DFG Deutsche Forschungsgemeinschaft

Jens Erler JGU & Helmholtz Institute Mainz (on leave from IF-UNAM)

Precision electroweak physics with low energy measurements

Cluster of Excellence PRîSMA⁺

Precision Physics, Fundamental Interactions and Structure of Matter

Complementary physics

High-energy precision tests

EW symmetry breaking

Collider searches

Low-energy precision tests

new amplitudes

Flavor physics symmetries and conservation laws

new particles & states

Mw sin² θ_{w} **Z & H properties** top quark properties

polarized e⁻ scattering v scattering atomic parity violation lepton properties

Outline

- * Weak mixing angle:
 - * global survey of $sin^2\theta_W$ determinations
 - * Theoretical uncertainties: correlations in precision observables
- * Vacuum polarization in global fits:
 - * α(M_Z)
 - * $\sin^2\theta_W(0)$
 - ***** g_µ-2
 - * m_{c,b}
- * Conclusions and outlook

Weak Mixing Angle

Weak mixing angle at tree level

doubly over-constrained system

only I relation if $\alpha(M_Z)$ would not be known \checkmark

$$Z^{\mu} = \cos \theta_W W_3^{\mu} - \sin \theta_W B^{\mu}$$
$$A^{\mu} = \sin \theta_W W_3^{\mu} + \cos \theta_W B^{\mu}$$

$$\theta_W = \frac{\pi \alpha(M_W)}{\sqrt{2}G_F M_W^2} \Longrightarrow \theta_W = 28.68^{\circ}$$

$$W = \frac{\sqrt{8}\pi \alpha(M_Z)}{G_F M_Z^2} \Longrightarrow \theta_W = 28.90^{\circ}$$

$$\theta_W = \arccos \frac{M_W}{M_Z} = 28.18^{\circ}$$

(currently induces 3 MeV error)

- * tuning in on the Z resonance
 - * leptonic and heavy quark FB asymmetries in e^+e^- annihilation near $s = M_Z^2$
 - * leptonic FB asymmetries in pp (pp) Drell-Yan in a window around $m_{\parallel} = M_Z$
 - * LR asymmetry (SLC) and final state T polarization (LEP) and their FB asymmetries

	V scattering	parity violating e ⁻ scattering (PVES)
leptonic	$v_{\mu} - e^{-}$	e ⁻ – e ⁻
DIS	heavy nuclei (NuTeV)	deuteron (E–122, PVDIS, SoLID)
elastic	CEvNS (COHERENT)	proton, ¹² C (Qweak, P2)
APV	heavy alkali atoms and ions	isotope ratios (Mainz)

- * tuning in on the Z resonance
 - * leptonic and heavy quark FB asymmetries in e^+e^- annihilation near $s = M_Z^2$
 - * leptonic FB asymmetries in pp (pp) Drell-Yan in a window around $m_{\parallel} = M_Z$
 - * LR asymmetry (SLC) and final state T polarization (LEP) and their FB asymmetries

	V scatterir	ng recent f	irst measurements	tering (PVES)
leptonic	v _µ – e⁻		e- – e-	
DIS	heavy nuclei (TeV)	deuteron (E–122, P	S, SoLID)
elastic	CEVNS (COHERENT)		proton, ¹² C (Qw	eak, P2)
APV	heavy alkali atoms	s and ions	isotope ratios (Mainz)

Coherent Elastic v Nucleus Scattering (CEvNS)

7

<u>COHERENT @ SNS</u> Csl $E_{\nu} \approx 16 - 53 \text{ MeV}$ Α $\sigma \sim Q_W^2$ 134 ± 22 events constraints on NSI neutron skin? arXiv:1708.01294

