JGU \& Helmholtz Institute Mainz (on leave from IF-UNAM)

Complementary physics

Outline

* Weak mixing angle:
* global survey of $\sin ^{2} \theta_{w}$ determinations
* Theoretical uncertainties: correlations in precision observables
* Vacuum polarization in global fits:
* $\alpha\left(M_{z}\right)$
* $\sin ^{2} \theta_{w}(0)$
* $g_{\mu}-2$
* $\mathrm{m}_{\mathrm{c}, \mathrm{b}}$
* Conclusions and outlook

Weak Mixing Angle

Weak mixing angle at tree level

doubly over-constrained system

$$
\begin{aligned}
Z^{\mu} & =\cos \theta_{W} W_{3}^{\mu}-\sin \theta_{W} B^{\mu} \\
A^{\mu} & =\sin \theta_{W} W_{3}^{\mu}+\cos \theta_{W} B^{\mu}
\end{aligned}
$$

$$
\begin{array}{r}
M_{W}=\frac{g}{2} v \Longrightarrow \sin ^{2} \theta_{W}=\frac{\pi \alpha\left(M_{W}\right)}{\sqrt{2} G_{F} M_{W}^{2}} \Longrightarrow \theta_{W}=28.68^{\circ} \\
M_{Z}^{2}=\frac{g^{2}+g^{\prime 2}}{2} v^{2} \Longrightarrow \sin ^{2} 2 \theta_{W}=\frac{\sqrt{8} \pi \alpha\left(M_{Z}\right)}{G_{F} M_{Z}^{2}} \Longrightarrow \theta_{W}=28.90^{\circ}
\end{array}
$$

Weak mixing angle approaches

* tuning in on the Z resonance
* leptonic and heavy quark FB asymmetries in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation near $\mathrm{s}=\mathrm{Mz}^{2}$
* leptonic FB asymmetries in pp ($\mathrm{p} \overline{\mathrm{p}}$) Drell-Yan in a window around $\mathrm{m}_{\|}=M_{z}$
* LR asymmetry (SLC) and final state T polarization (LEP) and their FB asymmetries

	v scattering	parity violating e^{-}scattering (PVES)
leptonic	$\mathrm{v}_{\mu}-\mathrm{e}^{-}$	$\mathrm{e}^{-}-\mathrm{e}^{-}$
DIS	heavy nuclei (NuTeV)	deuteron (E-I22, PVDIS, SoLID)
elastic	CEvNS (COHERENT)	proton, ${ }^{12} \mathrm{C}$ (Qweak, P2)
APV	heavy alkali atoms and ions	isotope ratios (Mainz)

Weak mixing angle approaches

* tuning in on the Z resonance
* leptonic and heavy quark FB asymmetries in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation near $\mathrm{s}=\mathrm{Mz}^{2}$
* leptonic FB asymmetries in pp ($\mathrm{p} \overline{\mathrm{p}}$) Drell-Yan in a window around $\mathrm{m}_{\|}=M_{z}$
* LR asymmetry (SLC) and final state T polarization (LEP) and their FB asymmetries

	v scattering recent first measurements tering (PVES)	
leptonic	$\mathrm{v}_{\mu}-\mathrm{e}$	$\mathrm{e}^{-}-\mathrm{e}^{-}$
DIS	heavy nuclei	
elastic	CEvNS $(\mathrm{COHERENT})$	deuteron (E-I22, P
APV	proton, SoLID) ${ }^{12} \mathrm{C}(\mathrm{Qweak}, \mathrm{P} 2)$	
heavy alkali atoms and ions	isotope ratios (Mainz)	

Coherent Elastic v Nucleus Scattering (CEvNS)

COHERENT@SNS

Csl
$\mathrm{E}_{\mathrm{v}} \approx 16-53 \mathrm{MeV}$
$\sigma \sim \mathrm{Qw}^{2}$
134 ± 22 events
constraints on NSI
neutron skin?
arXiv:I708.0| 294

$\mathbf{Q w}_{w}(\mathbf{N}, \mathbf{Z})=\mathbf{Z}\left(I-4 \sin ^{2} \theta \mathbf{w}\right)-\mathbf{N}$

