CERN Summer Student Lecture Program 2019

Thierry Gys
Andrea Wulzer

on behalf of the SSLP committee
Goals

With these lectures we should:

• Give an overview of what we do at CERN and why
• Teach some physics/statistics/computing/engineering/…
• All this, to a varied audience.
Goals

With these lectures we should:

• Give an overview of what we do at CERN and why
• Teach some physics/statistics/computing/engineering/…
• All this, to a varied audience.

Not an easy task!
Goals

With these lectures we should:

• Give an overview of what we do at CERN and why
• Teach some physics/statistics/computing/engineering/…
• All this, to a varied audience.

Not an easy task!

For this reason, our lecturers are at the same time top researchers in their field and experienced lecturers. Don’t miss the opportunity to learn from them!
Goals

With these lectures we should:

- Give an overview of what we do at CERN and why
- Teach some physics/statistics/computing/engineering/…
- All this, to a varied audience.

Not an easy task!

For this reason, our lecturers are at the same time top researchers in their field and experienced lecturers.

Don’t miss the opportunity to learn from them!

Aim is not to teach you how to e.g. build an accelerator. We give you basic concepts and ideas, to further stimulate your interest in science.
Programme Overview

<table>
<thead>
<tr>
<th>Accelerator</th>
<th>Particle Accelerators and beam dynamics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Accelerator technology technology challenges</td>
</tr>
<tr>
<td></td>
<td>Future high-energy collider projects</td>
</tr>
<tr>
<td>Detectors</td>
<td>Detectors</td>
</tr>
<tr>
<td></td>
<td>Electronics, DAQ and triggers</td>
</tr>
<tr>
<td>Experiment</td>
<td>Particle World</td>
</tr>
<tr>
<td></td>
<td>From raw data to physics results</td>
</tr>
<tr>
<td></td>
<td>Experimental physics at hadron colliders</td>
</tr>
<tr>
<td></td>
<td>Experimental physics at lepton colliders</td>
</tr>
<tr>
<td></td>
<td>Physics and medical applications</td>
</tr>
<tr>
<td></td>
<td>Heavy Ions</td>
</tr>
<tr>
<td></td>
<td>Nuclear Physics at CERN</td>
</tr>
<tr>
<td></td>
<td>Flavour Physics</td>
</tr>
<tr>
<td></td>
<td>Antimatter in the lab</td>
</tr>
<tr>
<td>Theory</td>
<td>Theoretical concepts in particle physics</td>
</tr>
<tr>
<td></td>
<td>The Standard Model</td>
</tr>
<tr>
<td></td>
<td>Beyond the Standard Model</td>
</tr>
<tr>
<td></td>
<td>Making predictions at hadron colliders</td>
</tr>
<tr>
<td></td>
<td>Introduction to cosmology</td>
</tr>
<tr>
<td></td>
<td>Astroparticle physics</td>
</tr>
<tr>
<td></td>
<td>What is string theory?</td>
</tr>
<tr>
<td>Statistics/Computing</td>
<td>Foundations of statistics</td>
</tr>
<tr>
<td></td>
<td>Separate openlab programme</td>
</tr>
</tbody>
</table>
Programme Overview

Accelerator
- Particle Accelerators and beam dynamics
- Accelerator technology challenges
- Future high-energy collider projects

Detectors
- Detectors
- Electronics, DAQ and triggers

Experiment
- Particle World
- From raw data to physics results
- Experimental physics at hadron colliders
- Experimental physics at lepton colliders
- Physics and medical applications
- Heavy Ions
- Nuclear Physics at CERN
- Flavour Physics
- Antimatter in the lab

Theory
- Theoretical concepts in particle physics
- The Standard Model
- Beyond the Standard Model
- Making predictions at hadron colliders
- Introduction to cosmology
- Astroparticle physics
- What is string theory?

Statistics/Computing
- Foundations of statistics
- Separate openlab programme
Programme Overview

- **Accelerator**
 - Particle Accelerators and beam dynamics
 - Accelerator technology challenges
 - Future high-energy collider projects

- **Detectors**
 - Detectors
 - Electronics, DAQ and triggers

- **Experiment**
 - Particle World
 - From raw data to physics results
 - Experimental physics at hadron colliders
 - Experimental physics at lepton colliders
 - Physics and medical applications
 - Heavy Ions
 - Nuclear Physics at CERN
 - Flavour Physics
 - Antimatter in the lab

- **Theory**
 - Theoretical concepts in particle physics
 - The Standard Model
 - Beyond the Standard Model
 - Making predictions at hadron colliders
 - Introduction to cosmology
 - Astroparticle physics
 - What is string theory?

- **Statistics/Computing**
 - Foundations of statistics
 - Separate openlab programme

A simple scheme …
Programme Overview

A simple scheme ...