 $Q_w(N,Z) = Z(I - 4 \sin^2\theta_w) - N$

Atomic parity violation in an isotope chain

AG Budker @ JGU Mainz

- Ytterbium
- 170Yb 176Yb
- ± 0.5% per isotope
- $\pm 100\%$ error in sin² θ_W
- constraints on Z' with M < 100 keV
- $\Delta \sin^2 \theta_W = \pm 0.2$
- neutron skin?

arXiv:1804.05747

Longitudinally polarized

Parity Violating e⁻ Scattering (PVES) — Elastic

Qweak @ CEBAF (JLab)

- hydrogen (completed)
- $E_e = 1165 \text{ MeV}$
- |Q| = 158 MeV
- $A_{PV} = 2.3 \times 10^{-7}$
- $\Delta A_{\rm PV} = \pm 4.1\%$
- $\Delta Q_{W}(p) = \pm 6.25\%$
- $\Delta \sin^2 \theta_W = \pm 0.0011$
- FFs from fit to ep asymmetries

Theory issues in PVES

- * need full I-loop QED under
- ***** box diagrams (γZ-box)
- * enhanced 2-loop electroweak (YWW-double box)
- * running weak mixing angle (see later)
- * unknown neutron distribution

Parity Violating e⁻ Scattering (PVES) — Elastic

P2 @ MESA (JGU Mainz)

- hydrogen (CDR)
- $E_e = 155 \text{ MeV}$
- |Q| = 67 MeV
- $A_{PV} = 4 \times 10^{-8}$
- $\Delta A_{\rm PV} = \pm 1.4\%$
- $\Delta Q_{\rm W}(p) = \pm 1.83\%$
- $\Delta \sin^2 \theta_{\rm W} = \pm 0.00033$
- FFs from backward angle data

arXiv:1802.04759

Parity Violating e- Scattering (PVES) — Elastic

Qweak @ CEBAF (JLab)

- hydrogen (completed)
- $E_e = 1165 \text{ MeV}$
- |Q| = 158 MeV
- $A_{PV} = 2.3 \times 10^{-7}$
- $\Delta A_{\rm PV} = \pm 4.1\%$
- $\Delta Q_{W}(p) = \pm 6.25\%$
- $\Delta \sin^2 \theta_W = \pm 0.0011$
- FFs from fit to ep asymmetries

P2@MESA (JGU Mainz)

- hydrogen (CDR)
- $E_e = 150 \text{ MeV}$
- |Q| = 67 MeV
- $A_{PV} = 4 \times 10^{-8}$
- $\Delta A_{PV} = \pm 1.4\%$
- $\Delta Q_W(p) = \pm 1.83\%$
- $\Delta \sin^2 \theta_{\rm W} = \pm 0.00033$
- FFs from backward angle data

arXiv:1802.04759

Effective couplings (Wilson coefficients)

14

Parity Violating e⁻ Scattering (PVES) — Elastic

P2 @
H (CD
$E_e = 15$
Q = 6
$A_{PV} = 2$
$\Delta A_{PV} =$
ΔQw(p
$\Delta sin^2 \theta$
FFs fro
arXiv

MESA

- PR)
- 55 MeV
- 67 MeV
- 4 × 10⁻⁸
- = ± 1.4%
- p) = ± 1.83%
- $v_{\rm VV} = \pm 0.00033$
- om backward angles

/:1802.04759

P2 @ **MESA** ¹²C (CDR) $E_e = 150 \text{ MeV}$ $A_{PV} = 6 \times 10^{-7}$ $\Delta A_{\rm PV} = \pm 0.3\%$ $\Delta Q_{W}(^{12}C) = \pm 0.3\%$ $\Delta \sin^2 \theta_{\rm W} = \pm 0.0007$ neutron skin? only one FF arXiv:1802.04759

S and T

S	0.02 ± 0.07
Т	0.06 ± 0.06
$\Delta \chi^2$	- 4.2

- * $M_{KK} \gtrsim 3.2 \text{ TeV}$ in warped extra dimension models
- * $M_V \gtrsim 4 \text{ TeV}$ in minimal composite Higgs models