Atomic parity violation in an isotope chain

AG Budker @JGU Mainz

Ytterbium

$170 \mathrm{Yb}-176 \mathrm{Yb}$
$\pm 0.5 \%$ per isotope
$\pm 100 \%$ error in $\sin ^{2} \theta_{w}$
constraints on Z^{\prime} with $\mathrm{M}<100 \mathrm{keV}$
$\Delta \sin ^{2} \theta_{w}= \pm 0.2$
neutron skin?
arXiv:I804.05747

Parity Violating e- Scattering (PVES) — Elastic

Qweak @ CEBAF (JLab)

hydrogen (completed)
$E_{e}=1165 \mathrm{MeV}$
$|\mathrm{Q}|=158 \mathrm{MeV}$
$A_{P V}=2.3 \times 10^{-7}$
$\Delta A_{P V}= \pm 4.1 \%$
$\Delta \mathrm{Qw}_{\mathrm{w}}(\mathrm{p})= \pm 6.25 \%$
$\Delta \sin ^{2} \theta_{\mathrm{w}}= \pm 0.00 \mathrm{II}$
FFs from fit to ep asymmetries

arXiv:I905.08283

Parity Violating e- Scattering (PVES) — Elastic

Qweak @ CEBAF (JLab)

hydrogen (completed)
$\mathrm{E}_{\mathrm{e}}=1165 \mathrm{MeV}$
$|\mathrm{Q}|=158 \mathrm{MeV}$
$A_{P V}=2.3 \times 10^{-7}$
$\Delta A_{P V}= \pm 4.1 \%$
$\Delta \mathrm{Qw}_{\mathrm{w}}(\mathrm{p})= \pm 6.25 \%$
$\Delta \sin ^{2} \theta_{\mathrm{w}}= \pm 0.00 \mathrm{II}$
FFs from fit to ep asymmetries
arXiv:I905.08283

Theory issues in PVES

* need full I-loop QED under experiment-specific conditions
* box diagrams (γZ-box)
* enhanced 2-loop electroweak (YWW -double box)
* running weak mixing angle (see later)
* unknown neutron distribution (neutron skin for heavier nuclei)

Blunden et al., arXiv: I I 02.5334

Parity Violating e- Scattering (PVES) — Elastic

P2 @ MESA (JGU Mainz)

hydrogen (CDR)
$\mathrm{E}_{\mathrm{e}}=155 \mathrm{MeV}$
$|\mathrm{Q}|=67 \mathrm{MeV}$
$\mathrm{A}_{\mathrm{PV}}=4 \times 10^{-8}$
$\Delta A_{P V}= \pm I .4 \%$
$\Delta \mathrm{Qw}_{\mathrm{w}}(\mathrm{p})= \pm \mathrm{I} .83 \%$
$\Delta \sin ^{2} \theta_{w}= \pm 0.00033$
FFs from backward angle data
arXiv:I802.04759

Parity Violating e- Scattering (PVES) — Elastic

Qweak @ CEBAF (JLab)

hydrogen (completed)
$E_{e}=1165 \mathrm{MeV}$
$|Q|=158 \mathrm{MeV}$
$\mathrm{A}_{\mathrm{PV}}=2.3 \times 10^{-7}$
$\Delta A_{P V}= \pm 4.1 \%$
$\Delta \mathrm{Qw}_{\mathrm{w}}(\mathrm{p})= \pm 6.25 \%$
$\Delta \sin ^{2} \theta_{\mathrm{W}}= \pm 0.00 \mathrm{II}$
FFs from fit to ep asymmetries
arXiv:I 905.08283

P2@MESA (JGU Mainz)

$$
\begin{aligned}
& \text { hydrogen (CDR) } \\
& \mathrm{E}_{\mathrm{e}}=150 \mathrm{MeV} \\
& |\mathrm{Q}|=67 \mathrm{MeV} \\
& \mathrm{~A}_{P V}=4 \times 10^{-8} \\
& \Delta \mathrm{~A}_{P V}= \pm 1.4 \% \\
& \Delta \mathrm{QW}^{2}(\mathrm{P})= \pm 1.83 \% \\
& \Delta \sin ^{2} \theta_{\mathrm{W}}= \pm 0.00033
\end{aligned}
$$