Accelerator
- Particle Accelerators and beam dynamics
- Accelerator technology challenges
- Future high-energy collider projects

Detectors
- Detectors
- Electronics, DAQ and triggers

Experiment
- Particle World
- From raw data to physics results
- Experimental physics at hadron colliders
- Experimental physics at lepton colliders
- Physics and medical applications
- Heavy Ions
- Nuclear Physics at CERN
- Flavour Physics
- Antimatter in the lab

Theory
- Theoretical concepts in particle physics
- The Standard Model
- Beyond the Standard Model
- Making predictions at hadron colliders
- Introduction to cosmology
- Astroparticle physics
- What is string theory?

Statistics/Computing
- Foundations of statistics
- Separate openlab programme
Programme Overview

A simple scheme ...

... however ...

Accelerator
- Particle Accelerators and beam dynamics
- Accelerator technology challenges
- Future high-energy collider projects

Detectors
- Detectors
- Electronics, DAQ and triggers

Experiment
- Particle World
- From raw data to physics results
- Experimental physics at hadron colliders
- Experimental physics at lepton colliders
- Physics and medical applications
- Heavy Ions
- Nuclear Physics at CERN
- Flavour Physics
- Antimatter in the lab

Theory
- Theoretical concepts in particle physics
- The Standard Model
- Beyond the Standard Model
- Making predictions at hadron colliders
- Introduction to cosmology
- Astroparticle physics
- What is string theory?

Statistics/Computing
- Foundations of statistics
- Separate openlab programme
Programme Overview

<table>
<thead>
<tr>
<th>Category</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accelerator</td>
<td>Particle Accelerators and beam dynamics</td>
</tr>
<tr>
<td></td>
<td>Accelerator technology technology challenges</td>
</tr>
<tr>
<td></td>
<td>Future high-energy collider projects</td>
</tr>
<tr>
<td>Detectors</td>
<td>Detectors</td>
</tr>
<tr>
<td></td>
<td>Electronics, DAQ and triggers</td>
</tr>
<tr>
<td>Experiment</td>
<td>Particle World</td>
</tr>
<tr>
<td></td>
<td>From raw data to physics results</td>
</tr>
<tr>
<td></td>
<td>Experimental physics at hadron colliders</td>
</tr>
<tr>
<td></td>
<td>Experimental physics at lepton colliders</td>
</tr>
<tr>
<td></td>
<td>Physics and medical applications</td>
</tr>
<tr>
<td></td>
<td>Heavy Ions</td>
</tr>
<tr>
<td></td>
<td>Nuclear Physics at CERN</td>
</tr>
<tr>
<td></td>
<td>Flavour Physics</td>
</tr>
<tr>
<td></td>
<td>Antimatter in the lab</td>
</tr>
<tr>
<td>Theory</td>
<td>Theoretical concepts in particle physics</td>
</tr>
<tr>
<td></td>
<td>The Standard Model</td>
</tr>
<tr>
<td></td>
<td>Beyond the Standard Model</td>
</tr>
<tr>
<td></td>
<td>Making predictions at hadron colliders</td>
</tr>
<tr>
<td></td>
<td>Introduction to cosmology</td>
</tr>
<tr>
<td></td>
<td>Astroparticle physics</td>
</tr>
<tr>
<td></td>
<td>What is string theory?</td>
</tr>
<tr>
<td>Statistics/Computing</td>
<td>Foundations of statistics</td>
</tr>
<tr>
<td></td>
<td>Separate openlab programme</td>
</tr>
</tbody>
</table>
Programme Overview

A simple scheme …

… however …

Accelerator
- Particle Accelerators and beam dynamics
- Accelerator technology challenges
- Future high-energy collider projects

Detectors
- Detectors
- Electronics, DAQ and triggers

Experiment
- Particle World
- From raw data to physics results
- Experimental physics at hadron colliders
- Experimental physics at lepton colliders
- Physics and medical applications
- Heavy Ions
- Nuclear Physics at CERN
- Flavour Physics
- Antimatter in the lab

Theory
- Theoretical concepts in particle physics
- The Standard Model
- Beyond the Standard Model
- Making predictions at hadron colliders
- Introduction to cosmology
- Astroparticle physics
- What is string theory?

Statistics/Computing
- Foundations of statistics
- Separate openlab programme
A simple scheme ...

... however ...