Freitas & JE **PDG (2018)**

Parity Violating e⁻ Scattering (PVES) — DIS

EI22@SLAC	PVDIS
D (completed)	D (com
Q = 0.96 – I.40 GeV	Q = I
$A_{PV} = 1.2 \times 10^{-4}$	$A_{PV} = I$
$\Delta A_{PV} = \pm 8\%$	$\Delta A_{PV} =$
$\Delta \sin^2 \theta_W = \pm 0.011$	$\Delta sin^2 \theta_{\Lambda}$
PLB 84, 524 (1979)	arXiv

<u>S@CEBAF</u>

- npleted)
- 1.04 & 1.38 GeV
- 1.6 × 10-4
- = ± 4.4%
- $V_{\rm VV} = \pm 0.005 \, \rm I$
- 1411.3200

Solid @ CEBAF

- D (pre-CDR)
- |Q| = 2.1 3.1 GeV
- $A_{PV} = 8 \times 10^{-4}$
- $\Delta A_{PV} = \pm 0.6\%$
- $\Delta \sin^2 \theta_{\rm W} = \pm 0.00057$
- Higher twist?
- Isospin violation?

arXiv:1810.00989

7

9

Effective couplings (Wilson coefficients)

[2 g^{eu}- g^{ed}]_{AV}

Scale exclusions post Qweak

[2 g^{eu} - g^{ed}]_{AV}

Parity Violating e- Scattering (PVES) — Møller

EI58 @ SLC (SLAC)

- hydrogen (completed)
- E_e = 45 & 48 GeV
- |Q| = 161 MeV
- $A_{PV} = 1.31 \times 10^{-7}$
- $\Delta A_{PV} = \pm 13\%$
- $\Delta Q_W(e) = \pm 13\%$
- $\Delta \sin^2 \theta_{\rm W} = \pm 0.0013$

hep-ex/0504049

MOLLER @ CEBAF (JLab)

- hydrogen (proposal)
- $E_e = 11.0 \text{ GeV}$
- |Q| = 76 MeV
- $A_{PV} = 3.3 \times 10^{-8}$
- $\Delta A_{PV} = \pm 2.4\%$
- $\Delta Q_{\rm W}(e) = \pm 2.4\%$
- $\Delta \sin^2 \theta_{\rm W} = \pm 0.00027$

arXiv:1411.4088

Parity Violating e⁻ Scattering (PVES) — Møller

EI58 @ SLC (SLAC)

- hydrogen (completed)
- E_e = 45 & 48 GeV
- |Q| = 161 MeV
- $A_{PV} = 1.31 \times 10^{-7}$
- $\Delta A_{PV} = \pm 13\%$
- $\Delta Q_W(e) = \pm 13\%$
- $\Delta \sin^2 \theta_{\rm W} = \pm 0.0013$

hep-ex/0504049

MOLLER @ CEBAF (JLab)

- hydrogen (proposal)
- $E_e = 11.0 \text{ GeV}$
- |Q| = 76 MeV
- $A_{PV} = 3.3 \times 10^{-8}$
- $\Delta A_{PV} = \pm 2.4\%$
- $\Delta Q_W(e) = \pm 2.4\%$
- $\Delta \sin^2 \theta_{\rm W} = \pm 0.00027$

PVES history

Running weak mixing angle

22

Weak mixing angle measurements

Weak mixing angle measurements

2-loop QCD correction with $m_b \neq 0$ Bernreuther et al. arXiv:1611.07942

new measured transition vector polarizability

> Tho et al. arXiv:1905.02768

Weak mixing angle measurements

 $A_{FB}(e)$ $A_{FB}(\mu)$ $A_{FB}(\tau)$ $A_{FB}(b)$ $A_{FB}(c)$ $A_{FB}(s)$ $A_{FB}(q)$ $P(\tau)$ $P_{FB}(\tau)$ $A_{LR}(had)$ $A_{LR}(lep)$ $A_{LR,FB}(\mu)$ $A_{LR,FB}(\tau)$ CDF (e) CDF (µ) D0 (e) **D0 (**μ) ATLAS (e) ATLAS (µ) CMS (e) CMS (µ) LHCb (µ) Q_W(e) Q_W(p) Q_W(Cs) 0.235