FFs from backward angle data
arXiv:I802.04759

Effective couplings (Wilson coefficients)

Parity Violating e- Scattering (PVES) — Elastic

Qweak@CEBAF

H (completed)
$E_{e}=1165 \mathrm{MeV}$
$|\mathrm{Q}|=158 \mathrm{MeV}$
$A_{P V}=2.3 \times 10^{-7}$
$\Delta A_{P V}= \pm 4.1 \%$
$\Delta \mathrm{Qw}_{\mathrm{w}}(\mathrm{p})= \pm 6.25 \%$
$\Delta \sin ^{2} \theta_{\mathrm{W}}= \pm 0.00 \mathrm{ll}$
FFs from fit
arXiv:I 905.08283

P2@MESA

H (CDR)
$E_{e}=155 \mathrm{MeV}$
$|\mathrm{Q}|=67 \mathrm{MeV}$
$A_{P V}=4 \times 10^{-8}$
$\Delta A_{P V}= \pm I .4 \%$
$\Delta \mathrm{Qw}_{\mathrm{w}}(\mathrm{p})= \pm \mathrm{I} .83 \%$
$\Delta \sin ^{2} \theta_{w}= \pm 0.00033$
FFs from backward angles
arXiv: I 802.04759

P2@MESA

${ }^{12}$ (CDR)
$E_{e}=150 \mathrm{MeV}$
$A_{P V}=6 \times 10^{-7}$
$\Delta A_{P V}= \pm 0.3 \%$
$\Delta \mathrm{Qw}\left({ }^{12} \mathrm{C}\right)= \pm 0.3 \%$
$\Delta \sin ^{2} \theta_{\mathrm{W}}= \pm 0.0007$
neutron skin?
only one FF
arXiv:I802.04759

S and T

S	0.02 ± 0.07
T	0.06 ± 0.06
$\Delta \mathrm{X}^{2}$	-4.2

* $M_{\text {KK }} \gtrsim 3.2 \mathrm{TeV}$ in warped extra dimension models
* $\mathrm{Mv}_{\mathrm{v}} \gtrsim 4 \mathrm{TeV}$ in minimal composite Higgs models

Freitas \& JE PDG (20|8)

Parity Violating e- Scattering (PVES) — DIS

El22@SLAC

D (completed)
$|\mathrm{Q}|=0.96-1.40 \mathrm{GeV}$
$A_{P V}=1.2 \times 10^{-4}$
$\Delta A_{P V}= \pm 8 \%$
$\Delta \sin ^{2} \theta_{w}= \pm 0.01 \mathrm{l}$
PLB 84, 524 (1979)

PVDIS @ CEBAF

D (completed)
$|\mathrm{Q}|=1.04 \& 1.38 \mathrm{GeV}$
$A_{P V}=1.6 \times 10^{-4}$
$\Delta A_{P V}= \pm 4.4 \%$
$\Delta \sin ^{2} \theta_{\mathrm{W}}= \pm 0.005 \mathrm{I}$
arXiv:I4II. 3200

SoLID @ CEBAF

D (pre-CDR)
$|\mathrm{Q}|=2.1-3.1 \mathrm{GeV}$
$\mathrm{A}_{P V}=8 \times 10^{-4}$
$\Delta A_{P V}= \pm 0.6 \%$
$\Delta \sin ^{2} \theta_{w}= \pm 0.00057$
Higher twist?
Isospin violation?
arXiv:I8IO.00989

