OVERVIEW OF NEUTRINO PHYSICS AT COLLIDERS **OR TESTING SEESAW** Tao Han, University of Pittsburgh NTN Workshop on Neutrino NSI Washington Univ., St. Louis, May 29, 2019

On May 24, 2019:

Murray Gell-Mann, Nobel Prize-winning physicist who named quarks, dies at 89

● 1969 Nobel laureate helped discover subatomic particles

Example 2 Death confirmed by Santa Fe Institute he co-founded

Murray Gell-Mann, seen Santa Fe Institute in 2003. Photograph: Jane Bernard/AP

His "Totalitarian Principle" argument made a Majorana mass term "compulsory" (almost)

2010 in Aspen

ARK

1. Flavor Puzzle is a muchⁿ harder problem

 (eV)

 ∞

 \mathcal{S}

Ma

- Particle mass hierarchy
- Patterns of quarkneutrino-mixings
- Neutrino mass: Dirac (Higgs) vs. Majorana (seesaw)
- New CP-violation sources

Nu-physics: One of the best chances for Nature to teach us a lesson!

On the theory side:

• "Technically natural" in t'Hooft sense: small values are protected by symmetry. At a "new physics" (cut-off) scale Λ : "natural": $\delta m_f \sim g^2/(16\pi^2) m_f \ln(\Lambda^2/m_f^2)$ in contrast to "unnatural": $\delta m_H^2 \sim -y_t^2/(8\pi^2) \Lambda^2$ **Two ways to generate small values naturally:** • Suppression by integrating out heavy states: $\sim g^2 E^2 / M^2$

the higher dimension $1/\Lambda^n$, the lower Λ can be.

• Suppression by loop radiative generation: the higher loops $1/(16\pi^2)^n$, the lower m_y can be. à **Scale and couplings wide open in theory space.**

On the phenomenology side:

- Will search for ANYTHING new states of mass M, new couplings/mixings k , V_{ii} ...
- Will search EVERY WHERE low-energy & high-energy regimes.
	- Today, primarily,

target on Majorana nature: $\Delta L=2$

• Equally important,

charged lepton flavor transition: $\Delta L = 0$

• Observables \leftrightarrow Theory connections

2. The most-wante The fundamental diagrams of the fundamental diagrams of the fundamental district of the fundamental district of **2. The most-wanted process:** $\Delta L=2$

 ${p\hskip-2.5pt/\hskip-2.2pt\hbox{+} m}_N$

 $p^2 - m_N^2 + i\epsilon$

W −

The fundamental diagram:

 $U_{jN}.$ *l i l* \overline{C} can probe $f_{\text{max}}^{\text{c}}$ different
→ can probe different The crossing diagrams processes and new physics of N/T⁰, W⁺_R, H⁺⁺

The transition rates are proportional to The transition rates are proportional to

$$
|\mathcal{M}|^2 \propto \begin{cases} \langle m \rangle_{\ell_1 \ell_2}^2 = \left| \sum_{i=1}^3 U_{\ell_1 i} U_{\ell_2 i} m_i \right|^2 & \text{for light } \nu; \\ \frac{\left| \sum_{i=1}^n V_{\ell_1 i} V_{\ell_2 i} \right|^2}{m_N^2} & \text{for heavy } N; \\ \frac{\Gamma(N \to i) \Gamma(N \to f)}{m_N \Gamma_N} & \text{for resonant N production.} \end{cases}
$$

3. Neutrino-less double-beta decay

arXiv:1902.04097, M. Dolinski, A. Poon, W. Rodejohann

 $\qquad \qquad \textbf{(a)}$

Future expts:

- SNO+
- SuperNEMO
- nEXO Future:
- CUPID $\langle m_{ee} \rangle \sim 0.01 \text{ eV}$
- LEGEND100

Already severe bounds:

Remain to be most sensitive:

- but for ee final state only!
- What about other models?