LEP & SLC: 0.23153 ± 0.00016 Tevatron: 0.23148 ± 0.00033 LHC: $0.23|3| \pm 0.00033$ <u>average direct</u> $0.23|49 \pm 0.000|3$ <u>global fit</u> 0.23153 ± 0.00004

W boson mass measurements

Theoretical uncertainties and correlations

- * loop factors including enhancement factors $N_C = N_F = 3$ or $sin^{-2}\theta_W \approx m_t^2 / M_W^2 \approx 4$: $8 \alpha (M_W) / \pi = 0.020 (QED)$ * $3 \alpha_s(M_W) / \pi = 0.116 (QCD)$ * $3 \alpha(M_W) / \pi \sin^2 \theta_W(M_W) = 0.032$ (CC) * * $(3 - 6 s^2_W + 8 s^4_W)/\pi s^2_W c^2_W = 0.029$ (NC)

- - * $\Delta S_Z = \pm 0.0034$ (may be combined with $\Delta \alpha_{had}$),
 - * $\Delta T = \pm 0.0073$ (t-b doublet)
 - * $\Delta U = S_W S_7 = \pm 0.0051$
- * assuming ΔS_Z , ΔT and ΔU to be sufficiently different (uncorrelated) induces theory Schott & JE, arXiv:1902.05142 correlations between different observables

$M_H - m_t$

indirect m_t

176.4 ± 1.8 GeV (2.0 σ high)

indirect M_H

 90^{+17}_{-15} GeV (1.9 σ low) including theory error 9|+¹⁸₋₁₆ GeV (1.8 σ low)

Beyond the SM

- * Z-Z' mixing: modification of Z vector coupling
- * oblique parameters: STU (also need M_W and Γ_Z)
- * new amplitudes: off- versus on-Z pole measurements (e.g. Z')

* dark Z: renormalization group evolution (running)

28

Vacuum Polarization in Global Fits $\alpha(M_Z) \sin^2\theta_W(0) g_\mu - 2 m_{b,c}$

$\sin^2\theta_W(0)$ and $\Delta\alpha(M_Z)$

* coupled system of equations * $\Delta \alpha(M_Z)_{had}$ errors in $\sin^2 \theta_W(0) = \kappa(0) \sin^2 \theta_W(M_Z)$ add because $M_Z^2 \sim g_Z^2(M_Z) v^2 \sim [\alpha/s^2_W c^2_W](M_Z) G_F^{-1}$

Ramsey-Musolf & JE, hep-ph/0409169

- * Dispersive approach: integral over $\sigma(e^+e^- \rightarrow hadrons)$ and τ -decay data * $\alpha^{-1}(M_Z) = 128.947 \pm 0.012$ Davier et al., arXiv:1706.09436 * $\alpha^{-1}(M_Z) = 128.958 \pm 0.016$ Jegerlehner, arXiv:1711.06089 Keshavarzi et al., arXiv:1802.02995 * $\alpha^{-1}(M_Z) = 128.946 \pm 0.015$ * $\alpha^{-1}(M_z) = 128.949 \pm 0.010$ Ferro-Hernández & JE, arXiv:1712.09146 * converted from the \overline{MS} scheme and uses e⁺e⁻ annihilation and T spectral functions * PQCD for $\sqrt{s} > 2$ GeV (using $\overline{m}_c \& \overline{m}_b$)
 - * (anti)correlation with $g_{\mu} 2$ at two (three) loop order and with $\sin^2\theta_W(0)$

m_c(m_c)

