OVERVIEW OF NEUTRINO PHYSICS AT COLLIDERS OR TESTING SEESAW Tao Han, University of Pittsburgh NTN Workshop on Neutrino NSI Washington Univ., St. Louis, May 29, 2019

On May 24, 2019:

Murray Gell-Mann, Nobel Prize-winning physicist who named quarks, dies at 89

1969 Nobel laureate helped discover subatomic particles

Death confirmed by Santa Fe Institute he co-founded

▲ Murray Gell-Mann, seen Santa Fe Institute in 2003. Photograph: Jane Bernard/AP

His "Totalitarian Principle" argument made a Majorana mass term "compulsory" (almost)

2010 in Aspen

ARK

1. Flavor Puzzle is a muchⁿ harder problem

(eV)

D N

20

Ma

- Particle mass hierarchy
- Patterns of quarkneutrino-mixings
- Neutrino mass:
 Dirac (Higgs) vs.
 Majorana (seesaw)
- New CP-violation sources

Nu-physics: One of the best chances for Nature to teach us a lesson!

On the theory side:

- "Technically natural" in t'Hooft sense: small values are protected by symmetry. At a "new physics" (cut-off) scale Λ : "natural": $\delta m_f \sim g^2/(16\pi^2) m_f \ln(\Lambda^2/m_f^2)$ in contrast to "unnatural": $\delta m_{\rm H}^2 \sim -y_{\rm t}^2/(8\pi^2) \Lambda^2$ Two ways to generate small values naturally: • Suppression by integrating out heavy states: $\sim g^2 E^2/M^2$ the higher dimension $1/\Lambda^n$, the lower Λ can be.
- Suppression by loop radiative generation: the higher loops 1/(16π²)ⁿ, the lower m_v can be.
 → Scale and couplings wide open in theory space.

On the phenomenology side:

- Will search for ANYTHING new states of mass M, new couplings/mixings k, V_{ij} ...
- Will search EVERY WHERE low-energy & high-energy regimes.
 - Today, primarily,

target on Majorana nature: $\Delta L=2$

• Equally important,

charged lepton flavor transition: $\Delta L = 0$

• Observables $\leftarrow \rightarrow$ Theory connections

2. The most-wanted process: $\Delta L=2$

The fundamental diagram:

The crossing diagrams $U_{iN} \frac{\not{p} + m_N}{p^2 - m_N^2 + i\epsilon} U_{jN}$. can probe different processes and new physics of N/T⁰, W⁺_R, H⁺⁺

production.

The transition rates are proportional to

$$|\mathcal{M}|^{2} \propto \begin{cases} \langle m \rangle_{\ell_{1}\ell_{2}}^{2} = \left| \sum_{i=1}^{3} U_{\ell_{1}i} U_{\ell_{2}i} m_{i} \right|^{2} & \text{for light } \nu; \\ \frac{\left| \sum_{i}^{n} V_{\ell_{1}i} V_{\ell_{2}i} \right|^{2}}{m_{N}^{2}} & \text{for heavy } N; \\ \frac{\Gamma(N \to i) \ \Gamma(N \to f)}{m_{N} \Gamma_{N}} & \text{for resonant N} \end{cases}$$

3. Neutrino-less double-beta decay

arXiv:1902.04097, M. Dolinski, A. Poon, W. Rodejohann

Isotope	$T_{1/2}^{0\nu} (\times 10^{25} \text{ y})$	$\langle m_{\beta\beta} \rangle ~(\mathrm{eV})$	Experiment	Reference
48 Ca	$> 5.8 \times 10^{-3}$	< 3.5 - 22	ELEGANT-IV	(157)
$^{76}\mathrm{Ge}$	> 8.0	< 0.12 - 0.26	GERDA	(158)
	> 1.9	< 0.24 - 0.52	Majorana Demonstrator	(159)
82 Se	$> 3.6 \times 10^{-2}$	< 0.89 - 2.43	NEMO-3	(160)
$^{96}\mathrm{Zr}$	$> 9.2 \times 10^{-4}$	< 7.2 - 19.5	NEMO-3	(161)
$^{100}\mathrm{Mo}$	$> 1.1 \times 10^{-1}$	< 0.33 - 0.62	NEMO-3 Current bound	(162)
$^{116}\mathrm{Cd}$	$>1.0\times10^{-2}$	< 1.4 - 2.5	NEMO-3 $(m > 0.2 \text{ o})$	7 (163)
$^{128}\mathrm{Te}$	$> 1.1\times 10^{-2}$		$- < m_{ee} > ~ 0.2 eV$	(164)
$^{130}\mathrm{Te}$	> 1.5	< 0.11 - 0.52	CUORE	(124)
136 Xe	> 10.7	< 0.061 - 0.165	KamLAND-Zen	(165)
	> 1.8	< 0.15 - 0.40	EXO-200	(166)
$^{150}\mathrm{Nd}$	$> 2.0 \times 10^{-3}$	< 1.6 - 5.3	NEMO-3	(167)

(h)

(2)

Future expts:

- SNO+
- SuperNEMO
- nEXO Future:
- CUPID $\langle m_{ee} \rangle \sim 0.01 \text{ eV}$
- LEGEND100

Already severe bounds:

Remain to be most sensitive:

- but for ee final state only!
- What about other models?

