

Effective Field Theories to All Orders

Gil Paz

Department of Physics and Astronomy,
Wayne State University,
Detroit, Michigan, USA

Introduction

Motivation

- Effective field theories allow to simplify the physics when doing experiments at energy E small compared to the cutoff Λ
- The general structure is

$$
\mathcal{L}_{\mathrm{EFT}}=\sum_{n=0}^{\infty} \frac{1}{\Lambda^{n}} \sum_{k} c_{k, n} O_{k, n}
$$

- $c_{k, n}$ are Wilson coefficients
- $O_{k, n}$ are EFT operators
- General Questions
- How to determine $c_{k, n}$?
- How to construct $O_{k, n}$?

Motivation

- Effective field theories allow to simplify the physics when doing experiments at energy E small compared to the cutoff Λ
- The general structure is

$$
\mathcal{L}_{\mathrm{EFT}}=\sum_{n=0}^{\infty} \frac{1}{\Lambda^{n}} \sum_{k} c_{k, n} O_{k, n}
$$

- $c_{k, n}$ are Wilson coefficients
- $O_{k, n}$ are EFT operators
- General Questions
- How to determine $c_{k, n}$?
- How to construct $O_{k, n}$?
- Not just an academic question!

Motivation

$$
\mathcal{L}_{\mathrm{EFT}}=\sum_{n=0}^{\infty} \frac{1}{\Lambda^{n}} \sum_{k} c_{k, n} O_{k, n}
$$

1) Current applications require higher dimensional operators:

Motivation

$$
\mathcal{L}_{\mathrm{EFT}}=\sum_{n=0}^{\infty} \frac{1}{\Lambda^{n}} \sum_{k} c_{k, n} O_{k, n}
$$

1) Current applications require higher dimensional operators:

- $\left|V_{c b}\right|$ extraction from inclusive B decays: OPE starts at dimension 3 current extractions use dimension 7 and 8 HQET operators [Gambino, Healey, Turczyk PLB 763, 60 (2016)]

Motivation

$$
\mathcal{L}_{\mathrm{EFT}}=\sum_{n=0}^{\infty} \frac{1}{\Lambda^{n}} \sum_{k} c_{k, n} O_{k, n}
$$

1) Current applications require higher dimensional operators:

- $\left|V_{c b}\right|$ extraction from inclusive B decays: OPE starts at dimension 3 current extractions use dimension 7 and 8 HQET operators [Gambino, Healey, Turczyk PLB 763, 60 (2016)]

Table 2
Default fit results: the second and third columns give the central values and standard deviations.

$m_{b}^{\text {kin }}$	4.546	0.021	r_{1}	0.032	0.024
$\bar{m}_{c}(3 \mathrm{GeV})$	0.987	0.013	r_{2}	-0.063	0.037
μ_{π}^{2}	0.432	0.068	r_{3}	-0.017	0.025
μ_{G}^{2}	0.355	0.060	r_{4}	-0.002	0.025
ρ_{D}^{3}	0.145	0.061	r_{5}	0.001	0.025
$\rho_{L S}^{3}$	-0.169	0.097	r_{6}	0.016	0.025
\bar{m}_{1}	0.084	0.059	r_{7}	0.002	0.025
\bar{m}_{2}	-0.019	0.036	r_{8}	-0.026	0.025
\bar{m}_{3}	-0.011	0.045	r_{9}	0.072	0.044
\bar{m}_{4}	0.048	0.043	r_{10}	0.043	0.030
\bar{m}_{5}	0.072	0.045	r_{11}	0.003	0.025
\bar{m}_{6}	0.015	0.041	r_{12}	0.018	0.025
\bar{m}_{7}	-0.059	0.043	r_{13}	-0.052	0.031
\bar{m}_{8}	-0.178	0.073	r_{14}	0.003	0.025
\bar{m}_{9}	-0.035	0.044	r_{15}	0.001	0.025
$\chi^{2} /$ dof	0.46		r_{16}	0.001	0.025
$B R(\%)$	10.652	0.156	r_{17}	-0.028	0.025
$\mathbf{1 0}^{\mathbf{3}}\left\|\mathbf{V}_{\mathbf{c b}}\right\|$	$\mathbf{4 2 . 1 1}$	$\mathbf{0 . 7 4}$	r_{18}	-0.001	0.025

Motivation

$$
\mathcal{L}_{\mathrm{EFT}}=\sum_{n=0}^{\infty} \frac{1}{\Lambda^{n}} \sum_{k} c_{k, n} O_{k, n}
$$

Motivation

$$
\mathcal{L}_{\mathrm{EFT}}=\sum_{n=0}^{\infty} \frac{1}{\Lambda^{n}} \sum_{k} c_{k, n} O_{k, n}
$$

1) Current applications require higher dimensional operators:

Motivation

$$
\mathcal{L}_{\mathrm{EFT}}=\sum_{n=0}^{\infty} \frac{1}{\Lambda^{n}} \sum_{k} c_{k, n} O_{k, n}
$$

1) Current applications require higher dimensional operators:

- Applications of NRQED to proton structure effects in spectroscopy require Wilson coefficients of operators of dimension 5,6 , and 7 [Hill, GP, PRL 107160402 (2011)]

$$
W_{1}\left(0, Q^{2}\right)=2 a_{p}\left(2+a_{p}\right)+\frac{Q^{2}}{m_{p}^{2}}\left\{\frac{2 m_{p}^{3} \bar{\beta}}{\alpha}-a_{p}-\frac{2}{3}\left[\left(1+a_{p}\right)^{2} m_{p}^{2}\left(r_{M}^{p}\right)^{2}-m_{p}^{2}\left(r_{E}^{p}\right)^{2}\right]\right\}+\ldots
$$

- Dimension 5 operator: $a_{p}=1.793$
- Dimension 6 operator: $r_{E}^{H}=0.8751(61) \mathrm{fm}$ or $r_{E}^{\mu H}=0.84087(26)(29) \mathrm{fm}$
- Dimension 7 operators: $r_{M}=0.776(34)(17) \mathrm{fm}, \bar{\beta}=2.5(4) \times 10^{-4} \mathrm{fm}^{3}$

Motivation

$$
\mathcal{L}_{\mathrm{EFT}}=\sum_{n=0}^{\infty} \frac{1}{\Lambda^{n}} \sum_{k} c_{k, n} O_{k, n}
$$

2) The structure of the SMEFT is simpler than expected [Henning, Lu, Melia, Murayama, JHEP 1708, 016 (2017)]

Motivation

$$
\mathcal{L}_{\mathrm{EFT}}=\sum_{n=0}^{\infty} \frac{1}{\Lambda^{n}} \sum_{k} c_{k, n} O_{k, n}
$$

3) Constructing higher dimensional operators is not easy

Motivation

$$
\mathcal{L}_{\mathrm{EFT}}=\sum_{n=0}^{\infty} \frac{1}{\Lambda^{n}} \sum_{k} c_{k, n} O_{k, n}
$$

3) Constructing higher dimensional operators is not easy

- SMEFT:
- Dimension 6:

Buchmüller et al. '86 \rightarrow Grzadkowski et al. '10

Motivation

$$
\mathcal{L}_{\mathrm{EFT}}=\sum_{n=0}^{\infty} \frac{1}{\Lambda^{n}} \sum_{k} c_{k, n} O_{k, n}
$$

3) Constructing higher dimensional operators is not easy

- SMEFT:
- Dimension 6:

Buchmüller et al. '86 \rightarrow Grzadkowski et al. '10

- Dimension 7,8: Lehman et al. '15 \rightarrow Henning et al. '15

Motivation

$$
\mathcal{L}_{\mathrm{EFT}}=\sum_{n=0}^{\infty} \frac{1}{\Lambda^{n}} \sum_{k} c_{k, n} O_{k, n}
$$

3) Constructing higher dimensional operators is not easy

- SMEFT:
- Dimension 6: Buchmüller et al. '86 \rightarrow Grzadkowski et al. '10
- Dimension 7,8: Lehman et al. '15 \rightarrow Henning et al. '15
- HQET/NRQCD
- Dimension 7,8: Mannel et al. hep-ph/9403249 \rightarrow hep-ph/0611168 \rightarrow arXiv:1009.4622

Motivation

$$
\mathcal{L}_{\mathrm{EFT}}=\sum_{n=0}^{\infty} \frac{1}{\Lambda^{n}} \sum_{k} c_{k, n} O_{k, n}
$$

3) Constructing higher dimensional operators is not easy

- SMEFT:
- Dimension 6:

Buchmüller et al. '86 \rightarrow Grzadkowski et al. '10

- Dimension 7,8: Lehman et al. '15 \rightarrow Henning et al. '15
- HQET/NRQCD
- Dimension 7,8: Mannel et al. hep-ph/9403249 \rightarrow hep-ph/0611168 \rightarrow arXiv:1009.4622
- Dimension 7: Manohar: hep-ph/9701294 v1 \rightarrow v2 "Two terms added to Lagrangian"

Motivation

$$
\mathcal{L}_{\mathrm{EFT}}=\sum_{n=0}^{\infty} \frac{1}{\Lambda^{n}} \sum_{k} c_{k, n} O_{k, n}
$$

3) Constructing higher dimensional operators is not easy

- SMEFT:
- Dimension 6:

Buchmüller et al. '86 \rightarrow Grzadkowski et al. '10

- Dimension 7,8: Lehman et al. '15 \rightarrow Henning et al. '15
- HQET/NRQCD
- Dimension 7,8: Mannel et al. hep-ph/9403249 \rightarrow hep-ph/0611168 \rightarrow arXiv:1009.4622
- Dimension 7: Manohar: hep-ph/9701294 v1 \rightarrow v2 "Two terms added to Lagrangian"
- Dimension 7,8: Paz et al. arXiv:1702.0890 v1 \rightarrow v2 "discussion of operators with multiple color structures was added"

Goal of this talk

- Describe the constructions of higher dimensional operators for the closely related EFTs
- Heavy Quark Effective Theory (HQET)
- Non Relativistic Quantum Electrodynamics (NRQED)
- Non Relativistic Quantum Chromodynamics (NRQCD)

Goal of this talk

- Describe the constructions of higher dimensional operators for the closely related EFTs
- Heavy Quark Effective Theory (HQET)
- Non Relativistic Quantum Electrodynamics (NRQED)
- Non Relativistic Quantum Chromodynamics (NRQCD)
- Why?

Goal of this talk

- Describe the constructions of higher dimensional operators for the closely related EFTs
- Heavy Quark Effective Theory (HQET)
- Non Relativistic Quantum Electrodynamics (NRQED)
- Non Relativistic Quantum Chromodynamics (NRQCD)
- Why?
- Been around longer than SMEFT (NRQED has roots in the 1920's)

Goal of this talk

- Describe the constructions of higher dimensional operators for the closely related EFTs
- Heavy Quark Effective Theory (HQET)
- Non Relativistic Quantum Electrodynamics (NRQED)
- Non Relativistic Quantum Chromodynamics (NRQCD)
- Why?
- Been around longer than SMEFT (NRQED has roots in the 1920's)
- Simpler structure than SMEFT (one gauge group: $U(1)$ or $S U(3)_{c}$)

Goal of this talk

- Describe the constructions of higher dimensional operators for the closely related EFTs
- Heavy Quark Effective Theory (HQET)
- Non Relativistic Quantum Electrodynamics (NRQED)
- Non Relativistic Quantum Chromodynamics (NRQCD)
- Why?
- Been around longer than SMEFT (NRQED has roots in the 1920's)
- Simpler structure than SMEFT (one gauge group: $U(1)$ or $S U(3)_{c}$)
- Their full theory is known (QED or QCD)

Goal of this talk

- Describe the constructions of higher dimensional operators for the closely related EFTs
- Heavy Quark Effective Theory (HQET)
- Non Relativistic Quantum Electrodynamics (NRQED)
- Non Relativistic Quantum Chromodynamics (NRQCD)
- Why?
- Been around longer than SMEFT (NRQED has roots in the 1920's)
- Simpler structure than SMEFT (one gauge group: $U(1)$ or $S U(3)_{c}$)
- Their full theory is known (QED or QCD)
- Rich structure: HQET for B decays: Perturbative c, Non-perturbative $\langle O\rangle$ NRQED for proton structure: Non-perturbative c, Perturbative $\langle O\rangle$

Goal of this talk

- Describe the constructions of higher dimensional operators for the closely related EFTs
- Heavy Quark Effective Theory (HQET)
- Non Relativistic Quantum Electrodynamics (NRQED)
- Non Relativistic Quantum Chromodynamics (NRQCD)
- Why?
- Been around longer than SMEFT (NRQED has roots in the 1920's)
- Simpler structure than SMEFT (one gauge group: $U(1)$ or $S U(3)_{c}$)
- Their full theory is known (QED or QCD)
- Rich structure: HQET for B decays : Perturbative c, Non-perturbative $\langle O\rangle$ NRQED for proton structure: Non-perturbative c, Perturbative $\langle O\rangle$
- Might have useful lessons to SMEFT

Topics not discussed here:
 Power Counting

- We construct operators based on their dimension
- Sometimes the dimensional counting is not be appropriate, e.g.

$$
\begin{gathered}
\mathcal{L}_{N R Q C D}^{\text {kinetic }}=\psi^{\dagger} i D_{t} \psi+\psi^{\dagger} \frac{\boldsymbol{D}^{2}}{2 M} \psi \\
\mathcal{L}_{H Q E T}^{\text {kinetic }}=\bar{h} \text { iv } \cdot D h
\end{gathered}
$$

- Lagrangians can be related by
$h \rightarrow \psi$
Choosing $v=(1,0,0,0)$
- But different kinetic term and power counting

Topics not discussed here:
 Power Counting

- We construct operators based on their dimension
- Sometimes the dimensional counting is not be appropriate, e.g.

$$
\begin{gathered}
\mathcal{L}_{N R Q C D}^{\text {kinetic }}=\psi^{\dagger} i D_{t} \psi+\psi^{\dagger} \frac{\boldsymbol{D}^{2}}{2 M} \psi \\
\mathcal{L}_{H Q E T}^{\text {kinetic }}=\bar{h} i v \cdot D h
\end{gathered}
$$

- Lagrangians can be related by
$h \rightarrow \psi$
Choosing $v=(1,0,0,0)$
- But different kinetic term and power counting
- Not a problem: construct \mathcal{L} with arbitrary dimension and power count later

Topics not discussed here: Wilson coefficients

- Matching
- Perturbative: Matching from QCD gives NRQCD (HQET) Wilson coefficients
- Non-perturbative:

For proton structure NRQED Wilson coefficients determined by proton magnetic moment, proton charge radius etc. [Pineda '02, Hill and GP '11]

Topics not discussed here:

Wilson coefficients

- Matching
- Perturbative: Matching from QCD gives NRQCD (HQET) Wilson coefficients
- Non-perturbative:

For proton structure NRQED Wilson coefficients determined by proton magnetic moment, proton charge radius etc.
[Pineda '02, Hill and GP '11]

- Hidden symmetries

The Lorentz (reparameterization) invariance of the full NR Lagrangian implies relations between Wilson coefficients e.g. The Wilson coefficient of $\psi^{\dagger} \boldsymbol{D}^{2} \psi /(2 M)$ is 1

Topics not discussed here:

Wilson coefficients

- Matching
- Perturbative: Matching from QCD gives NRQCD (HQET) Wilson coefficients
- Non-perturbative:

For proton structure NRQED Wilson coefficients determined by proton magnetic moment, proton charge radius etc.
[Pineda '02, Hill and GP '11]

- Hidden symmetries The Lorentz (reparameterization) invariance of the full NR Lagrangian implies relations between Wilson coefficients e.g. The Wilson coefficient of $\psi^{\dagger} \boldsymbol{D}^{2} \psi /(2 M)$ is 1
- Power counting

The Wilson coefficients can cause terms to be suppressed or enhanced

Outline

- Introduction
- A little bit of history
- HQET and NRQCD (NRQED) operators at dimension 8 and above: General Method
- HQET and NRQCD (NRQED) operators at dimension 8 and above: Applications
- Conclusions and Outlook

A little bit of history

A tale of two effective field theories

- HQET: Heavy Quark Effective Theory

$$
\mathcal{L}_{H Q E T}^{\text {kinetic }}=\bar{h} \text { iv } \cdot D h
$$

- NRQCD: Non Relativistic Quantum Chromodynamics
(NRQED: Non Relativistic Quantum Electrodynamics)

$$
\mathcal{L}_{N R Q C D}^{k i n e t i c}=\psi^{\dagger} i D_{t} \psi+\psi^{\dagger} \frac{\boldsymbol{D}^{2}}{2 M} \psi
$$

- Different kinetic term and power counting
- Lagrangians can be related by
- $h \rightarrow \psi$
- Choosing $v=(1,0,0,0)$
- The relation is not as well known as it should be

Prehistory

$$
D_{t}=\frac{\partial}{\partial t}+i e A^{0}, \quad \boldsymbol{D}=\boldsymbol{\nabla}-i e \boldsymbol{A}
$$

- Schrödinger equation: $i D_{t}+\frac{\boldsymbol{D}^{2}}{2 M}(1926)$
- Hydrogen Fine Structure:

Spin-Orbit:	$\boldsymbol{\sigma} \cdot \boldsymbol{B}$	(1927)
Relativistic correction:	\boldsymbol{D}^{4}	$(1905 ?)$
Darwin term:	$\boldsymbol{\partial} \cdot \boldsymbol{E}$	(1928)

Prehistory

$$
D_{t}=\frac{\partial}{\partial t}+i e A^{0}, \quad \boldsymbol{D}=\boldsymbol{\nabla}-i e \boldsymbol{A}
$$

- Schrödinger equation: $i D_{t}+\frac{\boldsymbol{D}^{2}}{2 M}(1926)$
- Hydrogen Fine Structure:

Spin-Orbit:
Relativistic correction:
Darwin term:
$\boldsymbol{\sigma} \cdot \boldsymbol{B} \quad$ (1927)
D^{4} (1905?)
$\partial \cdot E$
(1928)