- * only experimental input: electronic widths of J/ ψ and ψ (2S)
- ★ continuum contribution from
 self-consistency between sum rules
 → continuum over-constrained
- * include $\mathcal{M}_0 \rightarrow$ stronger (milder) sensitivity to continuum (m_c) Luo & JE, hep-ph/0207114
- quark-hadron duality needed
 only in finite region (not locally)
- * $\overline{m}_{c}(\overline{m}_{c}) = 1272 \pm 8 + 2616 [\overline{\alpha}_{s}(M_{Z}) 0.1182] \text{ MeV}$ Masjuan, Spiesberger & JE, arXiv:1610.0853

- * only experimental input: electronic widths of J/ ψ and ψ (2S)
- * continuum contribution from self-consistency between sum rules \rightarrow continuum over-constrained
- * include $\mathcal{M}_0 \rightarrow$ stronger (milder) sensitivity to continuum (m_c) Luo & JE, hep-ph/0207114
- * quark-hadron duality needed only in finite region (not locally)
- * $\overline{m}_{c}(\overline{m}_{c}) = 1272 \pm 8 + 2616 [\overline{\alpha}_{s}(M_{Z}) 0.1182] \text{MeV}$ Masjuan, Spiesberger & JE, arXiv:1610.08531

Source	uncerta
$\Delta \alpha^{(3)}$ (2 GeV)	
flavor separation	
isospin breaking	
singlet contribution	
PQCD	
Total	

 $\Rightarrow sin^2 \theta_{W}(0) = 0.23861 \pm 0.00005_{Z-pole} \pm 0.00002_{theory} \pm 0.00001_{\alpha_s}$ (errors from m_c and m_b negligible)

 $sin^2\theta_W(0)$

$inty in sin^2\theta_W(0)$

 1.2×10^{-5}

 1.0×10^{-5}

 0.7×10^{-5}

 0.3×10^{-5}

 0.6×10^{-5}

1.8×10⁻⁵

Ferro-Hernández **& JE** arXiv:1712.09146

Freitas & JE **PDG (2018)**

PQCD: $(a_{\mu}^{hvp})^{c} = (14.6 \pm 0.5_{theory} \pm 0.2_{mc} \pm 0.1_{\alpha_s}) \times 10^{-10}$ $(a_{\mu}^{hvp})^{b} = 0.3 \times 10^{-10}$ Luo & JE, hep-ph/0101010

Lattice gauge theory:

$g_{\mu} - 2$

A. Gérardin et al., arXiv:1904.03120

Conclusions and outlook

- * new players:
 - * coherent V-scattering
 - * ultra-high precision PVES
 - * APV isotope ratios
- * ultra-high precision frontier \implies fields merge (incl. theory communities):
 - ***** collider physics
 - * V-physics
 - * nuclear physics (anapole moments)
 - ***** astrophysics (neutron skins)
 - * atomic physics (APV, proton radius)
 - * lattice gauge theory (vacuum polarization, .

Standard global fit

M _H		125.14 ± 0.15 GeV		
Mz		91.1884 ± 0.0020 GeV		
$\overline{m}_{b}(\overline{m}_{b})$		4.180 ± 0.021 GeV		
$\Delta \alpha_{had}^{(3)}$ (2 GeV)		(59.0 ± 0.5)×10-4		
m _t (m _t)	163.28 ± 0.44 GeV	1.00	-0.13	-0.28
m̄ _c (m̄ _c)	1.275 ± 0.009 GeV	-0.13	I.00	0.45
$\alpha_{s}(M_{z})$ 0.1187 ± 0.0016		-0.28	0.45	I.00

other correlations small

Freitas & JE, PDG 2018

Oblique physics beyond the SM

- STU describe corrections to gauge-boson self-energies
- T breaks custodial SO(4)
- a multiplet of heavy degenerate chiral fermions contributes $\Delta S = N_C / 3\pi \sum_i [t_{3L^i} - t_{3R^i}]^2$
- extra degenerate fermion family yields $\Delta S = 2/3\pi \approx 0.21$
- S and T (U) correspond to dimension 6 (8) operators