(2). Negon decays **4. Meson decays**

(2). N Resonance Production and Decay <u>Externe the addition and bead</u>

|M|² ∝ On resonance at m_N , only V_{4l}^2 suppressed! and compare with the existing experimental bounds.∗ τ, K, D, B decays: $M^+ \rightarrow \ell_i^+ \ell_j^+ M$ $arctan$ for resonant N production. • Active searches:[∗] • Active searches:[∗] $\frac{1}{i}$ ℓ $+$ τ , K, D, B decays: $M^+ \to \ell_i^+ \ell_j^+ M^-$ via N re at for resonant N production. \rightarrow \cdot \sim $\ell_i^+ \ell_j^+ M^-$ v On resonance at m_N , only V_{4l}^2 suppressed!

 $\sum_{i=1}^{n}$ • Other processes to look for: • Other processes to look for:

$$
D^{+}, B^{+} \rightarrow \ell^{+} \ell^{+} K^{*},
$$

\n
$$
B^{+} \rightarrow \tau^{+} e^{+} M^{-}, \tau^{+} \mu^{+} M^{-}, \tau^{+} \tau^{+} M^{-}.
$$

Atre, TH, Pascoli, Zhang, arXiv:0901.3589 Atre, TH, Pascoli, Zhang, ar∆iv:0901.5589
.

Shaded regions: CERN NA62, arXiv:1905.07770

 $\mathcal{B}(K^+ \to \pi^- e^+ e^+)$ < 2.2×10^{-10} . Δ the expected background yields and the signal region of events in the signal region. We have signal region. We have signal region of Δ σ_{A} σ_{B} σ_{B} σ_{B} μ μ μ σ \sim 4.2 \times 10 2 .

F₂ IVI. DIEWES, 0. Hajel et al., al AIV. 1909. 19020 M. Drewes, J. Hajer et al., arXiv:1905.19828 Heavy ion with low trigger threshold

5. "Type I" at Lepton Colliders

11

5. "Type I" at Hadron Collider At hadron colliders: $\frac{3}{2} \cdot pp(\bar{p}) \rightarrow \ell^{\pm} \ell^{\pm} j j X$ qi \bar{q}_1 W^{\mp} l ∓ N l ∓ $\overline{W^+}$ $\left(\mathbb{W}_{R}\right)$ \longrightarrow $\left(\mathbb{W}_{R}\right)$ qi $\overline{}$ ∓ 6. "Type I" at Hadron Colliders $\ddot{}$ \backsim (*WR)*

 $\sigma(pp\to \mu^\pm \mu^\pm W^+) \approx \sigma(pp\to \mu^\pm N) Br(N\to \mu^\pm W^+) \equiv 0$ $V_{\mu N}^2$ $\sum_{\bm l}$ \mid $\overline{}$ $\left|V^{\ell N}\right|$ \mid \mid $\overline{2}$ $V^2_{\mu N}$ σ_0 . Factorize out the mixing couplings: † p_T N σ(pp → µ±µ±W∓) ≈ σ(pp → µ±N)Br(N → µ±W∓) ≡ \overline{v} ! l " <u>ן</u> $\frac{V \mu N}{|V \ell N|^2}$ $\overline{\cdot}$ " V^2 Factorize out the mixing couplings: [†]