- Organize operators in Lagrangian form
- The $\operatorname{dim}=5,6$ were given in [Caswell, Lepage PLB 167, 437 (1986)]

$$
\begin{aligned}
\mathcal{L}_{\text {NRQED }}^{\operatorname{dim}=5,6}= & \psi^{\dagger}\left\{i D_{t}+\frac{\boldsymbol{D}^{2}}{2 M}+\frac{\boldsymbol{D}^{4}}{8 M^{3}}+c_{F} g \frac{\boldsymbol{\sigma} \cdot \boldsymbol{B}}{2 M}+c_{D} g \frac{[\partial \cdot \boldsymbol{E}]}{8 M^{2}}\right. \\
& \left.+c_{s} g \frac{\boldsymbol{\sigma} \cdot(\boldsymbol{D} \times \boldsymbol{E}-\boldsymbol{E} \times \boldsymbol{D})}{8 M^{2}}+c_{W 1} g \frac{\left\{\boldsymbol{D}^{2}, \boldsymbol{\sigma} \cdot \boldsymbol{B}\right\}}{8 M^{3}}\right\} \psi
\end{aligned}
$$

Dimension 5 HQET operators

- Dimension 5 HQET operators were considered in

$$
\begin{aligned}
& \mathcal{L}_{\text {HQET }}^{\operatorname{dim}=5}=\bar{h} \text { iv } \cdot D h+\frac{\bar{h}(i D)^{2} h}{2 M}+c_{F} g \frac{\bar{h} \sigma_{\mu \nu} G^{\mu \nu} h}{4 M} \\
& {[\text { Falk, Grinstein, Luke, NPB 357, } 185(1991)]}
\end{aligned}
$$

Dimension 5 HQET operators

- Dimension 5 HQET operators were considered in

$$
\mathcal{L}_{\mathrm{HQET}}^{\operatorname{dim}=5}=\bar{h} i v \cdot D h+\frac{\bar{h}(i D)^{2} h}{2 M}+c_{F} g \frac{\bar{h} \sigma_{\mu \nu} G^{\mu \nu} h}{4 M}
$$

[Falk, Grinstein, Luke, NPB 357, 185 (1991)]

- Compared to

$$
\begin{aligned}
\mathcal{L}_{\mathrm{NRQED}}^{\mathrm{dim}=5,6}= & \psi^{\dagger}\left\{i D_{t}+\frac{\boldsymbol{D}^{2}}{2 M}+\frac{\boldsymbol{D}^{4}}{8 M^{3}}+c_{F} g \frac{\boldsymbol{\sigma} \cdot \boldsymbol{B}}{2 M}+c_{D} g \frac{[\partial \cdot \boldsymbol{E}]}{8 M^{2}}\right. \\
& \left.+i c_{s} g \frac{\boldsymbol{\sigma} \cdot(\boldsymbol{D} \times \boldsymbol{E}-\boldsymbol{E} \times \boldsymbol{D})}{8 M^{2}}+c_{W 1} g \frac{\left\{\boldsymbol{D}^{2}, \boldsymbol{\sigma} \cdot \boldsymbol{B}\right\}}{8 M^{3}}\right\} \psi
\end{aligned}
$$

Dimension 5 HQET operators

- Dimension 5 HQET operators were considered in

$$
\mathcal{L}_{\mathrm{HQET}}^{\operatorname{dim}=5}=\bar{h} i v \cdot D h+\frac{\bar{h}(i D)^{2} h}{2 M}+c_{F} g \frac{\bar{h} \sigma_{\mu \nu} G^{\mu \nu} h}{4 M}
$$

[Falk, Grinstein, Luke, NPB 357, 185 (1991)]

- Compared to

$$
\begin{aligned}
\mathcal{L}_{\mathrm{NRQED}}^{\operatorname{dim}=5,6}= & \psi^{\dagger}\left\{i D_{t}+\frac{\boldsymbol{D}^{2}}{2 M}+\frac{\boldsymbol{D}^{4}}{8 M^{3}}+c_{F} g \frac{\boldsymbol{\sigma} \cdot \boldsymbol{B}}{2 M}+c_{D} g \frac{[\partial \cdot \boldsymbol{E}]}{8 M^{2}}\right. \\
& \left.+i c_{S} g \frac{\boldsymbol{\sigma} \cdot(\boldsymbol{D} \times \boldsymbol{E}-\boldsymbol{E} \times \boldsymbol{D})}{8 M^{2}}+c_{W 1} g \frac{\left\{\boldsymbol{D}^{2}, \boldsymbol{\sigma} \cdot \boldsymbol{B}\right\}}{8 M^{3}}\right\} \psi
\end{aligned}
$$

- We can see the analogy between HQET and NRQED

NRQED (1920's-1980's) HQET(1990's)
Dimension 5

$$
\begin{array}{cc}
\boldsymbol{D}^{2} & (i D)^{2} \\
\sigma \cdot B & \sigma_{\mu \nu} G^{\mu \nu} / 2
\end{array}
$$

Dimension 5 HQET operators

- Dimension 5 HQET operators were considered in

$$
\mathcal{L}_{\mathrm{HQET}}^{\operatorname{dim}=5}=\bar{h} i v \cdot D h+\frac{\bar{h}(i D)^{2} h}{2 M}+c_{F} g \frac{\bar{h} \sigma_{\mu \nu} G^{\mu \nu} h}{4 M}
$$

[Falk, Grinstein, Luke, NPB 357, 185 (1991)]

- Compared to

$$
\begin{aligned}
\mathcal{L}_{\mathrm{NRQED}}^{\operatorname{dim}=5,6}= & \psi^{\dagger}\left\{i D_{t}+\frac{\boldsymbol{D}^{2}}{2 M}+\frac{\boldsymbol{D}^{4}}{8 M^{3}}+c_{F} g \frac{\boldsymbol{\sigma} \cdot \boldsymbol{B}}{2 M}+c_{D} g \frac{[\partial \cdot \boldsymbol{E}]}{8 M^{2}}\right. \\
& \left.+i c_{S} g \frac{\boldsymbol{\sigma} \cdot(\boldsymbol{D} \times \boldsymbol{E}-\boldsymbol{E} \times \boldsymbol{D})}{8 M^{2}}+c_{W 1} g \frac{\left\{\boldsymbol{D}^{2}, \boldsymbol{\sigma} \cdot \boldsymbol{B}\right\}}{8 M^{3}}\right\} \psi
\end{aligned}
$$

- We can see the analogy between HQET and NRQED

NRQED (1920's-1980's) HQET(1990's)
Dimension 5

$$
\begin{array}{cc}
\boldsymbol{D}^{2} & (i D)^{2} \\
\sigma \cdot B & \sigma_{\mu \nu} G^{\mu \nu} / 2
\end{array}
$$

- Can even "guess" dimension 6 HQET operators, but this wasn't done

Dimension 5 HQET operators

- Dimension 5 HQET operators were considered in

$$
\mathcal{L}_{\mathrm{HQET}}^{\operatorname{dim}=5}=\bar{h} i v \cdot D h+\frac{\bar{h}(i D)^{2} h}{2 M}+c_{F} g \frac{\bar{h} \sigma_{\mu \nu} G^{\mu \nu} h}{4 M}
$$

[Falk, Grinstein, Luke, NPB 357, 185 (1991)]

- Compared to

$$
\begin{aligned}
\mathcal{L}_{\mathrm{NRQED}}^{\operatorname{dim}=5,6}= & \psi^{\dagger}\left\{i D_{t}+\frac{\boldsymbol{D}^{2}}{2 M}+\frac{\boldsymbol{D}^{4}}{8 M^{3}}+c_{F} g \frac{\boldsymbol{\sigma} \cdot \boldsymbol{B}}{2 M}+c_{D} g \frac{[\partial \cdot \boldsymbol{E}]}{8 M^{2}}\right. \\
& \left.+i c_{S} g \frac{\boldsymbol{\sigma} \cdot(\boldsymbol{D} \times \boldsymbol{E}-\boldsymbol{E} \times \boldsymbol{D})}{8 M^{2}}+c_{W 1} g \frac{\left\{\boldsymbol{D}^{2}, \boldsymbol{\sigma} \cdot \boldsymbol{B}\right\}}{8 M^{3}}\right\} \psi
\end{aligned}
$$

- We can see the analogy between HQET and NRQED

NRQED (1920's-1980's) HQET(1990's)
Dimension 5

$$
\begin{array}{cc}
D^{2} & (i D)^{2} \\
\sigma \cdot B & \sigma_{\mu \nu} G^{\mu \nu} / 2
\end{array}
$$

- Can even "guess" dimension 6 HQET operators, but this wasn't done
- What about higher dimensional operators?

Dimension 5 and 6 HQET operators

- First systematic discussion of HQET operators [Mannel, PRD 50, 428 (1994)]

Dimension 5 and 6 HQET operators

- First systematic discussion of HQET operators [Mannel, PRD 50, 428 (1994)]
- Between HQET fields $\bar{h} . . . h$ the Dirac basis reduces to $\{1, \sigma\}=\left\{1, s^{\lambda}\right\}$ with $v \cdot s=0$

Dimension 5 and 6 HQET operators

- First systematic discussion of HQET operators [Mannel, PRD 50, 428 (1994)]
- Between HQET fields $\bar{h} . . . h$ the Dirac basis reduces to $\{1, \sigma\}=\left\{1, s^{\lambda}\right\}$ with $v \cdot s=0$
- $\bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}}\left(s^{\lambda}\right) h$ is the general operator Since iv $\cdot D h=0$
- $v_{\mu_{1}} \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}}\left(s^{\lambda}\right) h=0$
- $v_{\mu_{n}} \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}}\left(s^{\lambda}\right) h=0$
- $v_{\lambda} \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}}\left(s^{\lambda}\right) h=0$

Dimension 5 and 6 HQET operators

- First systematic discussion of HQET operators [Mannel, PRD 50, 428 (1994)]
- Between HQET fields $\bar{h} . . . h$ the Dirac basis reduces to $\{1, \sigma\}=\left\{1, s^{\lambda}\right\}$ with $v \cdot s=0$
- $\bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}}\left(s^{\lambda}\right) h$ is the general operator Since iv $\cdot D h=0$
- $v_{\mu_{1}} \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}}\left(s^{\lambda}\right) h=0$
- $v_{\mu_{n}} \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}}\left(s^{\lambda}\right) h=0$
- $v_{\lambda} \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}}\left(s^{\lambda}\right) h=0$
- Dimension 3: $\bar{h} h$
- Dimension 4: $\bar{h} i D^{\mu} h \rightarrow 0$
- Dimension 5: Two operators $\bar{h} i D^{\mu_{1}} i D^{\mu_{2}} h, \quad \bar{h} i D^{\mu_{1}} i D^{\mu_{2}} s^{\lambda} h$
- Dimension 6: Two operators $\bar{h} i D^{\mu_{1}} i D^{\mu_{2}} i D^{\mu_{3}} h, \quad \bar{h} i D^{\mu_{1}} i D^{\mu_{2}} i D^{\mu_{3}} s^{\lambda} h$

Dimension 5 and 6 HQET operators

- First systematic classification of HQET operators via their B meson matrix elements ($d_{H}=3$ for $B, d_{H}=-1$ for B^{*}) [Mannel, PRD 50, 428 (1994)]

Dimension 5 and 6 HQET operators

- First systematic classification of HQET operators via their B meson matrix elements ($d_{H}=3$ for $B, d_{H}=-1$ for B^{*}) [Mannel, PRD 50, 428 (1994)]
- Dimension 5:

$$
\begin{aligned}
\langle B(v)| \bar{h}\left(i D_{\alpha}\right)\left(i D_{\beta}\right) h|B(v)\rangle & =2 M_{H}\left[g_{\alpha \beta}-v_{\alpha} v_{\beta}\right] \frac{1}{3} \lambda_{1} \\
\langle B(v)| \bar{h}\left(i D_{\alpha}\right)\left(i D_{\beta}\right) s_{\lambda} h|B(v)\rangle & =2 M_{H} d_{H} i \varepsilon_{\nu \alpha \beta \lambda} v^{\nu} \frac{1}{6} \lambda_{2}
\end{aligned}
$$

- Dimension 6:

$$
\begin{aligned}
\langle B(v)| \bar{h}\left(i D_{\alpha}\right)\left(i D_{\mu}\right)\left(i D_{\beta}\right) h_{v}|B(v)\rangle & =2 M_{H}\left[g_{\alpha \beta}-v_{\alpha} v_{\beta}\right] v_{\mu} \frac{1}{3} \rho_{1} \\
\langle B(v)| \bar{h}\left(i D_{\alpha}\right)\left(i D_{\mu}\right)\left(i D_{\beta}\right) s_{\lambda} h|B(v)\rangle & =2 M_{H} d_{H} i \varepsilon_{\nu \alpha \beta \lambda} v^{\nu} v_{\mu} \frac{1}{6} \rho_{2} .
\end{aligned}
$$

- Same paper counted operators beyond dimension 6 but unfortunately it is wrong

Dimension 7 NRQCD operators

- The dimension 7 operators listed in [Manohar PRD 56, 230 (1997)]

$$
\begin{aligned}
\mathcal{L}_{\mathrm{NRQCD}}^{\operatorname{dim}=\overline{7}} & =\psi^{\dagger}\left\{\frac{\boldsymbol{D}^{4}}{8 M^{3}}+i c_{M} g \frac{\left\{\boldsymbol{D}^{i},[\boldsymbol{\partial} \times \boldsymbol{B}]^{i}\right\}}{8 m_{p}^{3}}\right. \\
& +c_{A 1} g^{2} \frac{\left(\boldsymbol{B}_{a}^{i} \boldsymbol{B}_{b}^{i}-\boldsymbol{E}_{a}^{i} \boldsymbol{E}_{b}^{i}\right) T^{a} T^{b}}{8 M^{3}}-c_{A 2} g^{2} \frac{\boldsymbol{E}_{a}^{i} \boldsymbol{E}_{b}^{i} T^{a} T^{b}}{16 M^{3}} \\
& +c_{A 3} g^{2} \frac{\left(\boldsymbol{B}_{a}^{i} \boldsymbol{B}_{b}^{i}-\boldsymbol{E}_{a}^{i} \boldsymbol{E}_{b}^{i}\right) \delta^{a b}}{8 M^{3}}-c_{A 4} g^{2} \frac{\boldsymbol{E}_{a}^{i} \boldsymbol{E}_{b}^{i} \delta^{a b}}{16 M^{3}} \\
& +c_{W 1} g \frac{\left\{\boldsymbol{D}^{2}, \boldsymbol{\sigma} \cdot \boldsymbol{B}\right\}}{8 M^{3}}-c_{W 2} g \frac{D^{i} \boldsymbol{\sigma} \cdot \boldsymbol{B} D^{i}}{4 m_{p}^{3}}+c_{p^{\prime} p} g \frac{\boldsymbol{\sigma} \cdot \boldsymbol{D} \boldsymbol{B} \cdot \boldsymbol{D}+\boldsymbol{D} \cdot \boldsymbol{B} \boldsymbol{\sigma} \cdot \boldsymbol{D}}{8 m_{p}^{3}} \\
& \left.-c_{B 1} g^{2} \frac{\boldsymbol{\sigma} \cdot\left(\boldsymbol{B}_{a} \times \boldsymbol{B}_{b}-\boldsymbol{E}_{a} \times \boldsymbol{E}_{b}\right) f^{a b c} T^{c}}{16 M^{3}}+c_{B 2} g^{2} \frac{\boldsymbol{\sigma} \cdot\left(\boldsymbol{E}_{a} \times \boldsymbol{E}_{b}\right) f^{a b c} T^{c}}{16 M^{3}}\right\} \psi
\end{aligned}
$$

Dimension 7 NRQCD operators

- The dimension 7 operators listed in [Manohar PRD 56, 230 (1997)]

$$
\begin{aligned}
\mathcal{L}_{\mathrm{NRQCD}}^{\operatorname{dim}=7} & =\psi^{\dagger}\left\{\frac{\boldsymbol{D}^{4}}{8 M^{3}}+i c_{M} g \frac{\left\{\boldsymbol{D}^{i},[\boldsymbol{\partial} \times \boldsymbol{B}]^{i}\right\}}{8 m_{p}^{3}}\right. \\
& +c_{A 1} g^{2} \frac{\left(\boldsymbol{B}_{a}^{i} \boldsymbol{B}_{b}^{i}-\boldsymbol{E}_{a}^{i} \boldsymbol{E}_{b}^{i}\right) T^{a} T^{b}}{8 M^{3}}-c_{A 2} g^{2} \frac{\boldsymbol{E}_{a}^{i} \boldsymbol{E}_{b}^{i} T^{a} T^{b}}{16 M^{3}} \\
& +c_{A 3} g^{2} \frac{\left(\boldsymbol{B}_{a}^{i} \boldsymbol{B}_{b}^{i}-\boldsymbol{E}_{a}^{i} \boldsymbol{E}_{b}^{i}\right) \delta^{a b}}{8 M^{3}}-c_{A 4} g^{2} \frac{\boldsymbol{E}_{a}^{i} \boldsymbol{E}_{b}^{i} g^{a b}}{16 M^{3}} \\
& +c_{W 1} g \frac{\left\{\boldsymbol{D}^{2}, \boldsymbol{\sigma} \cdot \boldsymbol{B}\right\}}{8 M^{3}}-c_{W 2} g \frac{D^{i} \boldsymbol{\sigma} \cdot \boldsymbol{B} D^{i}}{4 m_{p}^{3}}+c_{p^{\prime} p} g \frac{\boldsymbol{\sigma} \cdot \boldsymbol{D} \boldsymbol{B} \cdot \boldsymbol{D}+\boldsymbol{D} \cdot \boldsymbol{B} \boldsymbol{\sigma} \cdot \boldsymbol{D}}{8 m_{p}^{3}} \\
& \left.-c_{B 1} g^{2} \frac{\boldsymbol{\sigma} \cdot\left(\boldsymbol{B}_{a} \times \boldsymbol{B}_{b}-\boldsymbol{E}_{a} \times \boldsymbol{E}_{b}\right) f^{a b c} T^{c}}{16 M^{3}}+c_{B 2} g^{2} \frac{\boldsymbol{\sigma} \cdot\left(\boldsymbol{E}_{a} \times \boldsymbol{E}_{b}\right) f^{a b c} T^{c}}{16 M^{3}}\right\} \psi
\end{aligned}
$$

