., dy = 0., dz = 0.;
track.GetElectron(i, xe, ye, ze, te, ee, dx, dy, dz);
drift.DriftElectron(xe, ye, ze, te);
drift.DriftHole(xe, ye, ze, te);




signd [fC/ ng]

o
N
a

o
N

0.15

0.1

0.05

i i i

10 20 30 40 50
time [ng]

y [em]

0.03

0.025

0.02

0.015

0.01

0.005




Summary and outlook

o GARFIELDH is a toolkit that can be used for the detailed simulation of silicon sensors.

@ We have implemented the calculation of induced signals in resistive geometries based on
the delayed weighting field formalism.

@ Some optimisation in terms of speed and accuracy remains to be done.

o As a next step, apply the method to realistic devices.




