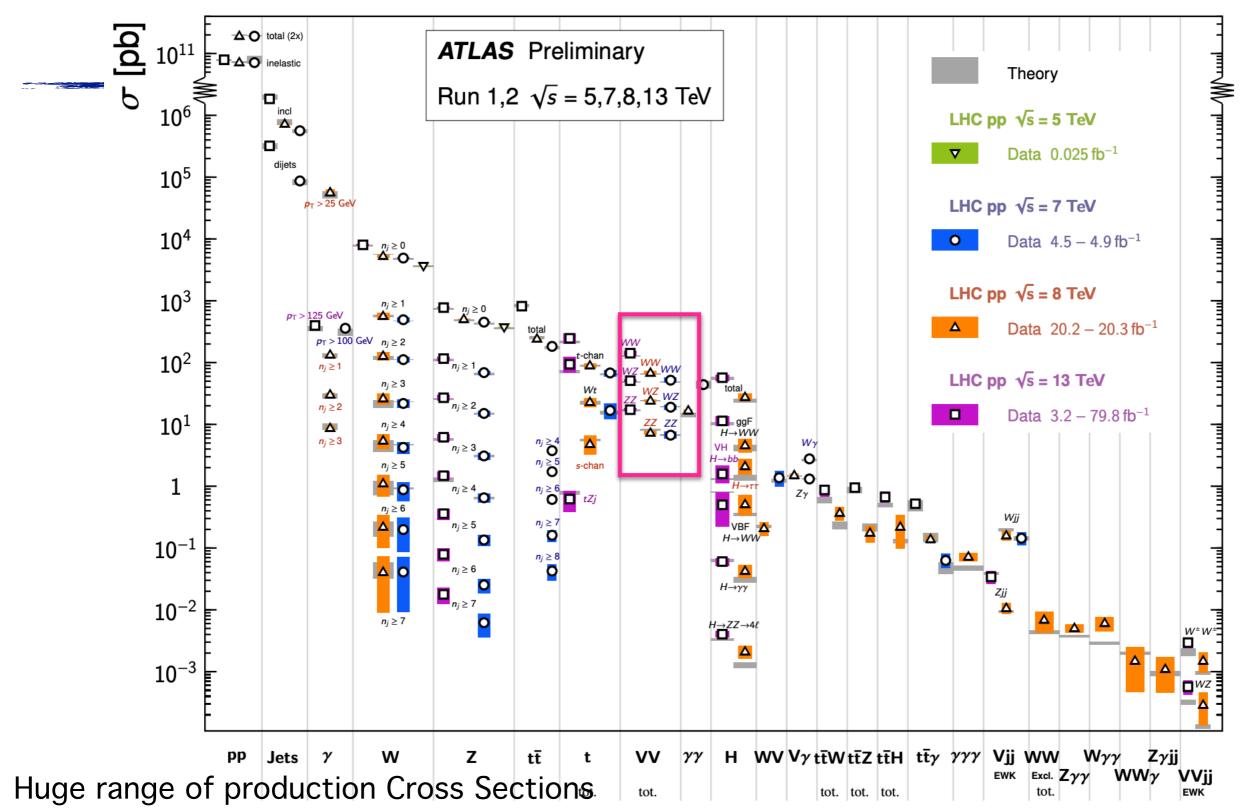
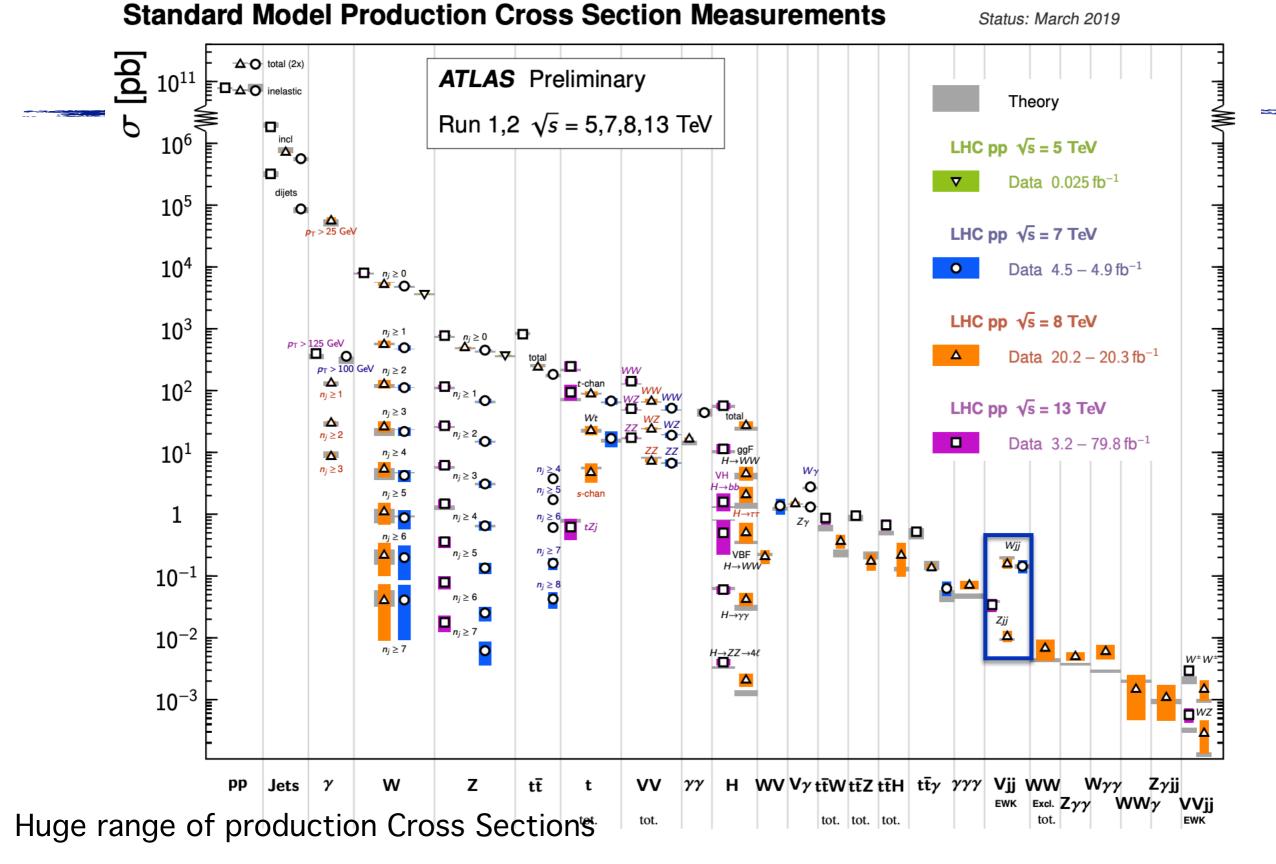