- Comments:
- Explicit color structures are taken from [Gunawardna, GP JHEP 1707137 (2017)]
- Last line vanishes for NRQED but not for NRQCD

Dimension 7 HQET operators

- In 2010 Mannel, Turczyk, and Uraltsev calculated the contribution of dimension 7 \& 8 HQET operators to inclusive semileptonic B decays [Mannel, Turczyk, Uraltsev JHEP 1011, 109 (2010)]

Dimension 7 HQET operators

- In 2010 Mannel, Turczyk, and Uraltsev calculated the contribution of dimension 7 \& 8 HQET operators to inclusive semileptonic B decays [Mannel, Turczyk, Uraltsev JHEP 1011, 109 (2010)]
- Dimension 7 inclusive semileptonic B decays need
- 4 Spin Independent (SI) operators
- 5 Spin Dependent (SD) operators [Mannel, Turczyk, Uraltsev JHEP 1011, 109 (2010)]

Dimension 7 HQET operators

- In 2010 Mannel, Turczyk, and Uraltsev calculated the contribution of dimension 7 \& 8 HQET operators to inclusive semileptonic B decays [Mannel, Turczyk, Uraltsev JHEP 1011, 109 (2010)]
- Dimension 7 inclusive semileptonic B decays need
- 4 Spin Independent (SI) operators
- 5 Spin Dependent (SD) operators [Mannel, Turczyk, Uraltsev JHEP 1011, 109 (2010)]
- Dimension 7 NRQCD Lagrangian
- 6 Spin Independent (SI) operators
- 5 Spin Dependent (SD) operators [Manohar PRD 56, 230 (1997)]

Dimension 7 HQET operators

- In 2010 Mannel, Turczyk, and Uraltsev calculated the contribution of dimension 7 \& 8 HQET operators to inclusive semileptonic B decays [Mannel, Turczyk, Uraltsev JHEP 1011, 109 (2010)]
- Dimension 7 inclusive semileptonic B decays need
- 4 Spin Independent (SI) operators
- 5 Spin Dependent (SD) operators [Mannel, Turczyk, Uraltsev JHEP 1011, 109 (2010)]
- Dimension 7 NRQCD Lagrangian
- 6 Spin Independent (SI) operators
- 5 Spin Dependent (SD) operators [Manohar PRD 56, 230 (1997)]
- Why the difference?
- No systematic derivation in either source

Dimension 8 HQET/NRQED operators

- Dimension 8 inclusive semileptonic B decays need 7 SI operators and 11 SD operators [Mannel, Turczyk, Uraltsev JHEP 1011, 109 (2010)]

Dimension 8 HQET/NRQED operators

- Dimension 8 inclusive semileptonic B decays need 7 SI operators and 11 SD operators [Mannel, Turczyk, Uraltsev JHEP 1011, 109 (2010)]
- The $\operatorname{dim}=8$ NRQED Lagrangian was given in [Hill, Lee, GP, Solon, PRD 87053017 (2013)]

$$
\begin{aligned}
& \mathcal{L}_{\text {NRQED }}^{\operatorname{dim}=8}=\psi^{\dagger}\left\{c_{X_{1} g} \frac{\left[\boldsymbol{D}^{2}, \boldsymbol{D} \cdot \boldsymbol{E}+\boldsymbol{E} \cdot \boldsymbol{D}\right]}{M^{4}}+c_{X 2} g \frac{\left\{\boldsymbol{D}^{2},[\boldsymbol{\partial} \cdot \boldsymbol{E}]\right\}}{M^{4}}\right. \\
& +c_{X 3} g \frac{\left[\partial^{2} \boldsymbol{\partial} \cdot \boldsymbol{E}\right]}{M^{4}}+i c_{\times 4} g^{2} \frac{\left\{\boldsymbol{D}^{i},[\boldsymbol{E} \times \boldsymbol{B}]^{i}\right\}}{M^{4}} \\
& +i c_{\chi 5} g \frac{D^{i} \boldsymbol{\sigma} \cdot(\boldsymbol{D} \times \boldsymbol{E}-\boldsymbol{E} \times \boldsymbol{D}) D^{i}}{M^{4}}+i c_{\chi 6} g \frac{\epsilon^{i j k} \sigma^{i} D^{j}[\boldsymbol{\partial} \cdot \boldsymbol{E}] D^{k}}{M^{4}} \\
& +c_{X 7} g^{2} \frac{\boldsymbol{\sigma} \cdot \boldsymbol{B}[\boldsymbol{\partial} \cdot \boldsymbol{E}]}{M^{4}}+c_{X 8} g^{2} \frac{[\boldsymbol{E} \cdot \boldsymbol{\partial \sigma} \cdot \boldsymbol{B}]}{M^{4}}+c_{X 9} g^{2} \frac{[\boldsymbol{B} \cdot \boldsymbol{\partial \sigma} \cdot \boldsymbol{E}]}{M^{4}} \\
& \left.+c_{X 10} g^{2} \frac{\left[E^{i} \boldsymbol{\sigma} \cdot \partial B^{i}\right]}{M^{4}}+c_{X 11} g^{2} \frac{\left[B^{i} \boldsymbol{\sigma} \cdot \partial E^{i}\right]}{M^{4}}+c_{X 12} g^{2} \frac{\sigma \cdot \boldsymbol{E} \times\left[\partial_{t} \boldsymbol{E}-\boldsymbol{\partial} \times \boldsymbol{B}\right]}{M^{4}}\right\} \psi
\end{aligned}
$$

Dimension 8 HQET/NRQED operators

- Dimension 8 inclusive semileptonic B decays need 7 SI operators and 11 SD operators [Mannel, Turczyk, Uraltsev JHEP 1011, 109 (2010)]
- The dim=8 NRQED Lagrangian was given in [Hill, Lee, GP, Solon, PRD 87053017 (2013)]

$$
\begin{aligned}
& \mathcal{L}_{\text {NRQED }}^{\operatorname{dim}=8}=\psi^{\dagger}\left\{c_{X_{1}} g \frac{\left[\boldsymbol{D}^{2}, \boldsymbol{D} \cdot \boldsymbol{E}+\boldsymbol{E} \cdot \boldsymbol{D}\right]}{M^{4}}+c_{X 2} g \frac{\left\{\boldsymbol{D}^{2},[\boldsymbol{D} \cdot \boldsymbol{E}]\right\}}{M^{4}}\right. \\
& +c_{3} g \frac{\left[\boldsymbol{\partial}^{2} \boldsymbol{\partial} \cdot \boldsymbol{E}\right]}{M^{4}}+i c_{\times 4} g^{2} \frac{\left\{\boldsymbol{D}^{i},[\boldsymbol{E} \times \boldsymbol{B}]^{i}\right\}}{M^{4}} \\
& +i c_{\chi 5} g \frac{D^{i} \boldsymbol{\sigma} \cdot(\boldsymbol{D} \times \boldsymbol{E}-\boldsymbol{E} \times \boldsymbol{D}) D^{i}}{M^{4}}+i c_{\chi 6} g \frac{\epsilon^{i j k} \sigma^{i} D^{j}[\boldsymbol{\partial} \cdot \boldsymbol{E}] D^{k}}{M^{4}} \\
& +c_{X 7} g^{2} \frac{\boldsymbol{\sigma} \cdot \boldsymbol{B}[\boldsymbol{\partial} \cdot \boldsymbol{E}]}{M^{4}}+c_{X 8} g^{2} \frac{[\boldsymbol{E} \cdot \boldsymbol{\partial \sigma} \cdot \boldsymbol{B}]}{M^{4}}+c_{X 9} g^{2} \frac{[\boldsymbol{B} \cdot \boldsymbol{\partial \sigma} \cdot \boldsymbol{E}]}{M^{4}} \\
& \left.+c_{X 10} g^{2} \frac{\left[E^{i} \sigma \cdot \partial B^{i}\right]}{M^{4}}+c_{X_{11}} g^{2} \frac{\left[B^{i} \sigma \cdot \partial E^{i}\right]}{M^{4}}+c_{X 12} g^{2} \frac{\sigma \cdot \boldsymbol{E} \times\left[\partial_{t} \boldsymbol{E}-\boldsymbol{\partial} \times \boldsymbol{B}\right]}{M^{4}}\right\} \psi
\end{aligned}
$$

- 4 SI operators and 8 SD operators
- Missing operators are presumably NRQCD operators

Dimension 8 HQET/NRQED operators

- The $\operatorname{dim}=8$ NRQED Lagrangian was given in [Hill, Lee, GP, Solon, PRD 87053017 (2013)]
- Lagrangian can be constructed by considering all possible combinations of $i D_{t}, i \boldsymbol{D}, \boldsymbol{E}, \boldsymbol{B}$, and $\boldsymbol{\sigma}$ that are
- Rotationally invariant
- P and T even
- Hermitian

Dimension 8 HQET/NRQED operators

- The $\operatorname{dim}=8$ NRQED Lagrangian was given in [Hill, Lee, GP, Solon, PRD 87053017 (2013)]
- Lagrangian can be constructed by considering all possible combinations of $i D_{t}, i \boldsymbol{D}, \boldsymbol{E}, \boldsymbol{B}$, and $\boldsymbol{\sigma}$ that are
- Rotationally invariant
- P and T even
- Hermitian
- Such construction of $\mathcal{L}_{\text {NRQED }}^{\operatorname{dim}} \leq 6$ was demonstrated in [GP, Mod. Phys. Lett. A 30, 1550128 (2015)]

Dimension 8 HQET/NRQED operators

- The $\operatorname{dim}=8$ NRQED Lagrangian was given in [Hill, Lee, GP, Solon, PRD 87053017 (2013)]
- Lagrangian can be constructed by considering all possible combinations of $i D_{t}, i \boldsymbol{D}, \boldsymbol{E}, \boldsymbol{B}$, and $\boldsymbol{\sigma}$ that are
- Rotationally invariant
- P and T even
- Hermitian
- Such construction of $\mathcal{L}_{\text {NRQED }}^{\operatorname{dim}} 6$ was demonstrated in [GP, Mod. Phys. Lett. A 30, 1550128 (2015)]
- For higher dimensional operators this becomes tedious:
- Different choices for operators
- Are operators linearly independent?
- How many linearly independent operators?

Dimension 8 HQET/NRQED operators

- The $\operatorname{dim}=8$ NRQED Lagrangian was given in [Hill, Lee, GP, Solon, PRD 87053017 (2013)]
- Lagrangian can be constructed by considering all possible combinations of $i D_{t}, i \boldsymbol{D}, \boldsymbol{E}, \boldsymbol{B}$, and $\boldsymbol{\sigma}$ that are
- Rotationally invariant
- P and T even
- Hermitian
- Such construction of $\mathcal{L}_{\text {NRQED }}^{\operatorname{dim}} \leq 6$ was demonstrated in [GP, Mod. Phys. Lett. A 30, 1550128 (2015)]
- For higher dimensional operators this becomes tedious:
- Different choices for operators
- Are operators linearly independent?
- How many linearly independent operators?
- Is there an easier way?

HQET (and NRQCD) operators at dimension 8 and above: General Method

[Ayesh Gunawardna, GP JHEP 1707137 (2017)]

General method

- My graduate student Ayesh Gunawardana and I looked at this problem in [Gunawardna, GP JHEP 1707137 (2017)]
- Following [Mannel, PRD 50, 428 (1994)] we considered matrix elements of the form

$$
\begin{aligned}
& \langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} h|H\rangle \\
& \langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} s^{\lambda} h|H\rangle
\end{aligned}
$$

General method

- My graduate student Ayesh Gunawardana and I looked at this problem in [Gunawardna, GP JHEP 1707137 (2017)]
- Following [Mannel, PRD 50, 428 (1994)] we considered matrix elements of the form

$$
\begin{aligned}
& \langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} h|H\rangle \\
& \langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} s^{\lambda} h|H\rangle
\end{aligned}
$$

- We used the constraints
- Orthogonality of v to $\mu_{1}, \mu_{n}, \lambda$ [Mannel, PRD 50, 428 (1994)]
- Parity and Time reversal symmetry
- Hermitian conjugation
- Four dimensions
- Possible multiple color structures [Kobach, Pal PLB 772225 (2017)]

General method

- My graduate student Ayesh Gunawardana and I looked at this problem in [Gunawardna, GP JHEP 1707137 (2017)]
- Following [Mannel, PRD 50, 428 (1994)] we considered matrix elements of the form

$$
\begin{aligned}
& \langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} h|H\rangle \\
& \langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} s^{\lambda} h|H\rangle
\end{aligned}
$$

- We used the constraints
- Orthogonality of v to $\mu_{1}, \mu_{n}, \lambda$ [Mannel, PRD 50, 428 (1994)]
- Parity and Time reversal symmetry
- Hermitian conjugation
- Four dimensions
- Possible multiple color structures [Kobach, Pal PLB 772225 (2017)]
- To decompose them in terms of the tensors
$-v^{\mu_{i}}, \Pi^{\mu \nu}=g^{\mu \nu}-v^{\mu} v^{\nu}, \epsilon^{\rho \sigma \alpha \beta} v_{\rho}$

General method: Orthogonality

- Consider matrix elements of the form $\langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} h|H\rangle$ $\langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} s^{\lambda} h|H\rangle$

General method: Orthogonality

- Consider matrix elements of the form $\langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} h|H\rangle$ $\langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} s^{\lambda} h|H\rangle$
- Since iv. $D h=0$
- $v_{\mu_{1}} \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}}\left(s^{\lambda}\right) h=0$
- $v_{\mu_{n}} \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}}\left(s^{\lambda}\right) h=0$
- $v_{\lambda} \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}}\left(s^{\lambda}\right) h=0$ [Mannel, PRD 50, 428 (1994)]
- More accurately, the $1 / M$ corrections to iv • Dh=0 give rise to higher dimensional operators. One can impose this order by order.
- Similarly for NRQCD (NRQED): $\psi^{\dagger}\left(i D_{t} O+O i D_{t}\right) \psi / M^{n}$ can be eliminated by $\psi \rightarrow \psi-O \psi / M^{n}$ [GP, Mod. Phys. Lett. A 30, 1550128 (2015)]

General method: PT symmetry

- We consider matrix elements of the form

$$
\begin{aligned}
& \langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} h|H\rangle \\
& \langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} s^{\lambda} h|H\rangle
\end{aligned}
$$

General method: PT symmetry

- We consider matrix elements of the form

$$
\begin{aligned}
& \langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} h|H\rangle \\
& \langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} s^{\lambda} h|H\rangle
\end{aligned}
$$

- Parity and Time reversal are symmetries of HQET In particular under PT:
- $p=\left(p^{0}, \vec{p}\right) \xrightarrow{P T}\left(p^{0}, \vec{p}\right)=p \Rightarrow v=p / m \xrightarrow{P T} v$
- $i D^{\mu} \xrightarrow{P T} i D^{\mu}$
- $\bar{h} h \xrightarrow{P T} \bar{h} h$
- $\bar{h} s^{\lambda} h \xrightarrow{P T}-\bar{h} s^{\lambda} h$

General method: PT symmetry

- We consider matrix elements of the form

$$
\begin{aligned}
& \langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} h|H\rangle \\
& \langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} s^{\lambda} h|H\rangle
\end{aligned}
$$

- Parity and Time reversal are symmetries of HQET In particular under PT:
- $p=\left(p^{0}, \vec{p}\right) \xrightarrow{P T}\left(p^{0}, \vec{p}\right)=p \Rightarrow v=p / m \xrightarrow{P T} v$
- $i D^{\mu} \xrightarrow{P T} i D^{\mu}$
- $\bar{h} h \xrightarrow{P T} \bar{h} h$
- $\bar{h} s^{\lambda} h \xrightarrow{P T}-\bar{h} s^{\lambda} h$
- Since T is anti-linear

$$
\begin{array}{r}
\langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} h|H\rangle \stackrel{P T}{=}\langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} h|H\rangle^{*} \\
\langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} s^{\lambda} h|H\rangle \stackrel{P T}{=}-\langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} s^{\lambda} h|H\rangle^{*}
\end{array}
$$

- SI matrix elements are real, SD matrix elements are imaginary

General method: Hermitian conjugation

- We consider matrix elements of the form

$$
\begin{aligned}
& \langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} h|H\rangle \\
& \langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} s^{\lambda} h|H\rangle
\end{aligned}
$$

General method: Hermitian conjugation

- We consider matrix elements of the form
$\langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} h|H\rangle$
$\langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} s^{\lambda} h|H\rangle$
- $\bar{h} h, \bar{h} s^{\lambda} h, i D^{\mu}$ are hermitian using Hermitian conjugation

$$
\begin{aligned}
\langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}}\left(s^{\lambda}\right) h|H\rangle & =\langle H|\left(\bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}}\left(s^{\lambda}\right) h\right)^{\dagger}|H\rangle^{*} \\
& =\langle H| \bar{h} i D^{\mu_{n}} \ldots i D^{\mu_{1}}\left(s^{\lambda}\right) h|H\rangle^{*}
\end{aligned}
$$

General method: Hermitian conjugation

- We consider matrix elements of the form
$\langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} h|H\rangle$
$\langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} s^{\lambda} h|H\rangle$
- $\bar{h} h, \bar{h} s^{\lambda} h, i D^{\mu}$ are hermitian using Hermitian conjugation

$$
\begin{aligned}
\langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}}\left(s^{\lambda}\right) h|H\rangle & =\langle H|\left(\bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}}\left(s^{\lambda}\right) h\right)^{\dagger}|H\rangle^{*} \\
& =\langle H| \bar{h} i D^{\mu_{n}} \ldots i D^{\mu_{1}}\left(s^{\lambda}\right) h|H\rangle^{*}
\end{aligned}
$$

- Combining with the PT constraints Under inversion of the indices:
- SI matrix elements are symmetric
- SD matrix elements are anti-symmetric

General method: Tensor decomposition

- We consider matrix elements of the form
$\langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} h|H\rangle$
$\langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} s^{\lambda} h|H\rangle$