$$
\sigma(pp \to \mu^{\pm} \mu^{\pm} W^{\mp}) \equiv S_{\mu\mu} \sigma_0,
$$
\n
$$
S_{\mu\mu} = \frac{V_{\mu N}^4}{\sum_l |V_{\ell N}|^2} \approx \frac{V_{\mu N}^2}{1 + V_{\tau N}^2 / V_{\mu N}^2} \cdot \frac{10^6}{10^6}
$$
\n
$$
\text{A very clean channel:}
$$
\n
$$
\text{Like-sign di-muons plus two jets;}
$$
\n
$$
\text{no missing energies;}
$$
\n
$$
m(jj) = M_W, m(jj\mu) = m_N.
$$
\n
$$
{}^{\text{30}}_{\text{10}} = \frac{m_{\text{10}}}{m_{\text{10}}}
$$
\n
$$
{}^{\text{51}}_{\text{11}} = \frac{m_{\text{21}}}{m_{\text{22}}}
$$
\n
$$
{}^{\text{61}}_{\text{1293}} = \frac{m_{\text{11}}}{m_{\text{12}}}
$$
\n
$$
{}^{\text{62}}_{\text{1394}} = \frac{m_{\text{12}}}{m_{\text{12}}}
$$
\n
$$
{}^{\text{70}}_{\text{100}}
$$
\n
$$
{}^{\text{70}}_{\text{110}}
$$
\n
$$
{}^{\text{70}}_{\text{1295}}
$$
\n
$$
{}^{\text{70}}_{\text{100}}
$$
\n
$$
{}^{\text{70}}_{\text{1100}}
$$
\n
$$
{}^{\text{70}}_{\text{100}}
$$
\n
$$
{}^{\text{70}}_{\text{100}}
$$
\n
$$
{}^{\text{70}}_{\text{100}}
$$
\n
$$
{}^{\text{70}}_{\text{110}}
$$
\n
$$
{}^
$$

 $2 W^{\pm}$

V ²

†T. Han and B. Zhang, hep-ph/0604064, PRL (2006).

§Keung, Senjano

CMS:

ATLAS:

CMS collaboration: arXiv:1501.05566v1. ATLAS collaboration: arXiv:1506.06020v2.

A recent update:

VBF (Wγ) contributions and NNLO QCD effects

P. S. B. Dev, A. Pilaftsis and U.-k. Yang, *Phys. Rev. Lett.* 112 (2014) 081801; Alva, TH, Ruiz: arXiv:1411.7305

New Strategy: Long Lived Particles @ Low mass

15

 10^{-6}

 $\overline{20}$

30

40

50 m_N [GeV]

 10

Type I, in general, too many theory parameters, as the Casas-Ibarra parametrization

$$
V_{\ell N} = U_{PMNS} \, m_{\nu}^{1/2} \Omega M_N^{-1/2},
$$

If assuming degenerate N_i

$$
M_N \sum_{N} (V_{\ell N}^*)^2 = (U_{PMNS}^* m_{\nu} U_{PMNS}^\dagger)_{\ell \ell}.
$$

$$
\sum_{N} |V_{eN}|^2 \ll \sum_{N} |V_{\mu N}|^2, \sum_{N} |V_{\tau N}|^2 \quad \text{for NH}
$$

$$
\sum_{N} |V_{eN}|^2 > \sum_{N} |V_{\mu N}|^2, \sum_{N} |V_{\tau N}|^2 \quad \text{for IH.}
$$

7. WR & N @ Hadron Colliders

N l ± G. Senjanovic & W. Keung, *a mass scale N* • No mixing suppression *Z* PRL 50 (1983) 1427 • New unknown mass scale MR

 Λ ENT Λ C. ILL \cdot is set by the mass of the masses of the heavy bosons, which, which is set bosons, which is set by the masses of the heavy bosons, which, which, ATLAS collaboration: arXiv:1809.11105.

A clean channel with A clean channel with rich physics:†

- Significantly enhanced rate at W_R resonance; \P a clean channel with rich physics:
+ channel physics:
	- If observed, determine N's nature: $\Delta L = 2$, azimuthal angle ...
- \bullet and determine W' chiral coup • and determine W' chiral coupling to $\ell - N_{R,L}$ and $q - \bar{q}$.