All subjects are inextricably linked
A simple scheme …
… however …
All subjects are **inextricably linked**

CERN is great because it brings them together

<table>
<thead>
<tr>
<th>Programme Overview</th>
</tr>
</thead>
</table>
| **Accelerator** | Particle Accelerators and beam dynamics
| | Accelerator technology challenges
| | Future high-energy collider projects |
| **Detectors** | Detectors
| | Electronics, DAQ and triggers |
| **Experiment** | Particle World
| | From raw data to physics results
| | Experimental physics at hadron colliders
| | Experimental physics at lepton colliders
| | Physics and medical applications
| | Heavy Ions
| | Nuclear Physics at CERN
| | Flavour Physics
| | Antimatter in the lab |
| **Theory** | Theoretical concepts in particle physics
| | The Standard Model
| | Beyond the Standard Model
| | Making predictions at hadron colliders
| | Introduction to cosmology
| | Astroparticle physics
| | What is string theory? |
| **Statistics/Computing** | Foundations of statistics
| | Separate **openlab programme** |
Programme Overview

A simple scheme ...
... however ...

All subjects are **inextricably linked**

CERN is great because it brings them together

Lecture program designed as pedagogical overview of all topics.

You are not expected to understand everything in all courses.

But in all courses there will be something you can learn.

Attend the lectures, even on topics you think you don’t care.

Otherwise you will not get the spirit of CERN!
Practical Information

Lectures every morning at 9:15, 10:25, 11:35, here (Main Auditorium)

- lectures are 45’
- followed by 10’ questions (stay in the room !)
- and by 15’ coffee break

Use back door if you are late

Follow lecture actively

- unfortunately there is WiFi in the room, don’t get distracted !
- try the exercises the lecturer may propose
- **ASK QUESTIONS!** lecturers love that, there are no stupid questions!

Lecture slides and recording available online [https://indico.cern.ch/category/345/]
Instructions in backup
Feedback Questionnaire !!

You will be asked to fill one (anonymous) questionnaire for each course.

DO THAT !

Your evaluation is carefully reviewed by the SSLP committee. Helps us a lot to improve the program.
The SSLP committee:

- Eszter Badinova (HR)
- Adriana Bejaoui (HR)
- Ana Dordevic (HR)
- Kfir Blum (TH)
- Francesco Cerutti (EN)
- Maria Girone (IT)
- Richard Hawkings (EP)
- Bernhard Holzer (BE/ABP)

The SSLP committee chairs

- Thierry Gys (EP) thierry.gys@cern.ch
- Andrea Wulzer (TH) andrea.wulzer@cern.ch

For administrative and scheduling questions: summer.student.info@cern.ch
More introduction to follow …

<table>
<thead>
<tr>
<th>Time</th>
<th>Duration</th>
<th>Event Description</th>
<th>Speaker(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00</td>
<td>15m</td>
<td>Welcome and Introduction to Lecture Programme</td>
<td>Andrea Wulzer (CERN and EPFL), Thierry Gys (CERN)</td>
</tr>
<tr>
<td>09:15</td>
<td>5m</td>
<td>Introduction to openlab lectures</td>
<td>Kristina Gunne (CERN)</td>
</tr>
<tr>
<td>09:20</td>
<td>20m</td>
<td>Computer Security at CERN</td>
<td>Sebastian Lopienski (CERN)</td>
</tr>
<tr>
<td>09:40</td>
<td>10m</td>
<td>Library Service</td>
<td>Salome Alexandra Rohr (CERN)</td>
</tr>
<tr>
<td>09:50</td>
<td>20m</td>
<td>Summer Student Workshops</td>
<td>Niko Neufeld (CERN)</td>
</tr>
</tbody>
</table>
Welcome and Introduction to Lecture Programme

Speakers: Andrea Wulzer (CERN and EPFL), Thierry Gys (CERN)

Introduction to openlab lectures

Speaker: Kristina Gunne (CERN)

Computer Security at CERN

Speaker: Sebastian Lopienski (CERN)

Library Service

Speaker: Salome Alexandra Rohr (CERN)

Summer Student Workshops

Speaker: Niko Neufeld (CERN)
Enjoy CERN, your project, and the lectures !!
Backup Slides
Summer Student Lecture Programme Course

There are 59 events in the future. Show

<table>
<thead>
<tr>
<th>June 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>29 Jun</td>
</tr>
<tr>
<td>29 Jun</td>
</tr>
<tr>
<td>29 Jun</td>
</tr>
<tr>
<td>28 Jun</td>
</tr>
<tr>
<td>28 Jun</td>
</tr>
<tr>
<td>28 Jun</td>
</tr>
<tr>
<td>27 Jun</td>
</tr>
<tr>
<td>27 Jun</td>
</tr>
<tr>
<td>27 Jun</td>
</tr>
<tr>
<td>26 Jun</td>
</tr>
<tr>
<td>26 Jun</td>
</tr>
<tr>
<td>26 Jun</td>
</tr>
</tbody>
</table>

There are 1656 events in the past. Show