General method: Tensor decomposition

- We consider matrix elements of the form
$\langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} h|H\rangle$
$\langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} s^{\lambda} h|H\rangle$
- B is a pseudo-scalar \Rightarrow matrix element can only depend on $v^{\mu_{i}}, g^{\mu_{i} \mu_{j}}$, and $\epsilon^{\rho \sigma \alpha \beta}$

General method: Tensor decomposition

- We consider matrix elements of the form
$\langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} h|H\rangle$
$\langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} s^{\lambda} h|H\rangle$
- B is a pseudo-scalar \Rightarrow matrix element can only depend on $v^{\mu_{i}}, g^{\mu_{i} \mu_{j}}$, and $\epsilon^{\rho \sigma \alpha \beta}$
- Alternatively following [Mannel, Turczyk, Uraltsev JHEP 1011, 109 (2010)]
Define $\Pi^{\mu \nu}=g^{\mu \nu}-v^{\mu} v^{\nu}$
For the standard choice of $v=(1,0,0,0): \Pi^{00}=0$ and $\Pi^{i j}=-\delta^{i j}$

General method: Tensor decomposition

- We consider matrix elements of the form
$\langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} h|H\rangle$
$\langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} s^{\lambda} h|H\rangle$
- B is a pseudo-scalar \Rightarrow matrix element can only depend on $v^{\mu_{i}}, g^{\mu_{i} \mu_{j}}$, and $\epsilon^{\rho \sigma \alpha \beta}$
- Alternatively following
[Mannel, Turczyk, Uraltsev JHEP 1011, 109 (2010)]
Define $\Pi^{\mu \nu}=g^{\mu \nu}-v^{\mu} v^{\nu}$
For the standard choice of $v=(1,0,0,0): \Pi^{00}=0$ and $\Pi^{i j}=-\delta^{i j}$
- Since the indices in $\epsilon^{\rho \sigma \alpha \beta}$ cannot be linearly independent of v^{μ} replace $\epsilon^{\rho \sigma \alpha \beta}$ by $\epsilon^{\rho \sigma \alpha \beta} v_{\rho}$
For the standard choice of $v=(1,0,0,0): \epsilon^{\rho \sigma \alpha \beta} v_{\rho} \rightarrow \epsilon^{i j k}$

General method: Tensor decomposition

- We consider matrix elements of the form
$\langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} h|H\rangle$
$\langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} s^{\lambda} h|H\rangle$
- B is a pseudo-scalar \Rightarrow matrix element can only depend on $v^{\mu_{i}}, g^{\mu_{i} \mu_{j}}$, and $\epsilon^{\rho \sigma \alpha \beta}$
- Alternatively following
[Mannel, Turczyk, Uraltsev JHEP 1011, 109 (2010)]
Define $\Pi^{\mu \nu}=g^{\mu \nu}-v^{\mu} v^{\nu}$
For the standard choice of $v=(1,0,0,0): \Pi^{00}=0$ and $\Pi^{i j}=-\delta^{i j}$
- Since the indices in $\epsilon^{\rho \sigma \alpha \beta}$ cannot be linearly independent of v^{μ} replace $\epsilon^{\rho \sigma \alpha \beta}$ by $\epsilon^{\rho \sigma \alpha \beta} v_{\rho}$
For the standard choice of $v=(1,0,0,0): \epsilon^{\rho \sigma \alpha \beta} v_{\rho} \rightarrow \epsilon^{i j k}$
- Matrix element depend on $v^{\mu_{i}}, \Pi^{\mu_{i} \mu_{j}}$, and $\epsilon^{\rho \sigma \alpha \beta} v_{\rho}$

General method: Four dimensions

- We consider matrix elements of the form
$\langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} h|H\rangle$
$\langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} s^{\lambda} h|H\rangle$

General method: Four dimensions

- We consider matrix elements of the form
$\langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} h|H\rangle$
$\langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} s^{\lambda} h|H\rangle$
- Four dimensions \Rightarrow only four independent directions

General method: Four dimensions

- We consider matrix elements of the form

$$
\begin{aligned}
& \langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} h|H\rangle \\
& \langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} s^{\lambda} h|H\rangle
\end{aligned}
$$

- Four dimensions \Rightarrow only four independent directions
- Not all tensors with more than four indices are independent

General method: Four dimensions

- We consider matrix elements of the form

$$
\begin{aligned}
& \langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} h|H\rangle \\
& \langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} s^{\lambda} h|H\rangle
\end{aligned}
$$

- Four dimensions \Rightarrow only four independent directions
- Not all tensors with more than four indices are independent
- Example: for dimension 7 SD HQET operators need $\Pi^{\mu \nu} \epsilon^{\rho \sigma \alpha \beta} v_{\rho}$: three indices are the same
Tensors obtained by permuting indices are not linearly independent

General method: Four dimensions

- We consider matrix elements of the form

$$
\langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} h|H\rangle
$$

$$
\langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} s^{\lambda} h|H\rangle
$$

- Four dimensions \Rightarrow only four independent directions
- Not all tensors with more than four indices are independent
- Example: for dimension 7 SD HQET operators need $\Pi^{\mu \nu} \epsilon^{\rho \sigma \alpha \beta} v_{\rho}$: three indices are the same
Tensors obtained by permuting indices are not linearly independent
- Example: for dimension 11 SI HQET operators need $\Pi^{\mu_{1} \mu_{2}} \Pi^{\mu_{3} \mu_{4}} \Pi^{\mu_{5} \mu_{6}} \Pi^{\mu_{7} \mu_{8}}$: four indices are the same

General method: Color factors

- We consider matrix elements of the form
$\langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} h|H\rangle$
$\langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} s^{\lambda} h|H\rangle$

General method: Color factors

- We consider matrix elements of the form
$\langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} h|H\rangle$
$\langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} s^{\lambda} h|H\rangle$
- Starting at dimension 7 we can have multiple color factors E.g. consider $\psi^{\dagger} E_{a}^{i} T^{a} E_{b}^{i} T^{b} \psi$ [Kobach, Pal PLB 772225 (2017)] $\left\{T^{a}, T^{b}\right\}=\frac{1}{3} \delta^{a b}+d^{a b c} T^{c} \Rightarrow$ two color structures

General method: Color factors

- We consider matrix elements of the form
$\langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} h|H\rangle$
$\langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} s^{\lambda} h|H\rangle$
- Starting at dimension 7 we can have multiple color factors E.g. consider $\psi^{\dagger} E_{a}^{i} T^{a} E_{b}^{i} T^{b} \psi$ [Kobach, Pal PLB 772225 (2017)] $\left\{T^{a}, T^{b}\right\}=\frac{1}{3} \delta^{a b}+d^{a b c} T^{c} \Rightarrow$ two color structures
- Use basis $\left\{T^{a}, T^{b}\right\}$ and $\delta^{a b}$:
- $\psi^{\dagger} E_{a}^{i} E_{b}^{i}\left\{T^{a}, T^{b}\right\} \psi$: generated by commutators and anti-commutators

General method: Color factors

- We consider matrix elements of the form
$\langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} h|H\rangle$
$\langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} s^{\lambda} h|H\rangle$
- Starting at dimension 7 we can have multiple color factors E.g. consider $\psi^{\dagger} E_{a}^{i} T^{a} E_{b}^{i} T^{b} \psi$ [Kobach, Pal PLB 772225 (2017)] $\left\{T^{a}, T^{b}\right\}=\frac{1}{3} \delta^{a b}+d^{a b c} T^{c} \Rightarrow$ two color structures
- Use basis $\left\{T^{a}, T^{b}\right\}$ and $\delta^{a b}$:
- $\psi^{\dagger} E_{a}^{i} E_{b}^{i}\left\{T^{a}, T^{b}\right\} \psi$: generated by commutators and anti-commutators
- $\psi^{\dagger} E_{a}^{i} E_{b}^{i} \delta^{a b} \psi$: generated by one-gluon exchange between ψ^{\dagger} and ψ \Rightarrow extra α_{s} suppression \Rightarrow not needed at $\mathcal{O}\left(\alpha_{s}^{0}\right)$

General method: Color factors

- We consider matrix elements of the form
$\langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} h|H\rangle$
$\langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} s^{\lambda} h|H\rangle$
- Starting at dimension 7 we can have multiple color factors E.g. consider $\psi^{\dagger} E_{a}^{i} T^{a} E_{b}^{i} T^{b} \psi$ [Kobach, Pal PLB 772225 (2017)] $\left\{T^{a}, T^{b}\right\}=\frac{1}{3} \delta^{a b}+d^{a b c} T^{c} \Rightarrow$ two color structures
- Use basis $\left\{T^{a}, T^{b}\right\}$ and $\delta^{a b}$:
- $\psi^{\dagger} E_{a}^{i} E_{b}^{i}\left\{T^{a}, T^{b}\right\} \psi$: generated by commutators and anti-commutators
- $\psi^{\dagger} E_{a}^{i} E_{b}^{i} \delta^{a b} \psi$: generated by one-gluon exchange between ψ^{\dagger} and ψ \Rightarrow extra α_{s} suppression \Rightarrow not needed at $\mathcal{O}\left(\alpha_{s}^{0}\right)$
- Decomposition of $\langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}}\left(s^{\lambda}\right) h|H\rangle$ does not distinguish $\left\{T^{a}, T^{b}\right\}$ from $\delta^{a b}$. Need to be put "by hand".

General method: Summary

- We consider matrix elements of the form
$\langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} h|H\rangle$
$\langle H| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{n}} s^{\lambda} h|H\rangle$
- We express them in terms of $v^{\mu_{i}}, \Pi^{\mu_{i} \mu_{j}}$, and $\epsilon^{\rho \sigma \alpha \beta} v_{\rho}$ using
- Orthogonality: $v_{\mu_{1}}=v_{\mu_{n}}=v_{\lambda}=0$
- P, T, and Hermitian conjugation:

SI (SD) matrix elements are sym. (anti-sym.) under inversion

- Four dimensions:
not all tensors are linearly independent
- Checking possible multiple color structures

HQET (and NRQCD) operators at dimension 8 and above: Applications

[Ayesh Gunawardna, GP JHEP 1707137 (2017)]

Results: SI Dimension 7 HQET operators

- We look at $\langle H| \bar{h} i D^{\mu_{1}} i D^{\mu_{2}} i D^{\mu_{3}} i D^{\mu_{4}} h|H\rangle$ It can depend on $v^{\mu_{i}}, \Pi^{\mu_{i} \mu_{j}}$,
- We can have ПП:

Results: SI Dimension 7 HQET operators

- We look at $\langle H| \bar{h} i D^{\mu_{1}} i D^{\mu_{2}} i D^{\mu_{3}} i D^{\mu_{4}} h|H\rangle$ It can depend on $v^{\mu_{i}}, \Pi^{\mu_{i} \mu_{j}}$,
- We can have $\Pi \Pi: \quad \Pi^{\mu_{1} \mu_{2}} \Pi^{\mu_{3} \mu_{4}}$

Results: SI Dimension 7 HQET operators

- We look at $\langle H| \bar{h} i D^{\mu_{1}} i D^{\mu_{2}} i D^{\mu_{3}} i D^{\mu_{4}} h|H\rangle$

It can depend on $v^{\mu_{i}}, \Pi^{\mu_{i} \mu_{j}}$,

- We can have $П \Pi: \quad \Pi^{\mu_{1} \mu_{2}} \Pi^{\mu_{3} \mu_{4}} \quad \Pi^{\mu_{1} \mu_{3}} \Pi^{\mu_{2} \mu_{4}}$

Results: SI Dimension 7 HQET operators

- We look at $\langle H| \bar{h} i D^{\mu_{1}} i D^{\mu_{2}} i D^{\mu_{3}} i D^{\mu_{4}} h|H\rangle$

It can depend on $v^{\mu_{i}}, \Pi^{\mu_{i} \mu_{j}}$,

- We can have $\Pi \Pi: \quad \Pi^{\mu_{1} \mu_{2}} \Pi^{\mu_{3} \mu_{4}} \quad \Pi^{\mu_{1} \mu_{3}} \Pi^{\mu_{2} \mu_{4}} \quad \Pi^{\mu_{1} \mu_{4}} \Pi^{\mu_{2} \mu_{3}}$
- or Пvv:

Results: SI Dimension 7 HQET operators

- We look at $\langle H| \bar{h} i D^{\mu_{1}} i D^{\mu_{2}} i D^{\mu_{3}} i D^{\mu_{4}} h|H\rangle$

It can depend on $v^{\mu_{i}}, \Pi^{\mu_{i} \mu_{j}}$,

- We can have $\Pi \Pi: \quad \Pi^{\mu_{1} \mu_{2}} \Pi^{\mu_{3} \mu_{4}} \quad \Pi^{\mu_{1} \mu_{3}} \Pi^{\mu_{2} \mu_{4}} \quad \Pi^{\mu_{1} \mu_{4}} \Pi^{\mu_{2} \mu_{3}}$
- or $\Pi v v: \quad \Pi^{\mu_{1} \mu_{4}} v^{\mu_{2}} v^{\mu_{3}}$

Results: SI Dimension 7 HQET operators

- We look at $\langle H| \bar{h} i D^{\mu_{1}} i D^{\mu_{2}} i D^{\mu_{3}} i D^{\mu_{4}} h|H\rangle$

It can depend on $v^{\mu_{i}}, \Pi^{\mu_{i} \mu_{j}}$,

- We can have $\Pi \Pi: \quad \Pi^{\mu_{1} \mu_{2}} \Pi^{\mu_{3} \mu_{4}} \quad \Pi^{\mu_{1} \mu_{3}} \Pi^{\mu_{2} \mu_{4}} \quad \Pi^{\mu_{1} \mu_{4}} \Pi^{\mu_{2} \mu_{3}}$
- or $\Pi v v: \quad \Pi^{\mu_{1} \mu_{4}} v^{\mu_{2}} v^{\mu_{3}}$

$$
\begin{aligned}
\frac{1}{2 M_{H}}\langle H| \bar{h} i D^{\mu_{1}} i D^{\mu_{2}} i D^{\mu_{3}} i D^{\mu_{4}} h|H\rangle & =a_{12}^{(7)} \Pi^{\mu_{1} \mu_{2}} \Pi^{\mu_{3} \mu_{4}}+a_{13}^{(7)} \Pi^{\mu_{1} \mu_{3}} \Pi^{\mu_{2} \mu_{4}}+ \\
& +a_{14}^{(7)} \Pi^{\mu_{1} \mu_{4}} \Pi^{\mu_{2} \mu_{3}}+b^{(7)} \Pi^{\mu_{1} \mu_{4}} v^{\mu_{2}} v^{\mu_{3}}
\end{aligned}
$$

Notice that the tensors are symmetric under inversion of indices

Results: SI Dimension 7 HQET operators

- We look at $\langle H| \bar{h} i D^{\mu_{1}} i D^{\mu_{2}} i D^{\mu_{3}} i D^{\mu_{4}} h|H\rangle$

It can depend on $v^{\mu_{i}}, \Pi^{\mu_{i} \mu_{j}}$,

- We can have $\Pi \Pi: \quad \Pi^{\mu_{1} \mu_{2}} \Pi^{\mu_{3} \mu_{4}} \quad \Pi^{\mu_{1} \mu_{3}} \Pi^{\mu_{2} \mu_{4}} \quad \Pi^{\mu_{1} \mu_{4}} \Pi^{\mu_{2} \mu_{3}}$
- or $\Pi v v: \quad \Pi^{\mu_{1} \mu_{4}} v^{\mu_{2}} v^{\mu_{3}}$

$$
\begin{aligned}
\frac{1}{2 M_{H}}\langle H| \bar{h} i D^{\mu_{1}} i D^{\mu_{2}} i D^{\mu_{3}} i D^{\mu_{4}} h|H\rangle & =a_{12}^{(7)} \Pi^{\mu_{1} \mu_{2}} \Pi^{\mu_{3} \mu_{4}}+a_{13}^{(7)} \Pi^{\mu_{1} \mu_{3}} \Pi^{\mu_{2} \mu_{4}}+ \\
& +a_{14}^{(7)} \Pi^{\mu_{1} \mu_{4}} \Pi^{\mu_{2} \mu_{3}}+b^{(7)} \Pi^{\mu_{1} \mu_{4}} v^{\mu_{2}} v^{\mu_{3}}
\end{aligned}
$$

Notice that the tensors are symmetric under inversion of indices

- Multiple color structure arise from $\bar{h}\left\{\left[i D^{\mu_{i}}, i D^{\mu_{j}}\right],\left[i D^{\mu_{k}}, i D^{\mu_{i}}\right]\right\} h$:

Results: SI Dimension 7 HQET operators

- We look at $\langle H| \bar{h} i D^{\mu_{1}} i D^{\mu_{2}} i D^{\mu_{3}} i D^{\mu_{4}} h|H\rangle$

It can depend on $v^{\mu_{i}}, \Pi^{\mu_{i} \mu_{j}}$,

- We can have $\Pi \Pi: \quad \Pi^{\mu_{1} \mu_{2}} \Pi^{\mu_{3} \mu_{4}} \quad \Pi^{\mu_{1} \mu_{3}} \Pi^{\mu_{2} \mu_{4}} \quad \Pi^{\mu_{1} \mu_{4}} \Pi^{\mu_{2} \mu_{3}}$
- or $\Pi v v: \quad \Pi^{\mu_{1} \mu_{4}} v^{\mu_{2}} v^{\mu_{3}}$

$$
\begin{aligned}
\frac{1}{2 M_{H}}\langle H| \bar{h} i D^{\mu_{1}} i D^{\mu_{2}} i D^{\mu_{3}} i D^{\mu_{4}} h|H\rangle & =a_{12}^{(7)} \Pi^{\mu_{1} \mu_{2}} \Pi^{\mu_{3} \mu_{4}}+a_{13}^{(7)} \Pi^{\mu_{1} \mu_{3}} \Pi^{\mu_{2} \mu_{4}}+ \\
& +a_{14}^{(7)} \Pi^{\mu_{1} \mu_{4}} \Pi^{\mu_{2} \mu_{3}}+b^{(7)} \Pi^{\mu_{1} \mu_{4}} v^{\mu_{2}} v^{\mu_{3}}
\end{aligned}
$$