The primary lepton does not W − 0.14C $\overline{}$ provide L-R discrimination: R_{R} The primary lepton does not

18 Keung & Senjanovic, PRL (1983). cosθ*^l* Φ/π †T. Han, I. Lewis, R. Ruiz, Z. Si, arXiv:1211.6447. -1 0.5 1 -0.5 1 -0.5 1 -0.5 1 -0.5 1 -0.5 1 -0.5 1 -0.5 1 -0.5 1 -0.5 1 -0.5 1 -0.5 1 -0.5 1 -0.5 1 -0.5 1 -0. Keung & Senjanovic, PRL (1983). T. Han, I. Lewis, R. Ruiz, Z. Si, arXiv:1211.6447v2

 W' ⁺

 \overline{d}_i

 \overline{N}

$W_{L,R}$ Discrimination via $N_{L,R}$ Decay: W_{L,R} Discrimination via N_{L,R} Decay:

$$
W'_{L} : \hat{y} \uparrow \bigvee q \downarrow \bigvee \bar{q}'
$$

\n•
$$
\bigvee e_{1}^{+} \bullet \bigvee r \uparrow \bigvee N \bigotimes e_{2}^{+} \qquad \bullet \bigwedge e_{1}^{+} \bullet \bigwedge r \uparrow \bigotimes N
$$

\n
\n
$$
W_{R} : \hat{y} \uparrow \bigwedge q \downarrow \bigwedge \bar{q}'
$$

\n•
$$
\bigwedge e_{1}^{+} \bullet \bigwedge N \bigotimes e_{2}^{+}
$$

\n
\n
$$
\bigvee e_{2}^{+} \qquad \bullet \bigvee r_{0}^{+} \qquad \bullet \bigvee r_{1}^{+} \bullet \bigwedge N \bigotimes \bigotimes e_{2}^{+}
$$

$$
W'_R: \hat{y} \uparrow \bigwedge^q q \downarrow \bigwedge^q \bar{q}'
$$

\n•
$$
\bigwedge^q \ell_1^+ \bullet \bigwedge^N N \bigotimes_{\downarrow} \ell_2^+
$$

\n
$$
\downarrow \Longrightarrow W_0
$$

 $N_L \rightarrow \ell^+ W^- \rightarrow \ell^+ \eta \overline{\rho}$ $N_{L,R}\rightarrow \ell^+W^-\rightarrow \ell^+q\overline{q}'$

8. Type II Seesaw: H^{±±} & H[±] H⁺⁺H^{-−} production at hadron colliders: † Pure electroweak gauge interactions

Akeroyd, Aoki, Sugiyama, 2005, 2007.

 $\gamma\gamma \to H^{++}H^{--}$ 10% of the DY.

†Revisit, T.Han, B.Mukhopadhyaya, Z.Si, K.Wang, arXiv:0706.0441. Recently, a new model: J. Gehrlein, D. Goncalves, P. Machado, Y. Perez-Gonzalez: arXiv:1804.09184.

Type II Seesaw: Complimentary Decays $\Gamma(\phi^{++} \to \ell^+ \ell^+) \propto Y_{ij}^2 M_{\phi}$ $\Gamma(\phi^{++} \to W^+W^+) \propto$ $v^{\prime 2} M_\phi^3$ $v^4,$ with $Y_{ll}v' \approx m_{\nu} \, \left(eV\right) \Rightarrow v' \approx 2 \times 10^{-4}$ GeV the division.

We will focus on the leptonic decays, with a small \mathbf{v}' .

H^{++, --}, H^{+, -} Decays: Revealing the flavor pattern

Neutrino – charged lepton correlations Sensitivity to ^H++H−− [→] ^ℓ+ℓ⁺ Nearly background-free.