Effective couplings (Wilson coefficients)

$$
\left[2 g^{\mathrm{eu}}-\mathrm{g}^{\mathrm{ed}}\right]_{\mathrm{AV}}
$$

Scale exclusions post Qweak

Parity Violating e- Scattering (PVES) — Møller

EI58@SLC(SLAC)

hydrogen (completed)
$\mathrm{E}_{\mathrm{e}}=45 \& 48 \mathrm{GeV}$
$|Q|=161 \mathrm{MeV}$
$A_{P V}=I .3 \mid \times 10^{-7}$
$\Delta A_{P V}= \pm 13 \%$
$\Delta \mathrm{Qw}_{\mathrm{w}}(\mathrm{e})= \pm 13 \%$
$\Delta \sin ^{2} \theta_{\mathrm{w}}= \pm 0.00 \mathrm{I} 3$
hep-ex/0504049

MOLLER @ CEBAF (JLab)
hydrogen (proposal)
$E_{e}=11.0 \mathrm{GeV}$
$|\mathrm{Q}|=76 \mathrm{MeV}$
$A_{P V}=3.3 \times 10^{-8}$
$\Delta A_{P V}= \pm 2.4 \%$
$\Delta \mathrm{Qw}_{\mathrm{w}}(\mathrm{e})= \pm 2.4 \%$
$\Delta \sin ^{2} \theta_{w}= \pm 0.00027$
arXiv:I4II.4088

Parity Violating e- Scattering (PVES) — Møller

EI58@SLC(SLAC)

hydrogen (completed)
$\mathrm{E}_{\mathrm{e}}=45 \& 48 \mathrm{GeV}$
$|Q|=161 \mathrm{MeV}$
$A_{P V}=I .3 \mid \times 10^{-7}$
$\Delta A_{P V}= \pm 13 \%$
$\Delta \mathrm{Qw}_{\mathrm{w}}(\mathrm{e})= \pm 13 \%$
$\Delta \sin ^{2} \theta_{\mathrm{w}}= \pm 0.00 \mathrm{I} 3$
hep-ex/0504049

MOLLER @ CEBAF (JLab)

hydrogen (proposal)
$\mathrm{E}_{\mathrm{e}}=11.0 \mathrm{GeV}$
$|\mathrm{Q}|=76 \mathrm{MeV}$
$\mathrm{A}_{\mathrm{PV}}=3.3 \times 10^{-8}$
$\Delta A_{P V}= \pm 2.4 \%$
$\Delta \mathrm{Q}_{\mathrm{W}}(\mathrm{e})= \pm 2.4 \%$

arXiv: 14 II. 4088

PVES history

Running weak mixing angle

Weak mixing angle measurements

Weak mixing angle measurements

2-loop QCD correction with $m_{b} \neq 0$

Bernreuther et al. arXiv:I6|I.07942

new measured transition vector polarizability
Tho et al. arXiv:I905.02768

Weak mixing angle measurements

LEP \& SLC:
0.23153 ± 0.00016
revatrons

0.23148 ± 0.00033

LHC:

0.23131 ± 0.00033

average direct

0.23149 ± 0.00013
global fit
0.23153 ± 0.00004

W boson mass measurements

average direct

$$
80.379 \pm 0.012 \mathrm{GeV}
$$

indirect

$80.357 \pm 0.006 \mathbf{G e V}$

including correlated theory errors

Theoretical uncertainties and correlations

* loop factors including enhancement factors $N_{C}=N_{F}=3$ or $\sin ^{-2} \theta_{w} \approx m_{t}^{2} / M_{w^{2}} \approx 4$:

$$
\begin{array}{rlrl}
& * & 8 \alpha(M w) / \pi & =0.020(\text { QED }) \\
* & 3 \alpha_{s}(M w) / \pi & =0.116(Q C D) \\
* & 3 \alpha(M w) / \pi \sin ^{2} \theta w(M w) & =0.032(C C) \\
* & \left(3-6 s^{2} w+8 s^{4} w\right) / \pi s^{2} w c^{2} w & =0.029(N C)
\end{array}
$$

$* \Delta S_{z}= \pm 0.0034$ (may be combined with $\Delta \alpha_{\text {had }}$),