Notice that the tensors are symmetric under inversion of indices

- Multiple color structure arise from $\bar{h}\left\{\left[i D^{\mu_{i}}, i D^{\mu_{j}}\right],\left[i D^{\mu_{k}}, i D^{\mu_{i}}\right]\right\} h$: $\bar{h}\left\{\left[i D^{\mu_{1}}, i D^{\mu_{2}}\right],\left[i D^{\mu_{3}}, i D^{\mu_{4}}\right]\right\} h, \bar{h}\left\{\left[i D^{\mu_{1}}, i D^{\mu_{3}}\right],\left[i D^{\mu_{2}}, i D^{\mu_{4}}\right]\right\} h$, and $\bar{h}\left\{\left[i D^{\mu_{1}}, i D^{\mu_{4}}\right],\left[i D^{\mu_{2}}, i D^{\mu_{3}}\right]\right\} h$

Results: SI Dimension 7 HQET operators

- We look at $\langle H| \bar{h} i D^{\mu_{1}} i D^{\mu_{2}} i D^{\mu_{3}} i D^{\mu_{4}} h|H\rangle$

It can depend on $v^{\mu_{i}}, \Pi^{\mu_{i} \mu_{j}}$,

- We can have $\Pi \Pi: \quad \Pi^{\mu_{1} \mu_{2}} \Pi^{\mu_{3} \mu_{4}} \quad \Pi^{\mu_{1} \mu_{3}} \Pi^{\mu_{2} \mu_{4}} \quad \Pi^{\mu_{1} \mu_{4}} \Pi^{\mu_{2} \mu_{3}}$
- or $\Pi v v: \quad \Pi^{\mu_{1} \mu_{4}} v^{\mu_{2}} v^{\mu_{3}}$

$$
\begin{aligned}
\frac{1}{2 M_{H}}\langle H| \bar{h} i D^{\mu_{1}} i D^{\mu_{2}} i D^{\mu_{3}} i D^{\mu_{4}} h|H\rangle & =a_{12}^{(7)} \Pi^{\mu_{1} \mu_{2}} \Pi^{\mu_{3} \mu_{4}}+a_{13}^{(7)} \Pi^{\mu_{1} \mu_{3}} \Pi^{\mu_{2} \mu_{4}}+ \\
& +a_{14}^{(7)} \Pi^{\mu_{1} \mu_{4}} \Pi^{\mu_{2} \mu_{3}}+b^{(7)} \Pi^{\mu_{1} \mu_{4}} v^{\mu_{2}} v^{\mu_{3}}
\end{aligned}
$$

Notice that the tensors are symmetric under inversion of indices

- Multiple color structure arise from $\bar{h}\left\{\left[i D^{\mu_{i}}, i D^{\mu_{j}}\right],\left[i D^{\mu_{k}}, i D^{\mu_{i}}\right]\right\} h$: $\bar{h}\left\{\left[i D^{\mu_{1}}, i D^{\mu_{2}}\right],\left[i D^{\mu_{3}}, i D^{\mu_{4}}\right]\right\} h, \bar{h}\left\{\left[i D^{\mu_{1}}, i D^{\mu_{3}}\right],\left[i D^{\mu_{2}}, i D^{\mu_{4}}\right]\right\} h$, and $\bar{h}\left\{\left[i D^{\mu_{1}}, i D^{\mu_{4}}\right],\left[i D^{\mu_{2}}, i D^{\mu_{3}}\right]\right\} h$
Contracting with tensors above: $a_{13}^{(7)}-a_{14}^{(7)}$ and $b^{(7)}$
$\Rightarrow 2$ op. with 2 color structures: 6 in total but only 4 at tree level

Results: SI Dimension 7 HQET operators

- We look at $\langle H| \bar{h} i D^{\mu_{1}} i D^{\mu_{2}} i D^{\mu_{3}} i D^{\mu_{4}} h|H\rangle$

It can depend on $v^{\mu_{i}}, \Pi^{\mu_{i} \mu_{j}}$,

- We can have $\Pi \Pi: \quad \Pi^{\mu_{1} \mu_{2}} \Pi^{\mu_{3} \mu_{4}} \quad \Pi^{\mu_{1} \mu_{3}} \Pi^{\mu_{2} \mu_{4}} \quad \Pi^{\mu_{1} \mu_{4}} \Pi^{\mu_{2} \mu_{3}}$
- or $\Pi v v: \quad \Pi^{\mu_{1} \mu_{4}} v^{\mu_{2}} v^{\mu_{3}}$

$$
\begin{aligned}
\frac{1}{2 M_{H}}\langle H| \bar{h} i D^{\mu_{1}} i D^{\mu_{2}} i D^{\mu_{3}} i D^{\mu_{4}} h|H\rangle & =a_{12}^{(7)} \Pi^{\mu_{1} \mu_{2}} \Pi^{\mu_{3} \mu_{4}}+a_{13}^{(7)} \Pi^{\mu_{1} \mu_{3}} \Pi^{\mu_{2} \mu_{4}}+ \\
& +a_{14}^{(7)} \Pi^{\mu_{1} \mu_{4}} \Pi^{\mu_{2} \mu_{3}}+b^{(7)} \Pi^{\mu_{1} \mu_{4}} v^{\mu_{2}} v^{\mu_{3}}
\end{aligned}
$$

Notice that the tensors are symmetric under inversion of indices

- Multiple color structure arise from $\bar{h}\left\{\left[i D^{\mu_{i}}, i D^{\mu_{j}}\right],\left[i D^{\mu_{k}}, i D^{\mu_{i}}\right]\right\} h$: $\bar{h}\left\{\left[i D^{\mu_{1}}, i D^{\mu_{2}}\right],\left[i D^{\mu_{3}}, i D^{\mu_{4}}\right]\right\} h, \bar{h}\left\{\left[i D^{\mu_{1}}, i D^{\mu_{3}}\right],\left[i D^{\mu_{2}}, i D^{\mu_{4}}\right]\right\} h$, and $\bar{h}\left\{\left[i D^{\mu_{1}}, i D^{\mu_{4}}\right],\left[i D^{\mu_{2}}, i D^{\mu_{3}}\right]\right\} h$
Contracting with tensors above: $a_{13}^{(7)}-a_{14}^{(7)}$ and $b^{(7)}$
$\Rightarrow 2$ op. with 2 color structures: 6 in total but only 4 at tree level
- Explains 4 HQET SI op. in [Mannel, Turczyk, Uraltsev JHEP 1011, 109 (2010)] and 6 NRQCD SI in [Manohar PRD 56, 230 (1997)]

Results: SD Dimension 7 HQET operators

- We look at $\langle H| \bar{h} i D^{\mu_{1}} i D^{\mu_{2}} i D^{\mu_{3}} i D^{\mu_{4}} s^{\lambda} h|H\rangle$

By parity it must contain $\epsilon^{\rho \mu_{k} \mu_{l} \lambda} v_{\rho}$
The 2 other indices can be

Results: SD Dimension 7 HQET operators

- We look at $\langle H| \bar{h} i D^{\mu_{1}} i D^{\mu_{2}} i D^{\mu_{3}} i D^{\mu_{4}} s^{\lambda} h|H\rangle$

By parity it must contain $\epsilon^{\rho \mu_{k} \mu_{l} \lambda} v_{\rho}$
The 2 other indices can be $\Pi^{\mu_{i} \mu_{j}}$ or

Results: SD Dimension 7 HQET operators

- We look at $\langle H| \bar{h} i D^{\mu_{1}} D^{\mu_{2}} i D^{\mu_{3}} i^{\mu_{4}}{ }^{\lambda} h|H\rangle$

By parity it must contain $\epsilon^{\rho \mu_{k} \mu_{l} \lambda} v_{\rho}$
The 2 other indices can be $\Pi^{\mu_{i} \mu_{j}}$ or $v^{\mu_{i}} v^{\mu_{j}}$
The tensors must also be anti-symmetric under inversion of indices

Results: SD Dimension 7 HQET operators

- We look at $\langle H| \bar{h} i D^{\mu_{1}} D^{\mu_{2}} i D^{\mu_{3}} i^{\mu_{4}} s^{\lambda} h|H\rangle$

By parity it must contain $\epsilon^{\rho \mu_{k} \mu_{\mu} \lambda} v_{\rho}$
The 2 other indices can be $\Pi^{\mu_{i} \mu_{j}}$ or $v^{\mu_{i}} v^{\mu_{j}}$
The tensors must also be anti-symmetric under inversion of indices

$$
\begin{aligned}
\frac{1}{2 M_{H}} & \langle H| \bar{h} i D^{\mu_{1}} i D^{\mu_{2}} i D^{\mu_{3}} i D^{\mu_{4}} s^{\lambda} h|H\rangle=i \tilde{a}_{12}^{(7)}\left(\Pi^{\mu_{1} \mu_{2}} \epsilon^{\rho \mu_{3} \mu_{4} \lambda} v_{\rho}-\Pi^{\mu_{4} \mu_{3}} \epsilon^{\rho \mu_{2} \mu_{1} \lambda} v_{\rho}\right) \\
& +i \tilde{a}_{13}^{(7)}\left(\Pi^{\mu_{1} \mu_{3}} \epsilon^{\rho \mu_{2} \mu_{4} \lambda} v_{\rho}-\Pi^{\mu_{4} \mu_{2}} \epsilon^{\rho \mu_{3} \mu_{1} \lambda} v_{\rho}\right)+ \\
& +i \tilde{a}_{14}^{(7)} \Pi^{\mu_{1} \mu_{4}} \epsilon^{\rho \mu_{2} \mu_{3} \lambda} v_{\rho}+i \tilde{a}_{23}^{(7)} \Pi^{\mu_{2} \mu_{3}} \epsilon^{\rho \mu_{1} \mu_{4} \lambda} v_{\rho}+i \tilde{b}^{(7)} v^{\mu_{2}} v^{\mu_{3}} \epsilon^{\rho \mu_{1} \mu_{4} \lambda} v_{\rho}
\end{aligned}
$$

Results: SD Dimension 7 HQET operators

- We look at $\langle H| \bar{h} i D^{\mu_{1}} i D^{\mu_{2}} i D^{\mu_{3}} i D^{\mu_{4}} s^{\lambda} h|H\rangle$

By parity it must contain $\epsilon^{\rho \mu_{k} \mu_{1} \lambda} v_{\rho}$
The 2 other indices can be $\Pi^{\mu_{i} \mu_{j}}$ or $v^{\mu_{i}} v^{\mu_{j}}$
The tensors must also be anti-symmetric under inversion of indices

$$
\begin{aligned}
& \frac{1}{2 M_{H}}\langle H| \bar{h} i D^{\mu_{1}} i D^{\mu_{2}} i D^{\mu_{3}} i D^{\mu_{4}} s^{\lambda} h|H\rangle=i \tilde{a}_{12}^{(7)}\left(\Pi^{\mu_{1} \mu_{2}} \epsilon^{\rho \mu_{3} \mu_{4} \lambda} v_{\rho}-\Pi^{\mu_{4} \mu_{3}} \epsilon^{\rho \mu_{2} \mu_{1} \lambda} v_{\rho}\right) \\
& \quad+i \tilde{a}_{13}^{(7)}\left(\Pi^{\mu_{1} \mu_{3}} \epsilon^{\rho \mu_{2} \mu_{4} \lambda} v_{\rho}-\Pi^{\mu_{4} \mu_{2}} \epsilon^{\rho \mu_{3} \mu_{1} \lambda} v_{\rho}\right)+ \\
& \quad+i \tilde{a}_{14}^{(7)} \Pi^{\mu_{1} \mu_{4}} \epsilon^{\rho \mu_{2} \mu_{3} \lambda} v_{\rho}+i \tilde{a}_{23}^{(7)} \Pi^{\mu_{2} \mu_{3}} \epsilon^{\rho \mu_{1} \mu_{4} \lambda} v_{\rho}+i \tilde{b}^{(7)} v^{\mu_{2}} v^{\mu_{3}} \epsilon^{\rho \mu_{1} \mu_{4} \lambda} v_{\rho}
\end{aligned}
$$

- Multiple color structure arise from $\bar{h}\left\{\left[i D^{\mu_{i}}, i D^{\mu_{j}}\right],\left[i D^{\mu_{k}}, i D^{\mu_{l}}\right]\right\} h$ Contractions with tensors above give no contribution

Results: SD Dimension 7 HQET operators

- We look at $\langle H| \bar{h} i D^{\mu_{1}} i D^{\mu_{2}} i D^{\mu_{3}} i D^{\mu_{4}} s^{\lambda} h|H\rangle$

By parity it must contain $\epsilon^{\rho \mu_{k} \mu_{1} \lambda} v_{\rho}$
The 2 other indices can be $\Pi^{\mu_{i} \mu_{j}}$ or $v^{\mu_{i}} v^{\mu_{j}}$
The tensors must also be anti-symmetric under inversion of indices

$$
\begin{aligned}
& \frac{1}{2 M_{H}}\langle H| \bar{h} i D^{\mu_{1}} i D^{\mu_{2}} i D^{\mu_{3}} i D^{\mu_{4}} s^{\lambda} h|H\rangle=i \tilde{a}_{12}^{(7)}\left(\Pi^{\mu_{1} \mu_{2}} \epsilon^{\rho \mu_{3} \mu_{4} \lambda} v_{\rho}-\Pi^{\mu_{4} \mu_{3}} \epsilon^{\rho \mu_{2} \mu_{1} \lambda} v_{\rho}\right) \\
& \quad+i \tilde{a}_{13}^{(7)}\left(\Pi^{\mu_{1} \mu_{3}} \epsilon^{\rho \mu_{2} \mu_{4} \lambda} v_{\rho}-\Pi^{\mu_{4} \mu_{2}} \epsilon^{\rho \mu_{3} \mu_{1} \lambda} v_{\rho}\right)+ \\
& \quad+i \tilde{a}_{14}^{(7)} \Pi^{\mu_{1} \mu_{4}} \epsilon^{\rho \mu_{2} \mu_{3} \lambda} v_{\rho}+i \tilde{a}_{23}^{(7)} \Pi^{\mu_{2} \mu_{3}} \epsilon^{\rho \mu_{1} \mu_{4} \lambda} v_{\rho}+i \tilde{b}^{(7)} v^{\mu_{2}} v^{\mu_{3}} \epsilon^{\rho \mu_{1} \mu_{4} \lambda} v_{\rho}
\end{aligned}
$$

- Multiple color structure arise from $\bar{h}\left\{\left[i D^{\mu_{i}}, i D^{\mu_{j}}\right],\left[i D^{\mu_{k}}, i D^{\mu_{i}}\right]\right\} h$ Contractions with tensors above give no contribution
- Explains 5 HQET SD op. in [Mannel, Turczyk, Uraltsev JHEP 1011, 109 (2010)] and 5 NRQCD SD in [Manohar PRD 56, 230 (1997)]

Results: SI Dimension 8 HQET operators

- Using the general method $\frac{1}{2 M_{H}}\langle H| \bar{h} i D^{\mu_{1}} i D^{\mu_{2}} i D^{\mu_{3}} i D^{\mu_{4}} i D^{\mu_{5}} h|H\rangle=a_{12}^{(8)}\left(\Pi^{\mu_{1} \mu_{2}} \Pi^{\mu_{3} \mu_{5}} v^{\mu_{4}}+\Pi^{\mu_{1} \mu_{3}} \Pi^{\mu_{4} \mu_{5}} v^{\mu_{2}}\right)+$ $a_{13}^{(8)}\left(\Pi^{\mu_{1} \mu_{3}} \Pi^{\mu_{2} \mu_{5}} v^{\mu_{4}}+\Pi^{\mu_{3} \mu_{5}} \Pi^{\mu_{1} \mu_{4}} v^{\mu_{2}}\right)+a_{15}^{(8)}\left(\Pi^{\mu_{1} \mu_{5}} \Pi^{\mu_{3} \mu_{4}} v^{\mu_{2}}+\Pi^{\mu_{1} \mu_{5}} \Pi^{\mu_{2} \mu_{3}} v^{\mu_{4}}\right)+$ $b_{12}^{(8)} \Pi^{\mu_{1} \mu_{2}} \Pi^{\mu_{4} \mu_{5}} v^{\mu_{3}}+b_{14}^{(8)} \Pi^{\mu_{1} \mu_{4}} \Pi^{\mu_{2} \mu_{5}} v^{\mu_{3}}+b_{15}^{(8)} \Pi^{\mu_{1} \mu_{5}} \Pi^{\mu_{2} \mu_{4}} v^{\mu_{3}}+$ $c^{(8)} \Pi^{\mu_{1} \mu_{5}} v^{\mu_{2}} v^{\mu_{3}} v^{\mu_{4}}$

Results: SI Dimension 8 HQET operators

- Using the general method
$\frac{1}{2 M_{H}}\langle H| \bar{h} i D^{\mu_{1}} i D^{\mu_{2}} i D^{\mu_{3}} i D^{\mu_{4}} i D^{\mu_{5}} h|H\rangle=a_{12}^{(8)}\left(\Pi^{\mu_{1} \mu_{2}} \Pi^{\mu_{3} \mu_{5}} v^{\mu_{4}}+\Pi^{\mu_{1} \mu_{3}} \Pi^{\mu_{4} \mu_{5}} v^{\mu_{2}}\right)+$ $a_{13}^{(8)}\left(\Pi^{\mu_{1} \mu_{3}} \Pi^{\mu_{2} \mu_{5}} v^{\mu_{4}}+\Pi^{\mu_{3} \mu_{5}} \Pi^{\mu_{1} \mu_{4}} v^{\mu_{2}}\right)+a_{15}^{(8)}\left(\Pi^{\mu_{1} \mu_{5}} \Pi^{\mu_{3} \mu_{4}} v^{\mu_{2}}+\Pi^{\mu_{1} \mu_{5}} \Pi^{\mu_{2} \mu_{3}} v^{\mu_{4}}\right)+$ $b_{12}^{(8)} \Pi^{\mu_{1} \mu_{2}} \Pi^{\mu_{4} \mu_{5}} v^{\mu_{3}}+b_{14}^{(8)} \Pi^{\mu_{1} \mu_{4}} \Pi^{\mu_{2} \mu_{5}} v^{\mu_{3}}+b_{15}^{(8)} \Pi^{\mu_{1} \mu_{5}} \Pi^{\mu_{2} \mu_{4}} v^{\mu_{3}}+$ $c^{(8)} \Pi^{\mu_{1} \mu_{5}} v^{\mu_{2}} v^{\mu_{3}} v^{\mu_{4}}$
- Multiple color structures arise from
- $\bar{h}\left\{\left[i D^{\mu_{i}}, i D^{\mu_{j}}\right],\left[i D^{\mu_{k}},\left[i D^{\mu_{l}}, i D^{\mu_{m}}\right]\right]\right\} h: 20$ possibilities
- $\bar{h}\left\{i D^{\mu_{m}},\left\{\left[i D^{\mu_{i}}, i D^{\mu_{j}}\right],\left[i D^{\mu_{k}}, i D^{\mu_{l}}\right]\right\}\right\}$ h: 15 possibilities