Summarize the discovery modes: $\overline{\mathsf{h}}$

Sammanze the abcovery modes.	
Spectrum	Palations
Normal Hierarchy	$\overrightarrow{BR(H^{++} \rightarrow \tau^+\tau^+)}, BR(H^{++} \rightarrow \mu^+\mu^+) \gg BR(H^{++} \rightarrow e^+e^+ \rightarrow e^-$
$(\Delta m_{31}^2 > 0)$	$BR(H^{++} \rightarrow \mu^+ \tau^+) \gg BR(H^{++} \rightarrow e^+ \mu^+)$, $BR(H^{++} \rightarrow e^+ \tau^+)$
	$BR(H^+ \to \tau^+ \bar{\nu})$, $BR(H^+ \to \mu^+ \bar{\nu}) \gg BR(H^+ \to e^+ \bar{\nu})$
Inverted Hierarchy	\bigcirc BR(H ⁺⁺ $\rightarrow e^+e^+$) > BR(H ⁺⁺ $\rightarrow \mu^+\mu^+$), BR(\mathbf{B}^{++} $\rightarrow \tau^+\tau^+$)
$(\Delta m_{31}^2<0)$	$\frac{\mathsf{BR}(H^{++}\to\mu^+\tau^+)\;\gg\;\mathsf{BR}(H^{++}\to e^+\tau^+) ,\;\mathsf{BR}(H^{++}\to e^+\mu^+)} {\mathsf{BR}(H^{+}\to e^+\bar{\nu}) \;\succ\; \mathsf{BR}(H^{+}\to\mu^+\bar{\nu}) ,\;\mathsf{BR}(H^{+}\to\tau^+\bar{\nu}) }$
Quasi-Degenerate	$\frac{\mathsf{BR}(H^{++}\to e^+e^+)\sim \mathsf{BR}(H^{++}\to \mu^+\mu^+)\sim \mathsf{BR}(H^{++}\to \tau^+\tau^+)\approx 1/3}{\mathsf{BR}(H^+\to e^+\bar{\nu})\sim \mathsf{BR}(H^+\to \mu^+\bar{\nu})\sim \mathsf{BR}(H^+\to \tau^+\bar{\nu})\approx 1/3}$
$(m_1, m_2, m_3 > \Delta m_{31})$	

†Pavel Fileviez Perez, Tao Han, Gui-Yu Huang, Tong Li, Kai Wang, arXiv:0803.3450 [hep-ph]

ATLAS Bounds: Sensitivity to $H^{++}H^{--}\rightarrow \ell^+\ell^+$, ℓ−ℓ− Mode: † CMS-PAS-HIG-16-036

With 300 fb⁻¹ integrated luminosity,

a coverage upto $M_{H^{++}} \sim 1$ TeV even with $BR \sim 40-50\%$.

 P ossible measurements on $BR's$.

σ(pp→ H⁺⁺H¨→ e[±]e[±]e⁺e⁺e⁺] [fb]

9. Type III Seesaw: T[±] & T⁰ T. Type III Sees

Consider their decay length: Consider their decay length: Consider their decay length:

 $\frac{10}{10}$ $\frac{12}{10} - \frac{12}{10}$ $\frac{10}{10} - \frac{12}{10}$ then $\sum_{j=1}^{\infty}$ With $\lambda^2 = y_j^2 \sim 10^{-16} - 10^{-12}$, then $c\tau \sim 10^{-2} - 10^{-4}$ m Still not too long-lived, but possibly large displaced vertices. $\ddot{ }$

, then ^c^τ [∼] ¹⁰−² [−] ¹⁰−⁴ ^m

Γ Type III Seesaw: T^{\pm} & T^0 T_{V} is under T_{V} is $\frac{1}{2}$ $\frac{1}{2}$ state leptons that is governed by the neutrino mass and mixing parameters. The Im(z) In most of the parameter space of $N_{\rm eff}$ (left panels), i.e. for 10^{11} , i.e. for 10^{11} $\rm cm$ Type III Seesaw: T⁺ & T⁰

Lepton flavor combination determines the ν mass pattern: \top

Lepton flavors correlate with the ν mass pattern.