4. Meson decays

N Resonance Production and Decay

On resonance at m_N, only V_{4l}^2 suppressed! • Active searches:* au, K, D, B decays: $M^+ \rightarrow \ell_i^+ \ell_j^+ M^-$ via N

• Other processes to look for:

$$D^+, B^+ \to \ell^+ \ell^+ K^*, \\B^+ \to \tau^+ e^+ M^-, \tau^+ \mu^+ M^-, \tau^+ \tau^+ M^-.$$

Atre, TH, Pascoli, Zhang, arXiv:0901.3589

 τ, K, D, B decays: $M^+ \rightarrow \ell_i^+ \ell_j^+ M^-$ via N

CERN NA62, arXiv:1905.07770

$$\mathcal{B}(K^+ \to \pi^- e^+ e^+) < 2.2 \times 10^{-10}, \mathcal{B}(K^+ \to \pi^- \mu^+ \mu^+) < 4.2 \times 10^{-11}.$$

M. Drewes, J. Hajer et al., arXiv:1905.19828 Heavy ion with low trigger threshold

5. "Type I" at Lepton Colliders

11

6. "Type I" at Hadron Colliders At hadron colliders: § $pp(\bar{p}) \rightarrow \ell^{\pm} \ell^{\pm} j j X$ q_i l^{\mp} W^{\mp} l^{\mp} (W_R) \bar{q}_i

 $\sigma(pp \to \mu^{\pm} \mu^{\pm} W^{\mp}) \approx \sigma(pp \to \mu^{\pm} N) Br(N \to \mu^{\pm} W^{\mp}) \equiv \frac{V_{\mu N}^2}{\sum_l |V^{\ell N}|^2} V_{\mu N}^2 \sigma_0.$ Factorize out the mixing couplings: †

$$\sigma(pp \to \mu^{\pm} \mu^{\pm} W^{\mp}) \equiv S_{\mu\mu} \sigma_{0},$$

$$S_{\mu\mu} = \frac{V_{\mu N}^{4}}{\sum_{l} |V_{\ell N}|^{2}} \approx \frac{V_{\mu N}^{2}}{1 + V_{\tau N}^{2}/V_{\mu N}^{2}}, \quad \stackrel{10^{7}}{}_{0^{6}} \int_{0^{4}} \int_{0^{$$

 \mathcal{V}_W^{\pm}

A very cl like-sigr

- no miss
- m(jj) =

[§]Keung, Senj (1993); ATLAS TDR (1999); F. Almeida et al. (2000); F. del Aguila et al. (2007). [†]T. Han and B. Zhang, hep-ph/0604064, PRL (2006).

CMS:

ATLAS:

CMS collaboration: arXiv:1501.05566v1.

ATLAS collaboration: arXiv:1506.06020v2.

A recent update:

VBF (Wy) contributions and NNLO QCD effects

P. S. B. Dev, A. Pilaftsis and U.-k. Yang, *Phys. Rev. Lett.* 112 (2014) 081801; Alva, TH, Ruiz: arXiv:1411.7305

New Strategy: Long Lived Particles @ Low mass

 10^{-6}

m_N [GeV]

Type I, in general, too many theory parameters, as the Casas-Ibarra parametrization

$$V_{\ell N} = U_{PMNS} \ m_{\nu}^{1/2} \Omega M_N^{-1/2},$$

If assuming degenerate N_i

$$M_{N} \sum_{N} (V_{\ell N}^{*})^{2} = (U_{PMNS}^{*} m_{\nu} U_{PMNS}^{\dagger})_{\ell \ell} .$$
$$\sum_{N} |V_{eN}|^{2} \ll \sum_{N} |V_{\mu N}|^{2}, \sum_{N} |V_{\tau N}|^{2} \quad \text{for NH},$$
$$\sum_{N} |V_{eN}|^{2} > \sum_{N} |V_{\mu N}|^{2}, \sum_{N} |V_{\tau N}|^{2} \quad \text{for IH}.$$

7. W_R & N @ Hadron Colliders

G. Senjanovic & W. Keung, PRL 50 (1983) 1427 No mixing suppression New unknown mass scale MR

ATLAS collaboration: arXiv:1809.11105.