* $\Delta \mathrm{T}= \pm 0.0073$ (t-b doublet)
* $\Delta \mathrm{U}=\mathrm{S}_{\mathrm{w}}-\mathrm{S}_{\mathrm{z}}= \pm 0.005 \mathrm{I}$
* assuming $\Delta \mathrm{S}_{\mathrm{z}}, \Delta \mathrm{T}$ and $\Delta \mathrm{U}$ to be sufficiently different (uncorrelated) induces theory correlations between different observables

indirect $\mathbf{m}_{\mathbf{t}}$

I $76.4 \pm$ I. 8 GeV (2.0 σ high $)$

indirect $\mathbf{M H}_{\mathbf{H}}$

90+17-15 GeV (1.9 σ low) including theory error 91+18-16 GeV (1.8 O low)

Beyond the SM

* Z-Z' mixing: modification of Z vector coupling
* oblique parameters: STU (also need M_{w} and Γ_{z})
* new amplitudes: off- versus on-Z pole measurements (e.g. Z^{\prime})
* dark Z: renormalization group evolution (running)

Vacuum Polarization in Global Fits
 $\alpha\left(M_{z}\right) \sin ^{2} \theta_{W}(0) g_{\mu}-2 m_{b, c}$

$\sin ^{2} \theta_{w}(0)$ and $\Delta \alpha\left(M_{z}\right)$

$$
\begin{gathered}
\mu^{2} \frac{d \hat{v}_{f}}{d \mu^{2}}=\frac{\hat{\alpha} Q_{f}}{24 \pi}\left[\sum_{i} K_{i} \gamma_{i} \hat{v}_{i} Q_{i}+12 \sigma\left(\sum_{q} Q_{q}\right)\left(\sum_{q} \hat{v}_{q}\right)\right] \\
\mu^{2} \frac{d \hat{\alpha}}{d \mu^{2}}=\frac{\hat{\alpha}^{2}}{\pi}\left[\frac{1}{24} \sum_{i} K_{i} \gamma_{i} Q_{i}^{2}+\sigma\left(\sum_{q} Q_{q}\right)^{2}\right]
\end{gathered}
$$

* coupled system of equations
* $\Delta \alpha\left(M_{z}\right)_{\text {had }}$ errors in $\sin ^{2} \theta_{W}(0)=\kappa(0) \sin ^{2} \theta_{w}\left(M_{z}\right)$ add because

$$
M z^{2} \sim g z^{2}(M z) v^{2} \sim\left[\alpha / s^{2} w c^{2} w\right](M z) G_{F}^{-l}
$$

$\alpha\left(M_{z}\right)$

* Dispersive approach: integral over $\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow\right.$ hadrons) and T -decay data
* $\alpha^{-1}\left(M_{z}\right)=128.947 \pm 0.012$
* $\alpha^{-1}\left(M_{z}\right)=128.958 \pm 0.016$
* $\alpha^{-1}\left(M_{z}\right)=128.946 \pm 0.015$

* converted from the $\overline{\mathrm{M}} \overline{\mathrm{S}}$ scheme and uses $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation and T spectral functions * PQCD for $\sqrt{ } \mathrm{s}>2 \mathrm{GeV}$ (using $\overline{\mathrm{m}}_{\mathrm{c}} \& \overline{\mathrm{~m}}_{\mathrm{b}}$)
* (anti)correlation with $g_{\mu}-2$ at two (three) loop order and with $\sin ^{2} \theta_{w}(0)$
* only experimental input: electronic widths of J / Ψ and $\Psi(2 \mathrm{~S})$
* continuum contribution from self-consistency between sum rules
\rightarrow continuum over-constrained
* include $\mu_{0} \rightarrow$ stronger (milder) sensitivity to continuum (m_{c}) Luo \& JE, hep-ph/0207||4
* quark-hadron duality needed only in finite region (not locally)
* $\bar{m}_{c}\left(\bar{m}_{c}\right)=1272 \pm 8+2616\left[\bar{\alpha}_{s}(M z)-0.1182\right] \mathrm{MeV}$ Masjuan, Spiesberger \& JE, arXiv:I6IO.0853

* only experimental input: electronic widths of J / Ψ and $\Psi(2 \mathrm{~S})$
* continuum contribution from self-consistency between sum rules
\rightarrow continuum over-constrained
* include $\mathrm{N}_{0} \rightarrow$ stronger (milder) sensitivity to continuum (m_{c}) Luo \& JE, hep-ph/0207 I| 4
* quark-hadron duality needed only in finite region (not locally)