ρ₀ fit

- $\Delta \rho_0 = G_F \sum_i C_i / (8\sqrt{2\pi^2}) \Delta m_i^2$
 - where $\Delta m_i^2 \ge (m_1 m_2)^2$
 - despite appearance <u>there is</u> decoupling (see-saw type suppression of Δm_i^2)
- $\rho_0 = 1.00039 \pm 0.00019 (2.0 \sigma)$
 - $(16 \text{ GeV})^2 \le \sum_i C_i / 3 \Delta m_i^2 \le (48 \text{ GeV})^2 @ 90\% \text{ CL}$
 - Y = 0 Higgs triplet VEVs v_3 strongly disfavored ($\rho_0 < I$)
 - consistent with |Y| = 1 Higgs triplets if $v_3 \sim 0.01 v_2$

)

- S parameter rules out QCD-like technicolor models
- S also constrains extra <u>degenerate</u> fermion families:
 - \Rightarrow N_F = 2.75 ± 0.14 (assuming T = U = 0)
 - compare with $N_v = 2.991 \pm 0.007$ from Γ_Z

S fit

■ $M_{KK} \gtrsim 3.2 \text{ TeV}$ in warped extra dimension models

■ $M_V \gtrsim 4 \text{ TeV}$ in minimal composite Higgs models Freitas & JE (PDG 2018)

STU fit

0.	23113 ± 0.000	14
). 89 ± 0.00 6	5
-0.66	-0.86	1.00

m_t measurements

	central	statistical	systematic	total
Tevatron	174.30	0.35	0.54	0.64
ATLAS	172.51	0.27	0.42	0.50
CMS	172.43	0.13	0.46	0.48
CMS Run 2	172.25	0.08	0.62	0.63
grand average	172.74	0.11	0.31	0.33

 $m_t = 172.74 \pm 0.25_{uncorr.} \pm 0.21_{corr.} \pm 0.32_{QCD} \text{ GeV} = 172.74 \pm 0.46 \text{ GeV}$

- somewhat larger shifts and smaller errors conceivable in the future Butenschoen et al., PRL 117 (2016); Andreassen & Schwartz, JHEP 10 (2017)
- 2.8 σ discrepancy between lepton + jet channels from DØ and CMS Run 2
- indirectly from EW fit: $m_t = 176.4 \pm 1.8 \text{ GeV} (2 \text{ C})$ Freitas & JE (PDG 2018)

JE, EPJC 75 (2015)

$sin^2\theta_W(0)$: flavor separation

strange quark external curren

Φ KK π [almost saturated by $\Phi(1680)$]

ηΦ

- use of result for $\alpha(2 \text{ GeV})$ also needs isolation of strange contribution $\Delta_s \alpha$
- left column assignment assumes OZI rule
- expect right column to originate mostly from strange current ($m_s > m_{u,d}$)
- quantify expectation using averaged $\Delta_s(g_\mu 2)$ from lattices as Bayesian prior **RBC/UKQCD, JHEP 04 (2016); HPQCD, PRD 89 (2014)**

t	ambiguous external current
	KΚ (non – Φ)
	ΚΚΖΠ, ΚΚΪ3Π
	ΚΚη, ΚΚω

 $\Delta_s \alpha (1.8 \text{ GeV}) = (7.09 \pm 0.32) \times 10^{-4} \text{ (threshold mass } \overline{m}_s = 342 \text{ MeV} \approx \overline{m}_s^{\text{disc}}$