Results: SI Dimension 8 HQET operators

- Using the general method
$\frac{1}{2 M_{H}}\langle H| \bar{h} i D^{\mu_{1}} i D^{\mu_{2}} i D^{\mu_{3}} i D^{\mu_{4}} i D^{\mu_{5}} h|H\rangle=a_{12}^{(8)}\left(\Pi^{\mu_{1} \mu_{2}} \Pi^{\mu_{3} \mu_{5}} v^{\mu_{4}}+\Pi^{\mu_{1} \mu_{3}} \Pi^{\mu_{4} \mu_{5}} v^{\mu_{2}}\right)+$
$a_{13}^{(8)}\left(\Pi^{\mu_{1} \mu_{3}} \Pi^{\mu_{2} \mu_{5}} v^{\mu_{4}}+\Pi^{\mu_{3} \mu_{5}} \Pi^{\mu_{1} \mu_{4}} v^{\mu_{2}}\right)+a_{15}^{(8)}\left(\Pi^{\mu_{1} \mu_{5}} \Pi^{\mu_{3} \mu_{4}} v^{\mu_{2}}+\Pi^{\mu_{1} \mu_{5}} \Pi^{\mu_{2} \mu_{3}} v^{\mu_{4}}\right)+$
$b_{12}^{(8)} \Pi^{\mu_{1} \mu_{2}} \Pi^{\mu_{4} \mu_{5}} v^{\mu_{3}}+b_{14}^{(8)} \Pi^{\mu_{1} \mu_{4}} \Pi^{\mu_{2} \mu_{5}} v^{\mu_{3}}+b_{15}^{(8)} \Pi^{\mu_{1} \mu_{5}} \Pi^{\mu_{2} \mu_{4}} v^{\mu_{3}}+$
$c^{(8)} \Pi^{\mu_{1} \mu_{5}} v^{\mu_{2}} v^{\mu_{3}} v^{\mu_{4}}$
- Multiple color structures arise from
- $\bar{h}\left\{\left[i D^{\mu_{i}}, i D^{\mu_{j}}\right],\left[i D^{\mu_{k}},\left[i D^{\mu_{1}}, i D^{\mu_{m}}\right]\right]\right\} h: 20$ possibilities
- $\bar{h}\left\{i D^{\mu_{m}},\left\{\left[i D^{\mu_{i}}, i D^{\mu_{j}}\right],\left[i D^{\mu_{k}}, i D^{\mu_{i}}\right]\right\}\right\}$ h: 15 possibilities

Contractions with tensors above give 1 contribution
$\Rightarrow 1$ op. with 2 color structures: 8 in total but only 7 at tree level

Results: SI Dimension 8 HQET operators

- Using the general method
$\frac{1}{2 M_{H}}\langle H| \bar{h} i D^{\mu_{1}} i D^{\mu_{2}} i D^{\mu_{3}} i D^{\mu_{4}} i D^{\mu_{5}} h|H\rangle=a_{12}^{(8)}\left(\Pi^{\mu_{1} \mu_{2}} \Pi^{\mu_{3} \mu_{5}} v^{\mu_{4}}+\Pi^{\mu_{1} \mu_{3}} \Pi^{\mu_{4} \mu_{5}} v^{\mu_{2}}\right)+$
$a_{13}^{(8)}\left(\Pi^{\mu_{1} \mu_{3}} \Pi^{\mu_{2} \mu_{5}} v^{\mu_{4}}+\Pi^{\mu_{3} \mu_{5}} \Pi^{\mu_{1} \mu_{4}} v^{\mu_{2}}\right)+a_{15}^{(8)}\left(\Pi^{\mu_{1} \mu_{5}} \Pi^{\mu_{3} \mu_{4}} v^{\mu_{2}}+\Pi^{\mu_{1} \mu_{5}} \Pi^{\mu_{2} \mu_{3}} v^{\mu_{4}}\right)+$
$b_{12}^{(8)} \Pi^{\mu_{1} \mu_{2}} \Pi^{\mu_{4} \mu_{5}} v^{\mu_{3}}+b_{14}^{(8)} \Pi^{\mu_{1} \mu_{4}} \Pi^{\mu_{2} \mu_{5}} v^{\mu_{3}}+b_{15}^{(8)} \Pi^{\mu_{1} \mu_{5}} \Pi^{\mu_{2} \mu_{4}} v^{\mu_{3}}+$
$c^{(8)} \Pi^{\mu_{1} \mu_{5}} v^{\mu_{2}} v^{\mu_{3}} v^{\mu_{4}}$
- Multiple color structures arise from
- $\bar{h}\left\{\left[i D^{\mu_{i}}, i D^{\mu_{j}}\right],\left[i D^{\mu_{k}},\left[i D^{\mu_{1}}, i D^{\mu_{m}}\right]\right]\right\} h: 20$ possibilities
- $\bar{h}\left\{i D^{\mu_{m}},\left\{\left[i D^{\mu_{i}}, i D^{\mu_{j}}\right],\left[i D^{\mu_{k}}, i D^{\mu_{1}}\right]\right\}\right\} h$: 15 possibilities

Contractions with tensors above give 1 contribution
$\Rightarrow 1$ op. with 2 color structures: 8 in total but only 7 at tree level

- Explains 7 HQET dimesion 8 SI operators in [Mannel, Turczyk, Uraltsev JHEP 1011, 109 (2010)]
The new operator will be listed below

Results: SD Dimension 8 HQET operators

- Using the general method

$$
\begin{aligned}
& \frac{1}{2 M_{H}}\langle H| \bar{h} i D^{\mu_{1}} i D^{\mu_{2}} i D^{\mu_{3}} i D^{\mu_{4}} i D^{\mu_{5}} s^{\lambda} h|H\rangle= \\
& i \tilde{a}_{12}^{(8)}\left(v^{\mu_{3}} \Pi^{\mu_{1} \mu_{2}} \epsilon^{\rho \mu_{4} \mu_{5} \lambda} v_{\rho}-v^{\mu_{3}} \Pi^{\mu_{4} \mu_{5}} \epsilon^{\rho \mu_{2} \mu_{1} \lambda} v_{\rho}\right)+i \tilde{i}_{14}^{(8)}\left(v^{\mu_{3}} \Pi^{\mu_{1} \mu_{4}} \epsilon^{\rho \mu_{2} \mu_{5} \lambda} v_{\rho}-v^{\mu_{3}} \Pi^{\mu_{5} \mu_{2}} \epsilon^{\rho \mu_{4} \mu_{1} \lambda} v_{\rho}\right)+ \\
& +i \tilde{a}_{15}^{(8)} v^{\mu_{3}} \Pi^{\mu_{1} \mu_{5}} \epsilon^{\rho \mu_{2} \mu_{4} \lambda} v_{\rho}+i \tilde{i}_{24}^{(8)} v^{\mu_{3}} \Pi^{\mu_{2} \mu_{4}} \epsilon^{\rho \mu_{1} \mu_{5} \lambda} v_{\rho}+ \\
& +i \tilde{b}_{13}^{(8)}\left(v^{\mu_{2}} \Pi^{\mu_{1} \mu_{3}} \epsilon^{\rho \mu_{4} \mu_{5} \lambda} v_{\rho}-v^{\mu_{4}} \Pi^{\mu_{5} \mu_{3}} \epsilon^{\rho \mu_{2} \mu_{1} \lambda} v_{\rho}\right)+i \tilde{b}_{14}^{(8)}\left(v^{\mu_{2}} \Pi^{\mu_{1} \mu_{4}} \epsilon^{\rho \mu_{3} \mu_{5} \lambda} v_{\rho}-v^{\mu_{4}} \Pi^{\mu_{5} \mu_{2}} \epsilon^{\rho \mu_{3} \mu_{1} \lambda} v_{\rho}\right)+ \\
& +i \tilde{b}_{15}^{(8)}\left(v^{\mu_{2}} \Pi^{\mu_{1} \mu_{5}} \epsilon^{\rho \mu_{3} \mu_{4} \lambda} v_{\rho}-v^{\mu_{4}} \Pi^{\mu_{1} \mu_{5}} \epsilon^{\rho \mu_{3} \mu_{2} \lambda} v_{\rho}\right)+i \tilde{b}_{34}^{(8)}\left(v^{\mu_{2}} \Pi^{\mu_{3} \mu_{4}} \epsilon^{\rho \mu_{1} \mu_{5} \lambda} v_{\rho}-v^{\mu_{4}} \Pi^{\mu_{3} \mu_{2}} \epsilon^{\rho \mu_{5} \mu_{1} \lambda} v_{\rho}\right)+ \\
& +i \tilde{b}_{35}^{(8)}\left(v^{\mu_{2}} \Pi^{\mu_{3} \mu_{5}} \epsilon^{\rho \mu_{1} \mu_{4} \lambda} v_{\rho}-v^{\mu_{4}} \Pi^{\mu_{3} \mu_{1}} \epsilon^{\rho \mu_{5} \mu_{2} \lambda} v_{\rho}\right)+i \tilde{b}_{45}^{(8)}\left(v^{\mu_{2}} \Pi^{\mu_{4} \mu_{5}} \epsilon^{\rho \mu_{1} \mu_{3} \lambda} v_{\rho}-v^{\mu_{4}} \Pi^{\mu_{2} \mu_{1}} \epsilon^{\rho \mu_{5} \mu_{3} \lambda} v_{\rho}\right)+ \\
& +i \tilde{c}^{(8)} v^{\mu_{2}} v^{\mu_{3}} v^{\mu_{4}} \epsilon^{\rho \mu_{1} \mu_{5} \lambda} v_{\rho} .
\end{aligned}
$$

Results: SD Dimension 8 HQET operators

- Using the general method
$\frac{1}{2 M_{H}}\langle H| \bar{h} i D^{\mu_{1}} i D^{\mu_{2}} i D^{\mu_{3}} i D^{\mu_{4}} i D^{\mu_{5}} s^{\lambda} h|H\rangle=$
$i \tilde{a}_{12}^{(8)}\left(v^{\mu_{3}} \Pi^{\mu_{1} \mu_{2}} \epsilon^{\rho \mu_{4} \mu_{5} \lambda} v_{\rho}-v^{\mu_{3}} \Pi^{\mu_{4} \mu_{5}} \epsilon^{\rho \mu_{2} \mu_{1} \lambda} v_{\rho}\right)+i \tilde{a}_{14}^{(8)}\left(v^{\mu_{3}} \Pi^{\mu_{1} \mu_{4}} \epsilon^{\rho \mu_{2} \mu_{5} \lambda} v_{\rho}-v^{\mu_{3}} \Pi^{\mu_{5} \mu_{2}} \epsilon^{\rho \mu_{4} \mu_{1} \lambda} v_{\rho}\right)+$ $+i \tilde{a}_{15}^{(8)} v^{\mu_{3}} \Pi^{\mu_{1} \mu_{5}} \epsilon^{\rho \mu_{2} \mu_{4} \lambda} v_{\rho}+i \tilde{a}_{24}^{(8)} v^{\mu_{3}} \Pi^{\mu_{2} \mu_{4}} \epsilon^{\rho \mu_{1} \mu_{5} \lambda} v_{\rho}+$
$+i \tilde{b}_{13}^{(8)}\left(v^{\mu_{2}} \Pi^{\mu_{1} \mu_{3}} \epsilon^{\rho \mu_{4} \mu_{5} \lambda} v_{\rho}-v^{\mu_{4}} \Pi^{\mu_{5} \mu_{3}} \epsilon^{\rho \mu_{2} \mu_{1} \lambda} v_{\rho}\right)+i \tilde{b}_{14}^{(8)}\left(v^{\mu_{2}} \Pi^{\mu_{1} \mu_{4}} \epsilon^{\rho \mu_{3} \mu_{5} \lambda} v_{\rho}-v^{\mu_{4}} \Pi^{\mu_{5} \mu_{2}} \epsilon^{\rho \mu_{3} \mu_{1} \lambda} v_{\rho}\right)+$ $+i \tilde{b}_{15}^{(8)}\left(v^{\mu_{2}} \Pi^{\mu_{1} \mu_{5}} \epsilon^{\rho \mu_{3} \mu_{4} \lambda} v_{\rho}-v^{\mu_{4}} \Pi^{\mu_{1} \mu_{5}} \epsilon^{\rho \mu_{3} \mu_{2} \lambda} v_{\rho}\right)+i \tilde{b}_{34}^{(8)}\left(v^{\mu_{2}} \Pi^{\mu_{3} \mu_{4}} \epsilon^{\rho \mu_{1} \mu_{5} \lambda} v_{\rho}-v^{\mu_{4}} \Pi^{\mu_{3} \mu_{2}} \epsilon^{\rho \mu_{5} \mu_{1} \lambda} v_{\rho}\right)+$ $+i \tilde{b}_{35}^{(8)}\left(v^{\mu_{2}} \Pi^{\mu_{3} \mu_{5}} \epsilon^{\rho \mu_{1} \mu_{4} \lambda} v_{\rho}-v^{\mu_{4}} \Pi^{\mu_{3} \mu_{1}} \epsilon^{\rho \mu_{5} \mu_{2} \lambda} v_{\rho}\right)+i \tilde{b}_{45}^{(8)}\left(v^{\mu_{2}} \Pi^{\mu_{4} \mu_{5}} \epsilon^{\rho \mu_{1} \mu_{3} \lambda} v_{\rho}-v^{\mu_{4}} \Pi^{\mu_{2} \mu_{1}} \epsilon^{\rho \mu_{5} \mu_{3} \lambda} v_{\rho}\right)+$ $+i \tilde{c}^{(8)} v^{\mu_{2}} v^{\mu_{3}} v^{\mu_{4}} \epsilon^{\rho \mu_{1} \mu_{5} \lambda} v_{\rho}$.
- Checking for multiple color structures as before Contractions with tensors above give 6 contributions $\Rightarrow 6$ op. with 2 color structures: 17 in total but only 11 at tree level

Results: SD Dimension 8 HQET operators

- Using the general method
$\frac{1}{2 M_{H}}\langle H| \bar{h} i D^{\mu_{1}} i D^{\mu_{2}} i D^{\mu_{3}} i D^{\mu_{4}} i D^{\mu_{5}}{ }_{s}{ }^{\lambda} h|H\rangle=$
$i \tilde{a}_{12}^{(8)}\left(v^{\mu_{3}} \Pi^{\mu_{1} \mu_{2}} \epsilon^{\rho \mu_{4} \mu_{5} \lambda} v_{\rho}-v^{\mu_{3}} \Pi^{\mu_{4} \mu_{5}} \epsilon^{\rho \mu_{2} \mu_{1} \lambda} v_{\rho}\right)+i \tilde{a}_{14}^{(8)}\left(v^{\mu_{3}} \Pi^{\mu_{1} \mu_{4}} \epsilon^{\rho \mu_{2} \mu_{5} \lambda} v_{\rho}-v^{\mu_{3}} \Pi^{\mu_{5} \mu_{2}} \epsilon^{\rho \mu_{4} \mu_{1} \lambda} v_{\rho}\right)+$
$+i \tilde{a}_{15}^{(8)} v^{\mu_{3}} \Pi^{\mu_{1} \mu_{5}} \epsilon^{\rho \mu_{2} \mu_{4} \lambda} v_{\rho}+i \tilde{a}_{24}^{(8)} v^{\mu_{3}} \Pi^{\mu_{2} \mu_{4}} \epsilon^{\rho \mu_{1} \mu_{5} \lambda} v_{\rho}+$
$+i \tilde{b}_{13}^{(8)}\left(v^{\mu_{2}} \Pi^{\mu_{1} \mu_{3}} \epsilon^{\rho \mu_{4} \mu_{5} \lambda} v_{\rho}-v^{\mu_{4}} \Pi^{\mu_{5} \mu_{3}} \epsilon^{\rho \mu_{2} \mu_{1} \lambda} v_{\rho}\right)+i \tilde{b}_{14}^{(8)}\left(v^{\mu_{2}} \Pi^{\mu_{1} \mu_{4}} \epsilon^{\rho \mu_{3} \mu_{5} \lambda} v_{\rho}-v^{\mu_{4}} \Pi^{\mu_{5} \mu_{2}} \epsilon^{\rho \mu_{3} \mu_{1} \lambda} v_{\rho}\right)+$ $+i \tilde{b}_{15}^{(8)}\left(v^{\mu_{2}} \Pi^{\mu_{1} \mu_{5}} \epsilon^{\rho \mu_{3} \mu_{4} \lambda} v_{\rho}-v^{\mu_{4}} \Pi^{\mu_{1} \mu_{5}} \epsilon^{\rho \mu_{3} \mu_{2} \lambda} v_{\rho}\right)+i \tilde{b}_{34}^{(8)}\left(v^{\mu_{2}} \Pi^{\mu_{3} \mu_{4}} \epsilon^{\rho \mu_{1} \mu_{5} \lambda} v_{\rho}-v^{\mu_{4}} \Pi^{\mu_{3} \mu_{2}} \epsilon^{\rho \mu_{5} \mu_{1} \lambda} v_{\rho}\right)+$ $+i \tilde{b}_{35}^{(8)}\left(v^{\mu_{2}} \Pi^{\mu_{3} \mu_{5}} \epsilon^{\rho \mu_{1} \mu_{4} \lambda} v_{\rho}-v^{\mu_{4}} \Pi^{\mu_{3} \mu_{1}} \epsilon^{\rho \mu_{5} \mu_{2} \lambda} v_{\rho}\right)+i \tilde{b}_{45}^{(8)}\left(v^{\mu_{2}} \Pi^{\mu_{4} \mu_{5}} \epsilon^{\rho \mu_{1} \mu_{3} \lambda} v_{\rho}-v^{\mu_{4}} \Pi^{\mu_{2} \mu_{1}} \epsilon^{\rho \mu_{5} \mu_{3} \lambda} v_{\rho}\right)+$ $+i \tilde{c}^{(8)} v^{\mu_{2}} v^{\mu_{3}} v^{\mu_{4}} \epsilon^{\rho \mu_{1} \mu_{5} \lambda} v_{\rho}$.
- Checking for multiple color structures as before Contractions with tensors above give 6 contributions $\Rightarrow 6$ op. with 2 color structures: 17 in total but only 11 at tree level
- Explains 11 HQET dimesion 8 SD operators in [Mannel, Turczyk, Uraltsev JHEP 1011, 109 (2010)]
The new operators will be listed below