* $\bar{m}_{c}\left(\bar{m}_{c}\right)=1272 \pm 8+2616\left[\bar{\alpha}_{s}\left(M_{z}\right)-0.1182\right] \mathrm{MeV}$

Masjuan, Spiesberger \& JE, arXiv:I6I0.0853I

$\sin ^{2} \theta_{w}(0)$

source	uncertainty in $\sin ^{2} \theta \mathrm{w}(0)$
$\Delta \alpha^{(3)}(2 \mathrm{GeV})$	1.2×10^{-5}
flavor separation	1.0×10^{-5}
isospin breaking	0.7×10^{-5}
singlet contribution	0.3×10^{-5}
PQCD	0.6×10^{-5}
Total	1.8×10^{-5}

Ferro-Hernández \& JE
arXiv:I712.09146

Freitas \& JE
PDG (2018)
$\Rightarrow \sin ^{2} \theta_{w}(0)=0.23861 \pm 0.00005_{\text {z-pole }} \pm 0.00002_{\text {theory }} \pm 0.0000 I_{\alpha \text { s }}$
(errors from m_{c} and m_{b} negligible)

$g_{\mu}-2$

PQCD: $\left(\mathrm{a}_{\mu}{ }^{\text {hvp }}\right)^{\mathrm{c}}=\left(14.6 \pm 0.5_{\text {theory }} \pm 0.2_{\mathrm{mc}} \pm 0 . I_{\alpha s}\right) \times 10^{-10}$

$$
\left(\mathrm{a}_{\mu}^{\mathrm{hvp}}\right)^{\mathrm{b}}=0.3 \times 10^{-10}
$$

Luo \& JE, hep-ph/0IOIOIO

Lattice gauge theory: A. Gérardin et al., arXiv: I 904.03 I 20

Conclusions and outlook

* new players:
* coherent V-scattering
* ultra-high precision PVES
* APV isotope ratios
* ultra-high precision frontier \Longrightarrow fields merge (incl. theory communities):
* collider physics
* V-physics
* nuclear physics (anapole moments)
* astrophysics (neutron skins)
* atomic physics (APV, proton radius)
* lattice gauge theory (vacuum polarization, ...)

Backups

Standard global fit

M_{H}		$125.14 \pm 0.15 \mathrm{GeV}$		
Mz		$91.1884 \pm 0.0020 \mathrm{GeV}$		
$\bar{m}_{b}\left(\bar{m}_{b}\right)$		$4.180 \pm 0.021 \mathrm{GeV}$		
$\Delta \alpha_{\text {had }}{ }^{(3)}(2 \mathrm{GeV})$		$(59.0 \pm 0.5) \times 10^{-4}$		
$\bar{m}_{t}\left(\bar{m}_{t}\right)$	$163.28 \pm 0.44 \mathrm{GeV}$	1.00	-0.13	-0.28
$\bar{m}_{c}\left(\bar{m}_{c}\right)$	$1.275 \pm 0.009 \mathrm{GeV}$	-0.13	1.00	0.45
$\alpha_{s}\left(M_{z}\right)$	0.1187 ± 0.0016	-0.28	0.45	1.00

other correlations small

Oblique physics beyond the SM

- STU describe corrections to gauge-boson self-energies
- T breaks custodial SO(4)
- a multiplet of heavy degenerate chiral fermions contributes

$$
\Delta S=N_{C} / 3 \pi \sum_{i}\left[t_{3 L^{i}}-t_{3 R^{i}}\right]^{2}
$$

- extra degenerate fermion family yields $\Delta S=2 / 3 \pi \approx 0.21$
- S and $\mathrm{T}(\mathrm{U})$ correspond to dimension 6 (8) operators