†Abdesslam Arhrib, Borut Bajc, Dilip Kumar Ghosh, Tao Han, Gui-Yu Huang, Ivica Puljak, Goran Sejanovic, arXiv:0904.2390.

Type III Seesaw: T[±] & T⁰

• Single production $T^{\pm}\ell^{\mp}$, $T^{0}\ell^{\pm}$:

Kinematically favored, but highly suppressed by mixing.

• Pair production with gauge couplings. Example: $T^{\pm} + T^{0} \rightarrow \ell^{+} Z(h) + \ell^{+} W^{-} \rightarrow \ell^{+} j j (b\overline{b}) + \ell^{+} j j$. Low backgrounds.

• LHC studies with Minimal Flavor Violation implemented. ‡

†Similar earlier work: Franceschini, Hambye, Strumia, arXiv:0805.1613. ‡O. Eboli, J. Gonzalez-Fraile, M.C. Gonzalez-Garcia, arXiv:1108.0661 [hep-ph].

$\Delta L=2$ & mass reconstruction for T^{\pm} & T^{0} $\mathbf{A} \mathbf{I} \mathbf{Q} \mathbf{Q}$ ΔL – α mass reconsulation

Summary **Summary** $\frac{1}{\sqrt{2}}$ • Summary **Summary**

- It is of fundamental importance to test the Majorana nature of ν 's. ϵ is of fundamental importance to test the Majorana nature $\frac{1}{\sqrt{2}}$ τ_{max} I fee souls importance to the Majorana nature of τ_{max} $\frac{1}{2}$ is of fundamental importance to test the Majora
- Type I See-saw: Figure I See-saw.
If P is a see decouse sepoitive to • Type I See-saw:
- \bullet τ , K , D , B rare decays sensitive to 140 MeV $< m_4 < 5$ GeV, $10^{-9} < |V_{\ell 4}|^2 < 10^{-2}$; • τ , K , D , D rare decays sensitive to τ 140 MeV $< m_4 < 5$ GeV, $10^{-9} < |V_{\ell 4}|^2 < 10^{-2}$; and $140 \text{ MeV} < m_4 < 5 \text{ GeV}, 10^{-9} < 10^{-9}$ \bullet τ, K, D, B rare decays sensitive to \bullet τ, K, D, B rare decays sensitive to $140\,\,{\rm MeV} < m_4 < 5\,\,{\rm GeV},\,\, 10^{-9} < |V_{\ell4}|^2$
	- LHC sensitive: 10 GeV $< m_4 < 400$ GeV, $10^{-6} < |V_{\mu 4}|^2 < 10^{-2}$. • LHC sensitive: 10 GeV < m_4 < 400 GeV, 10 \degree < $|V_{\mu4}|^2$ < 10 \degree . • LHC sensitive: 10 GeV $< m_{4} <$ 400 GeV, $10^{-6} < |V_{\mu4}|^{2} < 10^{-2}$. 1.6 movement $\sqrt{m_{4}}$ $\sqrt{6.000}$, $\sqrt{4.00}$ $\texttt{P}(\texttt{INS}) = \texttt{IV}(\texttt{IV}|\mathbf{C}) \leq \texttt{IV}(\texttt{IV}|\mathbf{$ • LHC sensitive: $10 \text{ GeV} < m_4 < 400 \text{ C}$
		- Difficulty! May be helped with the "inverse seesaw" mech • Difficulty! May be helped with the "inverse seesaw" mechanism. • Difficulty: May be helped with the inverse seesaw in • Difficulty! May be helped with the "inverse s • Difficulty: 10 Geven below with the inverse seesaw mechanism. .
Training and the "inverse seesaw" mechanism .
Training the "inverse seesaw" mechanism
	- Type II See-saw: for a scalar triplet $\Phi^{\pm\pm}$ • Type II See-saw: for a scalar triplet Φ^{\pm} • Type II See-saw: for a scalar triplet $\Phi^{\pm\pm}$ • Type II See-saw: for a scalar triplet $\Phi^{\pm\pm}$ Figure 11 See-saw. For a scalar triplet Φ^{++}
	- LHC sensitive: $M_{\phi} \sim 600 1000$ GeV $(\ell^{\pm} \ell^{\pm} \text{ or } W^{\pm} W^{\pm}).$ \bullet LHC sensitive: Mφ ∼ 600 − 1000 GeV ($\ell^{\pm}\ell^{\pm}$ or $W^{\pm}W^{\pm}$ • LHC sensitive: $M_{\phi} \sim 600-1000$ GeV $(\ell^{\pm} \ell^{\pm} \; or \; W^{\pm} W^{\pm}).$ α between the section of the contribution of the contribution of $W^\pm W^\pm$ and $M_\phi \sim 600-1000$ GeV $(\ell^\pm \ell^\pm\; or\; W^\pm W^\pm)$ • LAC SEIISILIVE. $M_{\phi} \sim 000 - 1000$ GeV
• Distinguish Nermal (Inverted Hierarchy) • LHC sensitive: $M_{\phi} \sim 600-1000$ GeV $(\ell^{\pm} \ell^{\pm} \,\, or \,\, W^{\pm} W^{\pm}).$
- Distinguish Normal/Inverted Hierarchy; Probe Majorana phases. μ Dire sensitive. m_{ϕ} v 000 1000 OCV (a a 01 W W). • Distinguish ivormal/inverted Hierarchy, • Distinguish ivorniar/Inverted Hierarchy, Frobe Majorana p
• Mith Wi⁺ Mi⁺ seech M • Distinguish Normal/Inverted Hierarchy; P
	- With $W'^{\pm} \to N \ell^{\pm}$, reach $M_N < M_{W'} \sim 4-5$ VVILII $W = \rightarrow I V \ell^-,$ reach M_N • With $W'^{\pm} \to N \ell^{\pm},$ reach $M_N < M_{W'} \sim$ 4 – 5 TeV. • With $W^{\prime\pm} \to N\ell^{\pm}$, reach $M_N < M_{W'} \sim$ 4 – 5 TeV.
		- Type III See-saw: for a lepton triplet T^{\pm} , T^{0} • Type III See-saw: for a lepton triplet T^{\pm} , T^0
- LHC sensitive: $M_T \sim 800$ GeV. • LHC sensitive: $M_T \sim 800$ GeV.
	- The See-saw models for mν may be the best playground for synergies among the frontiers: • Also distinguish Normal/Inverted Hierarchy. • Also distinguish Normal/Invert