Why study diboson?


- One of the main goals of the LHC is to study the mechanism of Electroweak Spontaneous Symmetry Breaking.
- This process determines particle content of the Standard Model:

```
(massless vector) W_{\mu}^{a}, B_{\mu} (massive vector) W_{\mu}^{+}, W_{\mu}^{-}, Z_{\mu} (Higgs field) H
```

- The dynamics of massive bosons is a window into the physics of spontaneous symmetry breaking.
- New Physics associated to Electroweak Symmetry Breaking could alter the dynamics of the Higgs, W and Z bosons
- No direct observation of new physics at the LHC after Higgs boson discovery
 - Precision measurements are more important than ever
- Several extensions of the SM predict additional processes with multiple bosons in the final state
 - Any observed deviation of multiboson production cross sections from their SM predictions could be an early sign of new physics


2

Standard Model Production Cross Section Measurements

Status: March 2019

- 5-300 pb: Inclusive (QCD) diboson production:
 - Sensitive to higher order QCD (and QED) perturbative corrections
 - SM gauge structure: Triple Gauge Couplings (TGC)

- <0.01 pb: VBS/VBF (QED) diboson production
 - Sensitive to higher order QED perturbative corrections
 - The nature of EWSB SM gauge structure: Triple Gauge Couplings (TGC)

Standard Model Production Cross Section Measurements Status: March 2019 [dd] **△ O** total (2x) ATLAS Preliminary 10^{11} Theory Run 1,2 $\sqrt{s} = 5,7,8,13 \text{ TeV}$ 10⁶ LHC pp $\sqrt{s} = 5 \text{ TeV}$ **A**O Data 0.025 fb⁻¹ 10⁵ LHC pp $\sqrt{s} = 7 \text{ TeV}$ 10^{4} Data $4.5 - 4.9 \, \text{fb}^{-1}$ LHC pp $\sqrt{s} = 8 \text{ TeV}$ 10³ Data $20.2 - 20.3 \, \text{fb}^{-1}$ 10² LHC pp $\sqrt{s} = 13 \text{ TeV}$ Data $3.2 - 79.8 \, \text{fb}^{-1}$ 10^{1} " n_j ≥ 3 0 ⊼ಂ 10^{-1} 10^{-2} H→ZZ→4≀ 10^{-3}