A clean channel with rich physics:[†]

- Significantly enhanced rate at W_R resonance; \P
- If observed, determine N's nature: $\Delta L = 2$, azimuthal angle ...
- and determine W' chiral coupling to $\ell N_{R,L}$ and $q \overline{q}$.

The primary lepton does not provide L-R discrimination:

Keung & Senjanovic, PRL (1983). T. Han, I. Lewis, R. Ruiz, Z. Si, arXiv:1211.6447v2

 W'^+

 \overline{d}_{i}

 W^{-}

$W_{L,R}$ Discrimination via $N_{L,R}$ Decay:

$$W'_{L}: \hat{y} \uparrow \bigcup q \quad \bigcup \vec{q'}$$

$$\bullet \bigcup \ell_{1}^{+} \bullet \bigcup N \quad \bigoplus \ell_{2}^{+}$$

$$\downarrow \psi \ell_{1}^{+} \bullet \bigcup W_{0}$$

$$W'_{R}: \hat{y} \uparrow \bigcap q \quad \downarrow \bigcap \bar{q}'$$

$$\bullet \bigcap \ell_{1}^{+} \quad \bullet \bigcap N \quad \bigoplus \ell_{2}^{+}$$

$$\downarrow \Longrightarrow W_{0}$$

 $N_{L,R} \to \ell^+ W^- \to \ell^+ q \overline{q}'$

8. Type II Seesaw: H^{±±} & H[±]
H⁺⁺H⁻⁻ production at hadron colliders: †
Pure electroweak gauge interactions

Akeroyd, Aoki, Sugiyama, 2005, 2007.

 $\gamma \gamma \rightarrow H^{++}H^{--}$ 10% of the DY.

[†]Revisit, T.Han, B.Mukhopadhyaya, Z.Si, K.Wang, arXiv:0706.0441. Recently, a new model: J. Gehrlein, D. Goncalves, P. Machado, Y. Perez-Gonzalez: arXiv:1804.09184.

Type II Seesaw: Complimentary Decays $\Gamma(\phi^{++} \rightarrow \ell^+ \ell^+) \propto Y_{ij}^2 M_{\phi}$ $\Gamma(\phi^{++} \rightarrow W^+ W^+) \propto \frac{v'^2 M_{\phi}^3}{v^4}$, with $Y_{ll}v' \approx m_{\nu} \ (eV) \Rightarrow v' \approx 2 \times 10^{-4}$ GeV the division.

We will focus on the leptonic decays, with a small \mathbf{v}' .

H^{++, --}, H^{+, -} Decays: Revealing the flavor pattern

Neutrino – charged lepton correlations

Summarize the discovery modes:

Spectrum	Relations
Normal Hierarchy	$BR(H^{++} \to \tau^+ \tau^+), \ BR(H^{++} \to \mu^+ \mu^+) \gg BR(H^{++} \to e^+ e^+)$
$(\Delta m_{31}^2 > 0)$	$BR(H^{++} \to \mu^+ \tau^+) \gg BR(H^{++} \to e^+ \mu^+), \ BR(H^{++} \to e^+ \tau^+)$
	$BR(H^+ \to \tau^+ \bar{\nu}), \ BR(H^+ \to \mu^+ \bar{\nu}) \gg BR(H^+ \to e^+ \bar{\nu})$
Inverted Hierarchy	$(H^{++} \rightarrow e^+e^+) > BR(H^{++} \rightarrow \mu^+\mu^+), BR(D^{++} \rightarrow \tau^+\tau^+)$
$(\Delta m_{31}^2 < 0)$	$BR(H^{++} \to \mu^+ \tau^+) \gg BR(H^{++} \to e^+ \tau^+), \ BR(H^{++} \to e^+ \mu^+)$
	$BR(H^+ \to e^+ \bar{\nu}) > BR(H^+ \to \mu^+ \bar{\nu}), BR(H^+ \to \tau^+ \bar{\nu})$
Quasi-Degenerate	$BR(H^{++} \to e^+ e^+) \sim BR(H^{++} \to \mu^+ \mu^+) \sim BR(H^{++} \to \tau^+ \tau^+) \approx 1/3$
$(m_1, m_2, m_3 > \Delta m_{31})$	$BR(H^+ \to e^+ \bar{\nu}) \sim BR(H^+ \to \mu^+ \bar{\nu}) \sim BR(H^+ \to \tau^+ \bar{\nu}) \approx 1/3$

[†]Pavel Fileviez Perez, Tao Han, Gui-Yu Huang, Tong Li, Kai Wang, arXiv:0803.3450 [hep-ph]

Sensitivity to $H^{++}H^{--} \rightarrow \ell^+\ell^+$, $\ell^-\ell^-$ Mode: ATLAS Bounds: CMS-PAS-HIG-16-036

With 300 fb^{-1} integrated luminosity,

a coverage upto $M_{H^{++}} \sim 1 \text{ TeV}$ even with $BR \sim 40 - 50\%$.