The Second Company must be the seeded of the best players of the best players and the best players of for synergies and superson the frontiers. ative seesaw \rightarrow rich physics in extended Higg $\frac{1}{\sqrt{1-\frac{1$ $\frac{1}{100}$ Radiative seesaw \rightarrow rich physics in extended Higgs sector.

 $\frac{1}{\sqrt{2}}$ intensity, hadron colliders may serve IF lucky hadron collidare may corve IF lucky, hadron colliders may serve The discovery machine for ividjoi and nature of ν s. as the discovery machine for Majorana nature of ν 's.

Many models to account for the neutrino mass.* Another class of well-motivated models: Radiative generation of neutrino masses. OTHER MODELS & PHENOMENOLOGY Thus far, we only considered Type I, II, III seesaw models

• Zee (1986)-Babu (1988) Model: add singlet scalar fields m_y generate at 2-loop \rightarrow change Higgs physics • Ma Models (2006): add singlet scalars + Z_2 symmetry \rightarrow Dark matter

Typically, they introduce additional Higgs states and thus new (model-dependent) collider signatures.

* For a review, see, M.C. Chen & J.R. Huang, arXiv:1105.3188v2.

.

Summary: Fill up a Matrix:

Please help to

- Fill the entries
- Expand on both sides More work to do !