ρ_{0} fit

- $\Delta \rho_{0}=G_{F} \sum_{i} C_{i} /\left(8 \sqrt{ } 2 \pi^{2}\right) \Delta m_{i}{ }^{2}$
- where $\Delta m_{i}{ }^{2} \geq\left(m_{1}-m_{2}\right)^{2}$
- despite appearance there is decoupling (see-saw type suppression of $\Delta \mathrm{m}_{\mathrm{i}}{ }^{2}$)
- $\rho_{0}=1.00039 \pm 0.00019(2.0 \sigma)$
- $(16 \mathrm{GeV})^{2} \leq \sum_{\mathrm{i}} \mathrm{C}_{\mathrm{i}} / 3 \Delta \mathrm{mi}^{2} \leq(48 \mathrm{GeV})^{2} @ 90 \% \mathrm{CL}$
- $\mathrm{Y}=0$ Higgs tripletVEVs v_{3} strongly disfavored $\left(\rho_{0}<I\right)$
- consistent with $|\mathrm{Y}|=\mathrm{I}$ Higgs triplets if $\mathrm{v}_{3} \sim 0.0 \mid \mathrm{v}_{2}$

S fit

- S parameter rules out QCD-like technicolor models
- S also constrains extra degenerate fermion families:
$\Rightarrow N_{F}=2.75 \pm 0.14$ (assuming $T=U=0$)
- compare with $N_{v}=2.991 \pm 0.007$ from Γ_{Z}

STU fit

- $M_{\text {KK }} \gtrsim 3.2 \mathrm{TeV}$ in warped extra dimension models
- $\mathrm{Mv} \gtrsim 4 \mathrm{TeV}$ in minimal composite Higgs models freitas \& JE (PDG 2018)

m_{t} measurements

	central	statistical	systematic	total
Tevatron	174.30	0.35	0.54	0.64
ATLAS	172.51	0.27	0.42	0.50
CMS	172.43	0.13	0.46	0.48
CMS Run 2	172.25	0.08	0.62	0.63
grand average	172.74	0.11	0.31	0.33
JE, EPJC 75 (2015)				

- somewhat larger shifts and smaller errors conceivable in the future Butenschoen et al., PRL II7 (2016); Andreassen \& Schwartz, JHEP IO (20I7)
- 2.8σ discrepancy between lepton + jet channels from DØ and CMS Run 2
- indirectly from EW fit: $m_{t}=176.4 \pm 1.8 \mathrm{GeV}(2 \sigma)$ Freitas \& JE (PDG 2018)

$\sin ^{2} \theta_{w}(0)$: flavor separation

strange quark external current	ambiguous external current
Φ	$K \bar{K}($ non $-\Phi)$
$K \bar{K} \pi[$ almost saturated by $\Phi(1680)]$	$K \bar{K} 2 \pi, K \bar{K} 3 \pi$
$\eta \Phi$	$K \bar{K} \eta, K \bar{K} \omega$

- use of result for $\alpha(2 \mathrm{GeV})$ also needs isolation of strange contribution $\Delta_{s} \alpha$
- left column assignment assumes OZI rule
- expect right column to originate mostly from strange current ($m_{s}>m_{u, d}$)
- quantify expectation using averaged $\Delta_{s}\left(g_{\mu}-2\right)$ from lattices as Bayesian prior RBC/UKQCD, JHEP 04 (2016); HPQCD, PRD 89 (2014)
- $\Delta_{s} \alpha(1.8 \mathrm{GeV})=(7.09 \pm 0.32) \times 10^{-4}$ (threshold mass $\left.\overline{\mathrm{m}}_{\mathrm{s}}=342 \mathrm{MeV} \approx \overline{\mathrm{m}}_{\mathrm{s}}{ }^{\text {disc }}\right)$

$\sin ^{2} \theta w(0)$: singlet separation

Ferro-Hernández \& JE, JHEP 03 (2018) adapted from lattice $\mathbf{g}_{\boldsymbol{\mu}} \mathbf{- 2}$ calculation RBC/UKQCD, PRL II6 (20I6)