New Result: Dimension 8 NRQCD Lagrangian

- We can now list the dimension 8 NRQCD Lagrangian [Gunawardna, GP JHEP 1707137 (2017), Kobach, Pal PLB 772225 (2017)]

New Result: Dimension 8 NRQCD Lagrangian

- We can now list the dimension 8 NRQCD Lagrangian [Gunawardna, GP JHEP 1707137 (2017), Kobach, Pal PLB 772225 (2017)]

$$
\mathcal{L}_{\mathrm{NRQ} C D}^{\operatorname{dim}}=\psi^{8}=\psi^{\dagger}\left\{\cdots c_{\times 1} g \frac{\left[D^{2},\left\{D^{i}, E^{i}\right\}\right]}{m_{P}^{4}}+c_{\times 2} g \frac{\left\{D^{2},\left[D^{i}, E^{i}\right]\right\}}{m_{p}^{4}}+c_{\times 3} g \frac{\left[D^{i},\left[D^{i},\left[D^{j}, E^{j}\right]\right]\right]}{m_{P}^{4}}\right.
$$

$$
+i c_{x} 6 g \frac{\varepsilon^{i j k} \sigma^{i} D^{j}\left[D^{\prime}, E^{\prime}\right] D^{k}}{m_{p}^{4}}+c_{X 7 a} g^{2} \frac{\left\{\boldsymbol{\sigma} \cdot B_{a} T^{a},\left[D^{i}, E^{i}\right]_{b} T^{b}\right\}}{2 M^{4}}+c_{X 7 b} g^{2} \frac{\sigma \cdot B_{a}\left[D^{i}, E^{i}\right]_{a}}{m_{P}^{4}}
$$

$$
+c_{X 8 a} g^{2} \frac{\left\{\boldsymbol{E}_{a}^{i} T^{a},\left[\boldsymbol{D}^{i}, \boldsymbol{\sigma} \cdot \boldsymbol{B}\right]_{b} T^{b}\right\}}{2 M^{4}}+c_{X 8 b} g^{2} \frac{\boldsymbol{E}_{a}^{i}\left[\boldsymbol{D}^{i}, \boldsymbol{\sigma} \cdot \boldsymbol{B}\right]_{a}}{m_{p}^{4}}+c_{X 9 a} g^{2} \frac{\left\{\boldsymbol{B}_{a}^{i} T^{a},\left[\boldsymbol{D}^{i}, \boldsymbol{\sigma} \cdot \boldsymbol{E}\right]_{b} T^{b}\right\}}{2 M^{4}}
$$

$$
+c_{X 9 b} g^{2} \frac{\boldsymbol{B}_{a}^{i}\left[\boldsymbol{D}^{i}, \boldsymbol{\sigma} \cdot \boldsymbol{E}\right]_{a}}{m_{p}^{4}}+c_{X 10 a} g^{2} \frac{\left\{\boldsymbol{E}_{a}^{i} T^{a},\left[\boldsymbol{\sigma} \cdot \boldsymbol{D}, \boldsymbol{B}^{i}\right]_{b} T^{b}\right\}}{2 M^{4}}+c_{X 10 b} g^{2} \frac{\boldsymbol{E}_{a}^{i}\left[\boldsymbol{\sigma} \cdot \boldsymbol{D}, \boldsymbol{B}^{i}\right]_{a}}{m_{p}^{4}}
$$

$$
+c_{X 11 a} g^{2} \frac{\left\{\boldsymbol{B}_{a}^{i} T^{a},\left[\boldsymbol{\sigma} \cdot \boldsymbol{D}, \boldsymbol{E}^{i}\right]_{b} T^{b}\right\}}{2 M^{4}}+c_{X 11 b} g^{2} \frac{\boldsymbol{B}_{a}^{i}\left[\boldsymbol{\sigma} \cdot \boldsymbol{D}, \boldsymbol{E}^{i}\right]_{a}}{m_{p}^{4}}+\tilde{c}_{X 12 a} g^{2} \frac{\epsilon^{i j k} \boldsymbol{\sigma}^{i} \boldsymbol{E}_{a}^{j}\left[D_{t}, \boldsymbol{E}^{k}\right]_{b}\left\{T^{a}, T^{b}\right\}}{2 M^{4}}
$$

$$
+\tilde{c}_{X 12 b} g^{2} \frac{\epsilon^{i j k} \boldsymbol{\sigma}^{i} \boldsymbol{E}_{a}^{j}\left[D_{t}, \boldsymbol{E}^{k}\right]_{a}}{m_{p}^{4}}+i c_{X 13} g^{2} \frac{\left[\boldsymbol{E}^{i},\left[D_{t}, \boldsymbol{E}^{i}\right]\right]}{m_{p}^{4}}+i c_{X 14} g^{2} \frac{\left[\boldsymbol{B}^{i},(\boldsymbol{D} \times \boldsymbol{E}+\boldsymbol{E} \times \boldsymbol{D})^{i}\right]}{m_{p}^{4}}
$$

$\left.+i c_{X 15} g^{2} \frac{\left[\boldsymbol{E}^{i},(\boldsymbol{D} \times \boldsymbol{B}+\boldsymbol{B} \times \boldsymbol{D})^{i}\right]}{m_{p}^{4}}+c_{X 16} \mathrm{~g}^{2} \frac{\left[\boldsymbol{\sigma} \cdot \boldsymbol{B},\left\{\boldsymbol{D}^{i}, \boldsymbol{E}^{i}\right\}\right]}{m_{p}^{4}}+c_{X 17} g^{2} \frac{\left[\boldsymbol{B}^{i},\left\{\boldsymbol{D}^{i}, \boldsymbol{\sigma} \cdot \boldsymbol{E}\right\}\right]}{m_{p}^{4}}+c_{X 18} g^{2} \frac{\left[\boldsymbol{E}^{i},\left\{\boldsymbol{\sigma} \cdot \boldsymbol{D}, \boldsymbol{B}^{i}\right\}\right]}{m_{p}^{4}}\right\} \psi$

- 25 operators
- cXib start at $\mathcal{O}\left(\alpha_{s}\right)$

New Result: Dimension 9 HQET operators

- Using the general method: SI Dimension 9 HQET operators

New Result: Dimension 9 HQET operators

- Using the general method: SI Dimension 9 HQET operators

$$
\begin{aligned}
& \frac{1}{2 M_{H}}\langle H| \bar{h} i D^{\mu_{1}} i D^{\mu_{2}} i D^{\mu_{3}} i D^{\mu_{4}} i D^{\mu_{5}} i D^{\mu_{6}} h|H\rangle=a_{12,34}^{(9)} \Pi^{\mu_{1} \mu_{2}} \Pi^{\mu_{3} \mu_{4}} \Pi^{\mu_{5} \mu_{6}}+ \\
& +a_{12,35}^{(9)}\left(\Pi^{\mu_{1} \mu_{2}} \Pi^{\mu_{3} \mu_{5}} \Pi^{\mu_{4} \mu_{6}}+\Pi^{\mu_{1} \mu_{3}} \Pi^{\mu_{2} \mu_{4}} \Pi^{\mu_{5} \mu_{6}}\right)+a_{12,36}^{(9)}\left(\Pi^{\mu_{1} \mu_{2}} \Pi^{\mu_{3} \mu_{6}} \Pi^{\mu_{4} \mu_{5}}+\Pi^{\mu_{1} \mu_{4}} \Pi^{\mu_{2} \mu_{3}} \Pi^{\mu_{5} \mu_{6}}\right)+ \\
& +a_{13,25}^{(9)} \Pi^{\mu_{1} \mu_{3}} \Pi^{\mu_{2} \mu_{5}} \Pi^{\mu_{4} \mu_{6}}+a_{13,26}^{(9)}\left(\Pi^{\mu_{1} \mu_{3}} \Pi^{\mu_{2} \mu_{6}} \Pi^{\mu_{4} \mu_{5}}+\Pi^{\mu_{1} \mu_{5}} \Pi^{\mu_{2} \mu_{3}} \Pi^{\mu_{4} \mu_{6}}\right)+a_{14,25}^{(9)} \Pi^{\mu_{1} \mu_{4}} \Pi^{\mu_{2} \mu_{5}} \Pi^{\mu_{3} \mu_{6}}+ \\
& +a_{14,26}^{(9)}\left(\Pi^{\mu_{1} \mu_{4}} \Pi^{\mu_{2} \mu_{6}} \Pi^{\mu_{3} \mu_{5}}+\Pi^{\mu_{1} \mu_{5}} \Pi^{\mu_{2} \mu_{4}} \Pi^{\mu_{3} \mu_{6}}\right)+a_{15,26}^{(9)} \Pi^{\mu_{1} \mu_{5}} \Pi^{\mu_{2} \mu_{6}} \Pi^{\mu_{3} \mu_{4}}+a_{16,23}^{(9)} \Pi^{\mu_{1} \mu_{6}} \Pi^{\mu_{2} \mu_{3}} \Pi^{\mu_{4} \mu_{5}}+ \\
& +a_{16,24}^{(9)} \Pi^{\mu_{1} \mu_{6}} \Pi^{\mu_{2} \mu_{4}} \Pi^{\mu_{3} \mu_{5}}+a_{16,25}^{(9)} \Pi^{\mu_{1} \mu_{6}} \Pi^{\mu_{2} \mu_{5}} \Pi^{\mu_{3} \mu_{4}}+b_{12,36}^{(9)}\left(\Pi^{\mu_{1} \mu_{2}} \Pi^{\mu_{3} \mu_{6}} v^{\mu_{4}} v^{\mu_{5}}+\Pi^{\mu_{1} \mu_{4}} \Pi^{\mu_{5} \mu_{6}} v^{\mu_{2}} v^{\mu_{3}}\right)+ \\
& +b_{12,46}^{(9)}\left(\Pi^{\mu_{1} \mu_{2}} \Pi^{\mu_{4} \mu_{6}} v^{\mu_{3}} v^{\mu_{5}}+\Pi^{\mu_{1} \mu_{3}} \Pi^{\mu_{5} \mu_{6}} v^{\mu_{2}} v^{\mu_{4}}\right)+b_{12,56}^{(9)} \Pi^{\mu_{1} \mu_{2}} \Pi^{\mu_{5} \mu_{6}} v^{\mu_{3}} v^{\mu_{4}}+ \\
& +b_{13,26}^{(9)}\left(\Pi^{\mu_{1} \mu_{3}} \Pi^{\mu_{2} \mu_{6}} v^{\mu_{4}} v^{\mu_{5}}+\Pi^{\mu_{1} \mu_{5}} \Pi^{\mu_{4} \mu_{6}} v^{\mu_{2}} v^{\mu_{3}}\right)+b_{13,46}^{(9)} \Pi^{\mu_{1} \mu_{3}} \Pi^{\mu_{4} \mu_{6}} v^{\mu_{2}} v^{\mu_{5}}+ \\
& +b_{14,26}^{(9)}\left(\Pi^{\mu_{1} \mu_{4}} \Pi^{\mu_{2} \mu_{6}} v^{\mu_{3}} v^{\mu_{5}}+\Pi^{\mu_{1} \mu_{5}} \Pi^{\mu_{3} \mu_{6}} v^{\mu_{2}} v^{\mu_{4}}\right)+b_{14,36}^{(9)} \Pi^{\mu_{1} \mu_{4}} \Pi^{\mu_{3} \mu_{6}} v^{\mu_{2}} v^{\mu_{5}}+b_{15,26}^{(9)} \Pi^{\mu_{1} \mu_{5}} \Pi^{\mu_{2} \mu_{6}} v^{\mu_{3}} v^{\mu_{4}}+ \\
& +b_{16,23}^{(9)}\left(\Pi^{\mu_{1} \mu_{6}} \Pi^{\mu_{2} \mu_{3}} v^{\mu_{4}} v^{\mu_{5}}+\Pi^{\mu_{1} \mu_{6}} \Pi^{\mu_{4} \mu_{5}} v^{\mu_{2}} v^{\mu_{3}}\right)+b_{16,24}^{(9)}\left(\Pi^{\mu_{1} \mu_{6}} \Pi^{\mu_{2} \mu_{4}} v^{\mu_{3}} v^{\mu_{5}}+\Pi^{\mu_{1} \mu_{6}} \Pi^{\mu_{3} \mu_{5}} v^{\mu_{2}} v^{\mu_{4}}\right)+ \\
& +b_{16,25}^{(9)} \Pi^{\mu_{1} \mu_{6}} \Pi^{\mu_{2} \mu_{5}} v^{\mu_{3}} v^{\mu_{4}}+b_{16,34}^{(9)} \Pi^{\mu_{1} \mu_{6}} \Pi^{\mu_{3} \mu_{4}} v^{\mu_{2}} v^{\mu_{5}}+c^{(9)} \Pi^{\mu_{1} \mu_{6}} v^{\mu_{2}} v^{\mu_{3}} v^{\mu_{4}} v^{\mu_{5}}
\end{aligned}
$$

New Result: Dimension 9 HQET operators

- Using the general method: SI Dimension 9 HQET operators
$\left.\frac{1}{2 M_{H}}\langle H| \bar{h} D^{\mu_{1}} D^{\mu_{2}} i^{\mu_{3}} D^{\mu_{4}} D^{\mu_{5}} D^{\mu_{6}}| | H\right\rangle=a_{12,34}^{(9)} \Pi^{\mu_{1} \mu_{2}} \Pi^{\mu_{3} \mu_{4}} \Pi^{\mu_{5} \mu_{6}}+$
$+a_{12,35}^{(9)}\left(\Pi^{\mu_{1} \mu_{2}} \Pi^{\mu_{3} \mu_{5}} \Pi^{\mu_{4} \mu_{6}}+\Pi^{\mu_{1} \mu_{3}} \Pi^{\mu_{2} \mu_{4}} \Pi^{\mu_{5} \mu_{6}}\right)+a_{12,36}^{(9)}\left(\Pi^{\mu_{1} \mu_{2}} \Pi^{\mu_{3} \mu_{6}} \Pi^{\mu_{4} \mu_{5}}+\Pi^{\mu_{1} \mu_{4}} \Pi^{\mu_{2} \mu_{3}} \Pi^{\mu_{5} \mu_{6}}\right)+$
$+a_{13,25}^{(9)} \Pi^{\mu_{1} \mu_{3}} \Pi^{\mu_{2} \mu_{5}} \Pi^{\mu_{4} \mu_{6}}+\alpha_{13,26}^{(9)}\left(\Pi^{\mu_{1} \mu_{3}} \Pi^{\mu_{2} \mu_{6}} \Pi^{\mu_{4} \mu_{5}}+\Pi^{\mu_{1} \mu_{5}} \Pi^{\mu_{2} \mu_{3}} \Pi^{\mu_{4} \mu_{6}}\right)+a_{14,25}^{(9)} \Pi^{\mu_{1} \mu_{4} \Pi^{\mu_{2} \mu_{5}} \Pi^{\mu_{3} \mu_{6}}+}$
$+a_{14,26}^{(9)}\left(\Pi^{\mu_{1} \mu_{4}} \Pi^{\mu_{2} \mu_{6}} \Pi^{\mu_{3} \mu_{5}}+\Pi^{\mu_{1} \mu_{5}} \Pi^{\mu_{2} \mu_{4}} \Pi^{\mu_{3} \mu_{6}}\right)+a_{15,26}^{(9)} \Pi^{\mu_{1} \mu_{5}} \Pi^{\mu_{2} \mu_{6}} \Pi^{\mu_{3} \mu_{4}}+a_{16,23}^{(9)} \square^{\mu_{1} \mu_{6}} \Pi^{\mu_{2} \mu_{3}} \Pi^{\mu_{4} \mu_{5}}+$
$+a_{10,24}^{(9)} \Pi^{\mu_{1} \mu_{6}} \Pi^{\mu_{2} \mu_{4}} \Pi^{\mu_{3} \mu_{5}}+a_{16,25}^{(9)} \Pi^{\mu_{1} \mu_{6}} \Pi^{\mu_{2} \mu_{5}} \Pi^{\mu_{3} \mu_{4}}+b_{12,36}^{(9)}\left(\Pi^{\mu_{1} \mu_{2}} \Pi^{\mu_{3} \mu_{6}} \nu^{\mu_{4}} \nu^{\mu_{5}}+\Pi^{\mu_{1} \mu_{4}} \Pi^{\mu_{5} \mu_{6}} \nu^{\mu_{2}} \nu^{\mu_{3}}\right)+$
$+b_{12,46}^{(9)}\left(\Pi^{\mu_{1} \mu_{2}} \Pi^{\mu_{4} \mu_{6}} \nu^{\mu_{3}} \nu^{\mu_{5}}+\Pi^{\mu_{1} \mu_{3}} \Pi^{\mu_{5} \mu_{6}} \nu^{\mu_{2}} \nu^{\mu_{4}}\right)+b_{12,56}^{(9)} \Pi^{\mu_{1} \mu_{2}} \Pi^{\mu_{5} \mu_{6}} \nu^{\mu_{3}} \nu^{\mu_{4}}+$
$+b_{13,26}^{(9)}\left(\Pi^{\mu_{1} \mu_{3}} \Pi^{\mu_{2} \mu_{6}} v^{\mu_{4}} v^{\mu_{5}}+\Pi^{\mu_{1} \mu_{5}} \Pi^{\mu_{4} \mu_{6}} v^{\mu_{2}} v^{\mu_{3}}\right)+b_{13,46}^{(9)} \Pi^{\mu_{1} \mu_{3}} \Pi^{\mu_{4} \mu_{6}} v^{\mu_{2}} v^{\mu_{5}}+$
$+b_{14,26}^{(9)}\left(\Pi^{\mu_{1} \mu_{4}} \Pi^{\mu_{2} \mu_{6}} v^{\mu_{3}} v^{\mu_{5}}+\square^{\mu_{1} \mu_{5}} \Pi^{\mu_{3} \mu_{6}} v^{\mu_{2}} \imath^{\mu_{4}}\right)+b_{14,36}^{(9)} \Pi^{\mu_{1} \mu_{4}} \Pi^{\mu_{3} \mu_{6}} v^{\mu_{2}} \nu^{\mu_{5}}+b_{15,26}^{(9)} \square^{\mu_{1} \mu_{5}} \Pi^{\mu_{2} \mu_{6} v^{\mu_{3}} v^{\mu_{4}}}+$
$+b_{16,23}^{(9)}\left(\Pi^{\mu_{1} \mu_{6}} \Pi^{\mu_{2} \mu_{3}} v^{\mu_{4}} \nu^{\mu_{5}}+\Pi^{\mu_{1} \mu_{6}} \Pi^{\mu_{4} \mu_{5}} \nu^{\mu_{2}} \imath^{\mu_{3}}\right)+b_{16,24}^{(9)}\left(\Pi^{\mu_{1} \mu_{6}} \Pi^{\mu_{2} \mu_{4}} \nu^{\mu_{3}} \nu^{\mu_{5}}+\Pi^{\mu_{1} \mu_{6}} \Pi^{\mu_{3} \mu_{5}} \nu^{\mu_{2}} \nu^{\mu_{4}}\right)+$
$+b_{16,25}^{(9)} \Pi^{\mu_{1} \mu_{6}} \Pi^{\mu_{2} \mu_{5}} \nu^{\mu_{3}} \nu^{\mu_{4}}+b_{16,34}^{(9)} \Pi^{\mu_{1} \mu_{6}} \Pi^{\mu_{3} \mu_{4}} \nu^{\mu_{2}} \nu^{\mu_{5}}+c^{(9)} \Pi^{\mu_{1} \mu_{6}} \nu^{\mu_{2}} \imath^{\mu_{3}} \nu^{\mu_{4}} \nu^{\mu_{5}}$
- There are also multiple color structures