Possible measurements on BR's.

 $5(pp \rightarrow H^{++}H^{-} \rightarrow e^{\pm}e^{\pm}e^{\mp}e^{\mp})$ [fb]

9. Type III Seesaw: T[±] & T⁰

Consider their decay length:

With $\lambda^2 = y_j^2 \sim 10^{-16} - 10^{-12}$, then $c\tau \sim 10^{-2} - 10^{-4}$ m Still not too long-lived, but possibly large displaced vertices.

Type III Seesaw: T[±] & T⁰

Lepton flavor combination determines the ν mass pattern: [†]

Lepton flavors correlate with the ν mass pattern.

[†]Abdesslam Arhrib, Borut Bajc, Dilip Kumar Ghosh, Tao Han, Gui-Yu Huang, Ivica Puljak, Goran Sejanovic, arXiv:0904.2390.

Type III Seesaw: T[±] & T⁰

• Single production $T^{\pm}\ell^{\mp}$, $T^{0}\ell^{\pm}$:

Kinematically favored, but highly suppressed by mixing.

• Pair production with gauge couplings. Example: $T^{\pm} + T^0 \rightarrow \ell^+ Z(h) + \ell^+ W^- \rightarrow \ell^+ j j (b \overline{b}) + \ell^+ j j$. Low backgrounds.

LHC studies with Minimal Flavor Violation implemented.[‡]

[†]Similar earlier work: Franceschini, Hambye, Strumia, arXiv:0805.1613. [‡]O. Eboli, J. Gonzalez-Fraile, M.C. Gonzalez-Garcia, arXiv:1108.0661 [hep-ph].

$\Delta L=2$ & mass reconstruction for T[±] & T⁰

Summary

- It is of fundamental importance to test the Majorana nature of ν 's.
 - Type I See-saw:
 - au, K, D, B rare decays sensitive to 140 MeV < m_4 < 5 GeV, $10^{-9} < |V_{\ell 4}|^2 < 10^{-2}$;
 - LHC sensitive: 10 GeV $< m_4 < 400$ GeV, $10^{-6} < |V_{\mu4}|^2 < 10^{-2}$.
 - Difficulty! May be helped with the "inverse seesaw" mechanism.
 - Type II See-saw: for a scalar triplet $\Phi^{\pm\pm}$
 - LHC sensitive: $M_{\phi} \sim 600 1000 \text{ GeV} \ (\ell^{\pm} \ell^{\pm} \text{ or } W^{\pm} W^{\pm}).$
 - Distinguish Normal/Inverted Hierarchy; Probe Majorana phases.
 - With $W'^{\pm} \rightarrow N\ell^{\pm}$, reach $M_N < M_{W'} \sim 4-5$ TeV.
 - Type III See-saw: for a lepton triplet T^{\pm} , T^{0}
 - LHC sensitive: $M_T \sim 800$ GeV.
 - Also distinguish Normal/Inverted Hierarchy.

Radiative seesaw \rightarrow rich physics in extended Higgs sector.

IF lucky, hadron colliders may serve as the discovery machine for Majorana nature of ν 's.

OTHER MODELS & PHENOMENOLOGY Thus far, we only considered Type I, II, III seesaw models Many models to account for the neutrino mass.* Another class of well-motivated models: Radiative generation of neutrino masses.

Zee (1986)-Babu (1988) Model: add singlet scalar fields m_v generate at 2-loop → change Higgs physics
Ma Models (2006): add singlet scalars + Z₂ symmetry → Dark matter

Typically, they introduce additional Higgs states and thus new (model-dependent) collider signatures.

* For a review, see, M.C. Chen & J.R. Huang, arXiv:1105.3188v2.

.

Summary: Fill up a Matrix:

	$0\nu 2\beta$	μ -e conversion	rare decays	colliders	features
		$\mu ightarrow e \gamma$ etc.	au, K, D, B	e^+e^-, pp	
Type-I	\checkmark	\checkmark	\checkmark		N
Type-II	\checkmark	\checkmark	\checkmark	\checkmark	$H^{\pm\pm}, W^{\pm}_R$
Type-III	\checkmark	\checkmark	?	\checkmark	T^{\pm}
Zee-Babu	?	\checkmark	?	\checkmark	$k^{\pm\pm}, h^{\pm}$
Ma models	?	\checkmark	?	\checkmark	scalars, DM
RPV/leptoquarks	?	\checkmark	\checkmark	\checkmark	ℓ_q
extra-dim	?	?	\checkmark		KK states
Inverse/linear	?	?	\checkmark	\checkmark	
Pseudo Dirac	?	?	\checkmark	\checkmark	
NSI	?	?	?	\checkmark	mediators

Please help to

- Fill the entries
- Expand on both sides More work to do !