- use of result for $\alpha(2 \mathrm{GeV})$ needs singlet piece isolation $\Delta_{\text {disc }} \alpha(2 \mathrm{GeV})$
- then $\Delta_{\text {disc }} \overline{\mathrm{S}}^{2}=\left(\overline{\mathrm{S}}^{2} \pm \mathrm{I} / 20\right) \Delta_{\text {disc }} \alpha(2 \mathrm{GeV})=(-6 \pm 3) \times 10^{-6}$
- step function \Rightarrow singlet threshold mass $\overline{\mathrm{m}}_{\mathrm{s}}$ disc $\approx 350 \mathrm{MeV}$

α_{s} from T decays

$$
\begin{aligned}
& \tau_{\tau}=\hbar \frac{1-\mathcal{B}_{\tau}^{s}}{\Gamma_{\tau}^{e}+\Gamma_{\tau}^{\mu}+\Gamma_{\tau}^{u d}}=290.75 \pm 0.36 \mathrm{fs} \\
& \Gamma_{\tau}^{u d}= \frac{G_{F}^{2} m_{\tau}^{5}\left|V_{u d}\right|^{2}}{64 \pi^{3}} S\left(m_{\tau}, M_{Z}\right)\left(1+\frac{3}{5} \frac{m_{\tau}^{2}-m_{\mu}^{2}}{M_{W}^{2}}\right) \times \\
& {\left[1+\frac{\alpha_{s}\left(m_{\tau}\right)}{\pi}+5.202 \frac{\alpha_{s}^{2}}{\pi^{2}}+26.37 \frac{\alpha_{s}^{3}}{\pi^{3}}+127.1 \frac{\alpha_{s}^{4}}{\pi^{4}}+\frac{\widehat{\alpha}}{\pi}\left(\frac{85}{24}-\frac{\pi^{2}}{2}\right)+\delta_{\mathrm{NP}}\right] }
\end{aligned}
$$

- T_{T} result includes leptonic branching ratios
- $\mathscr{B}_{\mathrm{T}^{\mathrm{s}}}=0.0292 \pm 0.0004(\Delta \mathrm{~S}=-\mathrm{I})$ PDG 2018
- $S\left(m_{T}, M_{Z}\right)=I .01907 \pm 0.0003 \mathrm{JE}$, Rev. Mex. Fis. 50 (2004)
$-\delta_{N P}=0.003 \pm 0.009$ (within OPE \& OPE breaking) based on (controversial) Boito et alo, PRD 85 (20|2) \& PRD 9 I (20|5); Davier et alo, EPJC 74 (20|4);

α_{s} from T decays

$$
\begin{aligned}
& \tau_{\tau}=\hbar \frac{1-\mathcal{B}_{\tau}^{s}}{\Gamma_{\tau}^{e}+\Gamma_{\tau}^{\mu}+\Gamma_{\tau}^{u d}}=290.75 \pm 0.36 \mathrm{fs} \\
& \Gamma_{\tau}^{u d}= \frac{G_{F}^{2} m_{\tau}^{5}\left|V_{u d}\right|^{2}}{64 \pi^{3}} S\left(m_{\tau}, M_{Z}\right)\left(1+\frac{3}{5} \frac{m_{\tau}^{2}-m_{\mu}^{2}}{M_{W}^{2}}\right) \times \\
& {\left[1+\frac{\alpha_{s}\left(m_{\tau}\right)}{\pi}+5.202 \frac{\alpha_{s}^{2}}{\pi^{2}}+26.37 \frac{\alpha_{s}^{3}}{\pi^{3}}+127.1 \frac{\alpha_{s}^{4}}{\pi^{4}}+\frac{\widehat{\alpha}}{\pi}\left(\frac{85}{24}-\frac{\pi^{2}}{2}\right)+\delta_{\mathrm{NP}}\right] }
\end{aligned}
$$

- dominant uncertainty from PQCD truncation (FOPT vs. CIPT vs. geometric continuation)
- $\alpha_{S}{ }^{(4)}\left(m_{T}\right)=0.323^{+0.018-0.014}$
- $\alpha_{s}{ }^{(5)}\left(\mathrm{Mz}_{\mathrm{z}}\right)=0.1184^{+0.0020-0.0018}$
- updated from Luo \& JE, PLB 558 (2003) in Freitas \& JE (PDG 2018)