Arise from combining pure color octets:
$\left[i D^{\mu_{i}}, i D^{\mu_{j}}\right], \quad\left[i D^{\mu_{i}},\left[i D^{\mu_{j}}, i D^{\mu_{k}}\right]\right], \quad\left[i D^{\mu_{i}},\left[i D^{\mu_{j}},\left[i D^{\mu_{k}}, i D^{\mu_{i}}\right]\right]\right]$
For phenomenological applications at the current level of precision only $T^{a} T^{b}$ is needed

Results: Relating different bases

- The method allows to easily relate different bases
- Dimension 7: Manohar '97 to Mannel-Turczyk-Uraltsev '10
- Dimension 8: Mannel-Turczyk-Uraltsev '10 to Hill, Lee, GP, Solon '12 (See also [Heinonen, Mannel, arXiv:1609.01334])

Results: Relating different bases

- The method allows to easily relate different bases
- Dimension 7: Manohar '97 to Mannel-Turczyk-Uraltsev '10
- Dimension 8: Mannel-Turczyk-Uraltsev '10 to Hill, Lee, GP, Solon '12 (See also [Heinonen, Mannel, arXiv:1609.01334])
- Useful since even simple quantities can depend on multiple operators e.g., B meson PDF, $S(\omega)$:

$$
2 M_{B} \int d \omega \omega^{k} S(\omega)=n_{\mu_{1}} \ldots n_{\mu_{k}}\langle\bar{B}(v)| \bar{h} i D^{\mu_{1}} \ldots i D^{\mu_{k}} h|\bar{B}(v)\rangle
$$

Its fifth moment

$$
\int d \omega \omega^{5} S(\omega)=\left(-8 r_{1}+2 r_{2}+2 r_{3}+2 r_{4}+r_{5}+r_{6}+r_{7}\right) / 15
$$

Comparison to Hilbert Series method

- Kobach and Pal have used the Hilbert series method to find the NRQED and NRQCD/HQET operators with $\operatorname{dim} \leq 8$
[Kobach, Pal PLB 772225 (2017)]

Comparison to Hilbert Series method

- Kobach and Pal have used the Hilbert series method to find the NRQED and NRQCD/HQET operators with $\operatorname{dim} \leq 8$ [Kobach, Pal PLB 772225 (2017)]
- "While the Hilbert series can count the number of operators that are invariant under the given symmetries, it does not say how the indices within each operator are contracted. In general, this needs to be done by hand." [Kobach, Pal PLB 772225 (2017)]

Comparison to Hilbert Series method

- Kobach and Pal have used the Hilbert series method to find the NRQED and NRQCD/HQET operators with $\operatorname{dim} \leq 8$ [Kobach, Pal PLB 772225 (2017)]
- "While the Hilbert series can count the number of operators that are invariant under the given symmetries, it does not say how the indices within each operator are contracted. In general, this needs to be done by hand." [Kobach, Pal PLB 772225 (2017)]
- Imposing T invariance is an issue: "Unlike NRQED, we have not found an automated way to implement invariance under time reversal in NRQCD/HQET" [Kobach, Pal PLB 772225 (2017)]

Comparison to Hilbert Series method

- Kobach and Pal have used the Hilbert series method to find the NRQED and NRQCD/HQET operators with $\operatorname{dim} \leq 8$ [Kobach, Pal PLB 772225 (2017)]
- "While the Hilbert series can count the number of operators that are invariant under the given symmetries, it does not say how the indices within each operator are contracted. In general, this needs to be done by hand." [Kobach, Pal PLB 772225 (2017)]
- Imposing T invariance is an issue: "Unlike NRQED, we have not found an automated way to implement invariance under time reversal in NRQCD/HQET" [Kobach, Pal PLB 772225 (2017)]
- Still, a useful check

Conclusions and Outlook

Conclusions

- Effective field theories are a very useful tool in contemporary physics

Conclusions

- Effective field theories are a very useful tool in contemporary physics
- The question of higher dimensional NRQED/HQET/NRQCD operators has roots in the early days of quantum mechanics

Conclusions

- Effective field theories are a very useful tool in contemporary physics
- The question of higher dimensional NRQED/HQET/NRQCD operators has roots in the early days of quantum mechanics
- The first discussion of number and identity of such operators was in [Mannel PRD 50, 428 (1994)]

Conclusions

- Effective field theories are a very useful tool in contemporary physics
- The question of higher dimensional NRQED/HQET/NRQCD operators has roots in the early days of quantum mechanics
- The first discussion of number and identity of such operators was in [Mannel PRD 50, 428 (1994)]
- In 2017 the problem was solved in
- [Gunawardna, GP JHEP 1707137 (2017)]
- [Kobach, Pal PLB 772225 (2017)]

Conclusions

- We presented a general method to construct HQET operators: using tensor decomposition of HQET matrix elements

Conclusions

- We presented a general method to construct HQET operators: using tensor decomposition of HQET matrix elements
- Subject to constraints from
- Orthogonality: $v_{\mu_{1}}=v_{\mu_{n}}=v_{\lambda}=0$
- P, T, and Hermitian conjugation:

SI (SD) matrix elements are sym. (anti-sym.) under inversion

- Four dimensions:
not all tensors are linearly independent

Conclusions

- We presented a general method to construct HQET operators: using tensor decomposition of HQET matrix elements
- Subject to constraints from
- Orthogonality: $v_{\mu_{1}}=v_{\mu_{n}}=v_{\lambda}=0$
- P, T, and Hermitian conjugation:

SI (SD) matrix elements are sym. (anti-sym.) under inversion

- Four dimensions:
not all tensors are linearly independent
- Checking possible multiple color structures must be done "by hand"

Conclusions

- We presented several applications:

Conclusions

- We presented several applications:
- Easily relate different bases
- Dimension 7: Manohar '97 to Mannel-Turczyk-Uraltsev '10
- Dimension 8: Mannel-Turczyk-Uraltsev '10 to Hill, Lee, GP, Solon '12 (See also [Heinonen, Mannel, arXiv:1609.01334])

Conclusions

- We presented several applications:
- Easily relate different bases
- Dimension 7: Manohar '97 to Mannel-Turczyk-Uraltsev '10
- Dimension 8: Mannel-Turczyk-Uraltsev '10 to Hill, Lee, GP, Solon '12 (See also [Heinonen, Mannel, arXiv:1609.01334])
- New! SI dimension 9 HQET operators

Conclusions

- We presented several applications:
- Easily relate different bases
- Dimension 7: Manohar '97 to Mannel-Turczyk-Uraltsev '10
- Dimension 8: Mannel-Turczyk-Uraltsev '10 to Hill, Lee, GP, Solon '12 (See also [Heinonen, Mannel, arXiv:1609.01334])
- New! SI dimension 9 HQET operators
- New! The dimension 8 NRQCD Lagrangian

Outlook

- For NRQED/HQET/NRQCD we have both
- An explicit construction [Gunawardna, GP JHEP 1707137 (2017)]
- Enumration via a Hilbert series [Kobach, Pal PLB 772225 (2017)]

Outlook

- For NRQED/HQET/NRQCD we have both
- An explicit construction [Gunawardna, GP JHEP 1707137 (2017)]
- Enumration via a Hilbert series [Kobach, Pal PLB 772225 (2017)]
- For SMEFT we only have the enumeration via a Hilbert series "Exactly how derivatives act and how Lorentz and gauge indices are contracted is information beyond what the Hilbert series can provide." [Henning, Lu, Melia, Murayama, JHEP 1708, 016 (2017)]

Outlook

- For NRQED/HQET/NRQCD we have both
- An explicit construction [Gunawardna, GP JHEP 1707137 (2017)]
- Enumration via a Hilbert series [Kobach, Pal PLB 772225 (2017)]
- For SMEFT we only have the enumeration via a Hilbert series "Exactly how derivatives act and how Lorentz and gauge indices are contracted is information beyond what the Hilbert series can provide." [Henning, Lu, Melia, Murayama, JHEP 1708, 016 (2017)]
- Is an explicit construction possible for SMEFT?

Outlook

- For NRQED/HQET/NRQCD we have both
- An explicit construction [Gunawardna, GP JHEP 1707137 (2017)]
- Enumration via a Hilbert series [Kobach, Pal PLB 772225 (2017)]
- For SMEFT we only have the enumeration via a Hilbert series "Exactly how derivatives act and how Lorentz and gauge indices are contracted is information beyond what the Hilbert series can provide." [Henning, Lu, Melia, Murayama, JHEP 1708, 016 (2017)]
- Is an explicit construction possible for SMEFT?
- Regardless, in the last few years we have learned that the structure of effective field theories is simpler than we thought

Outlook

- For NRQED/HQET/NRQCD we have both
- An explicit construction [Gunawardna, GP JHEP 1707137 (2017)]
- Enumration via a Hilbert series [Kobach, Pal PLB 772225 (2017)]
- For SMEFT we only have the enumeration via a Hilbert series "Exactly how derivatives act and how Lorentz and gauge indices are contracted is information beyond what the Hilbert series can provide." [Henning, Lu, Melia, Murayama, JHEP 1708, 016 (2017)]
- Is an explicit construction possible for SMEFT?
- Regardless, in the last few years we have learned that the structure of effective field theories is simpler than we thought

Thank you!

Backup

Non perturbative Wilson Coefficients

- Matrix element of EM current between nucleon states give rise to two form factors $\left(q=p_{f}-p_{i}\right)$

$$
\left\langle N\left(p_{f}\right)\right| J^{\mu}\left|N\left(p_{i}\right)\right\rangle=\bar{u}\left(p_{f}\right)\left[\gamma^{\mu} F_{1}\left(q^{2}\right)+\frac{i \sigma^{\mu \nu}}{2 M} F_{2}\left(q^{2}\right) q_{\nu}\right] u\left(p_{i}\right)
$$

- Define $D_{t}=\frac{\partial}{\partial t}+i e Z A^{0}, \quad \boldsymbol{D}=\boldsymbol{\nabla}-i e Z \boldsymbol{A}$ NRQED Lagrangian up to order $1 / M^{2}$:
$\mathcal{L}=\psi^{\dagger}\left\{i D_{t}+\frac{\boldsymbol{D}^{2}}{2 M}+c_{F} e \frac{\boldsymbol{\sigma} \cdot \boldsymbol{B}}{2 M}+c_{D} e \frac{[\boldsymbol{\nabla} \cdot \boldsymbol{E}]}{8 M^{2}}+i c_{S} e \frac{\boldsymbol{\sigma} \cdot(\boldsymbol{D} \times \boldsymbol{E}-\boldsymbol{E} \times \boldsymbol{D})}{8 M^{2}}\right\} \psi+\cdots$
- Non perturbative matching
- Order $1 / M^{0}: Z=F_{1}(0)$
- Order 1/M: $\quad c_{F}=F_{1}(0)+F_{2}(0)$,
- Order $1 / M^{2}: c_{D}=F_{1}(0)+2 F_{2}(0)+8 M^{2} F_{1}^{\prime}(0), c_{S}=F_{1}(0)+2 F_{2}(0)$

Outlook: open questions

- Non-perturbative input is needed for physical applications, e.g.

Outlook: open questions

- Non-perturbative input is needed for physical applications, e.g.
- $\mathcal{L}_{\mathrm{HQET}}^{\operatorname{dim}=5} \ni c_{F} g \bar{h} \sigma_{\mu \nu} G^{\mu \nu} h / 4 M, \quad \mathcal{L}_{\mathrm{NRQED}}^{\operatorname{dim}=5} \ni c_{F} g \psi^{\dagger} \boldsymbol{\sigma} \cdot \boldsymbol{B} \psi / 2 M$

Outlook: open questions

- Non-perturbative input is needed for physical applications, e.g.
- $\mathcal{L}_{\mathrm{HQET}}^{\operatorname{dim}=5} \ni c_{F} g \bar{h} \sigma_{\mu \nu} G^{\mu \nu} h / 4 M, \quad \mathcal{L}_{\mathrm{NRQED}}^{\operatorname{dim}=5} \ni c_{F} g \psi^{\dagger} \boldsymbol{\sigma} \cdot \boldsymbol{B} \psi / 2 M$
- For inclusive B decays Perturbative Wilson coefficients, Non-perturbative matrix elements: $\left\langle\bar{h} \sigma_{\mu \nu} G^{\mu \nu} h\right\rangle$ related to $B-B^{*}$ mass difference

Outlook: open questions

- Non-perturbative input is needed for physical applications, e.g.
- $\mathcal{L}_{\mathrm{HQET}}^{\operatorname{dim}=5} \ni c_{F} g \bar{h} \sigma_{\mu \nu} G^{\mu \nu} h / 4 M, \quad \mathcal{L}_{\mathrm{NRQED}}^{\operatorname{dim}=5} \ni c_{F} g \psi^{\dagger} \boldsymbol{\sigma} \cdot \boldsymbol{B} \psi / 2 M$
- For inclusive B decays Perturbative Wilson coefficients, Non-perturbative matrix elements: $\left\langle\bar{h} \sigma_{\mu \nu} G^{\mu \nu} h\right\rangle$ related to $B-B^{*}$ mass difference
- For proton structure effects in spectroscopy Non-perturbative Wilson coefficients, Perturbative matrix elements: c_{F} related to proton magnetic moment

Outlook: open questions

- Non-perturbative input is needed for physical applications, e.g.
- $\mathcal{L}_{\mathrm{HQET}}^{\operatorname{dim}=5} \ni c_{F} g \bar{h} \sigma_{\mu \nu} G^{\mu \nu} h / 4 M, \quad \mathcal{L}_{\mathrm{NRQED}}^{\operatorname{dim}=5} \ni c_{F} g \psi^{\dagger} \boldsymbol{\sigma} \cdot \boldsymbol{B} \psi / 2 M$
- For inclusive B decays

Perturbative Wilson coefficients, Non-perturbative matrix elements: $\left\langle\bar{h} \sigma_{\mu \nu} G^{\mu \nu} h\right\rangle$ related to $B-B^{*}$ mass difference

- For proton structure effects in spectroscopy Non-perturbative Wilson coefficients, Perturbative matrix elements: c_{F} related to proton magnetic moment
- Some can be extracted from data, other require Lattice QCD What can we calculate in the next 10,20 , or even 100 years?

Outlook: open questions

- Non-perturbative input is needed for physical applications, e.g.
- $\mathcal{L}_{\mathrm{HQET}}^{\operatorname{dim}=5} \ni c_{F} g \bar{h} \sigma_{\mu \nu} G^{\mu \nu} h / 4 M, \quad \mathcal{L}_{\mathrm{NRQED}}^{\operatorname{dim}=5} \ni c_{F} g \psi^{\dagger} \boldsymbol{\sigma} \cdot \boldsymbol{B} \psi / 2 M$
- For inclusive B decays

Perturbative Wilson coefficients, Non-perturbative matrix elements:
$\left\langle\bar{h} \sigma_{\mu \nu} G^{\mu \nu} h\right\rangle$ related to $B-B^{*}$ mass difference

- For proton structure effects in spectroscopy Non-perturbative Wilson coefficients, Perturbative matrix elements: c_{F} related to proton magnetic moment
- Some can be extracted from data, other require Lattice QCD What can we calculate in the next 10,20 , or even 100 years?
- Convergence:
"..it has been argued that the OPE results in an asymptotic series with limitations paralleling those for the perturbative series."
[Mannel, Turczyk, Uraltsev JHEP 1011, 109 (2010)]