$sin^2\theta_W(0)$: singlet separation

use of result for $\alpha(2 \text{ GeV})$ needs singlet piece isolation $\Delta_{\text{disc}} \alpha(2 \text{ GeV})$ • then $\Delta_{\text{disc}} \overline{S^2} = (\overline{S^2} \pm 1/20) \Delta_{\text{disc}} \alpha(2 \text{ GeV}) = (-6 \pm 3) \times 10^{-6}$ • step function \Rightarrow singlet threshold mass $\overline{m}_s^{\text{disc}} \approx 350 \text{ MeV}$

Ferro-Hernández & JE, JHEP 03 (2018) adapted from lattice g_{μ} -2 calculation **RBC/UKQCD, PRL 116 (2016)**

α_s from T decays

$$\tau_{\tau} = \hbar \frac{1 - \mathcal{B}_{\tau}^s}{\Gamma_{\tau}^e + \Gamma_{\tau}^\mu + \Gamma_{\tau}^{ud}} = 290$$

$$\Gamma_{\tau}^{ud} = \frac{G_F^2 m_{\tau}^5 |V_{ud}|^2}{64\pi^3} S\left(m_{\tau}, M_Z\right) \left(1 + \frac{3}{5} \frac{m_{\tau}^2 - m_{\mu}^2}{M_W^2}\right) \times$$

$$\left[1 + \frac{\alpha_s \left(m_{\tau}\right)}{\pi} + 5.202 \,\frac{\alpha_s^2}{\pi^2} + 26.37 \,\frac{\alpha_s^3}{\pi^3} + 127.1 \,\frac{\alpha_s^4}{\pi^4} + \frac{\widehat{\alpha}}{\pi} \left(\frac{85}{24} - \frac{\pi^2}{2}\right) + \delta_{\rm NP}\right]$$

 \blacksquare T_{T} result includes leptonic branching ratios

 $\Re_{T^{S}} = 0.0292 \pm 0.0004 \ (\Delta S = -1) \text{ pdg 2018}$

S $(m_T, M_Z) = 1.01907 \pm 0.0003$ JE, Rev. Mex. Fis. 50 (2004)

Boito et al., PRD 85 (2012) & PRD 91 (2015); Davier et al., EPJC 74 (2014); & Rodríguez-Sánchez, PRD 94 (2016)

 0.75 ± 0.36 fs,

 $\delta_{NP} = 0.003 \pm 0.009$ (within OPE & OPE breaking) based on (controversial) Pich

$$\tau_{\tau} = \hbar \frac{1 - \mathcal{B}_{\tau}^s}{\Gamma_{\tau}^e + \Gamma_{\tau}^\mu + \Gamma_{\tau}^{ud}} = 290$$

$$\Gamma_{\tau}^{ud} = \frac{G_F^2 m_{\tau}^5 |V_{ud}|^2}{64\pi^3} S\left(m_{\tau}, M_Z\right) \left(1 + \frac{3}{5} \frac{m_{\tau}^2 - m_{\mu}^2}{M_W^2}\right) \times$$

$$\left[1 + \frac{\alpha_s \left(m_{\tau}\right)}{\pi} + 5.202 \,\frac{\alpha_s^2}{\pi^2} + 26.37 \,\frac{\alpha_s^3}{\pi^3} + 127.1 \,\frac{\alpha_s^4}{\pi^4} + \frac{\widehat{\alpha}}{\pi} \left(\frac{85}{24} - \frac{\pi^2}{2}\right) + \delta_{\rm NP}\right]$$

dominant uncertainty from PQCD truncation (FOPT vs. CIPT vs. geometric continuation)

 $\alpha_{\rm S}^{(4)}(m_{\rm T}) = 0.323^{+0.018}_{-0.014}$

 $\alpha_{\rm S}^{(5)}(M_{\rm Z}) = 0.1184^{+0.0020}_{-0.0018}$

updated from Luo & JE, PLB 558 (2003) in Freitas & JE (PDG 2018)

n T decays

 0.75 ± 0.36 fs,