• 10⁻³-10⁻¹pb: Inclusive (QCD) triboson production

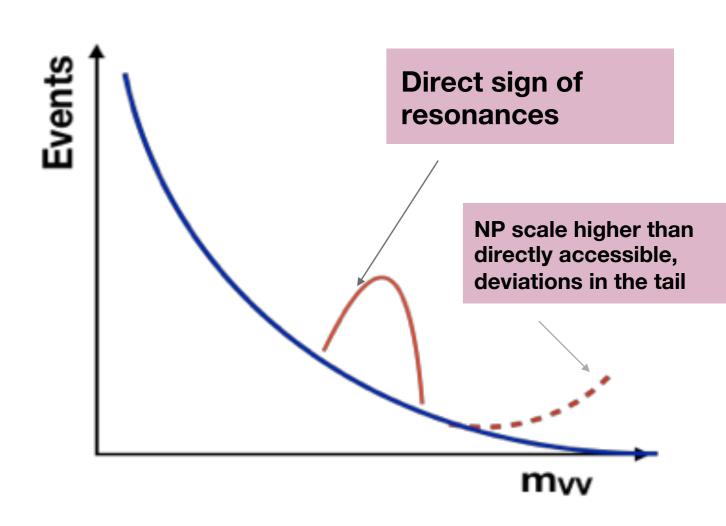
Jets

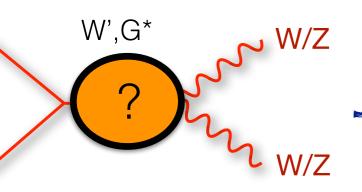
Huge range of production Cross Sections

• Sensitive to higher order QCD (and QED) perturbative corrections

tŧ

• SM gauge structure: Triple Gauge Couplings (TGC) and Quartic Gauge Couplings (QGC)

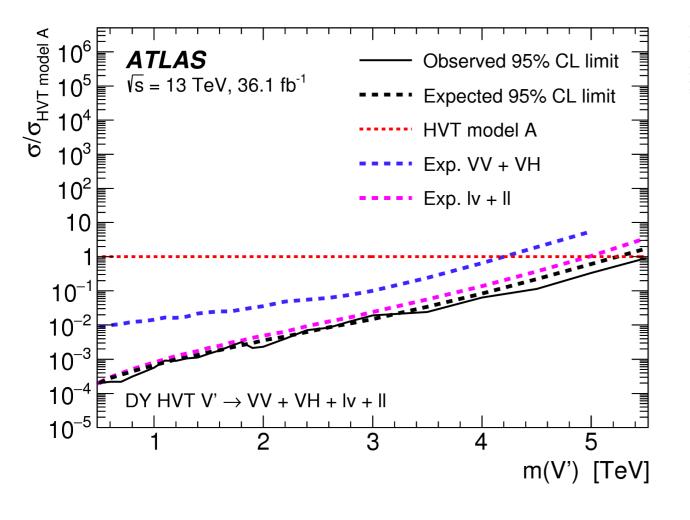

VV

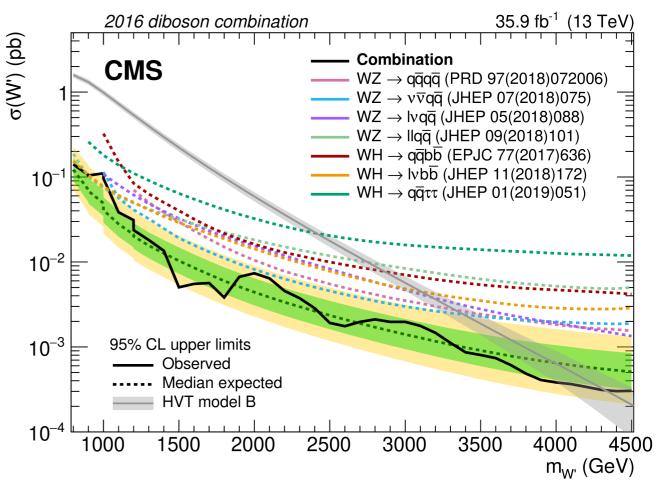

H WV $\nabla \gamma t\bar{t}W t\bar{t}Z t\bar{t}H t\bar{t}\gamma \gamma\gamma\gamma Vjj WW$

Excl. $\mathbf{Z}\gamma\gamma$

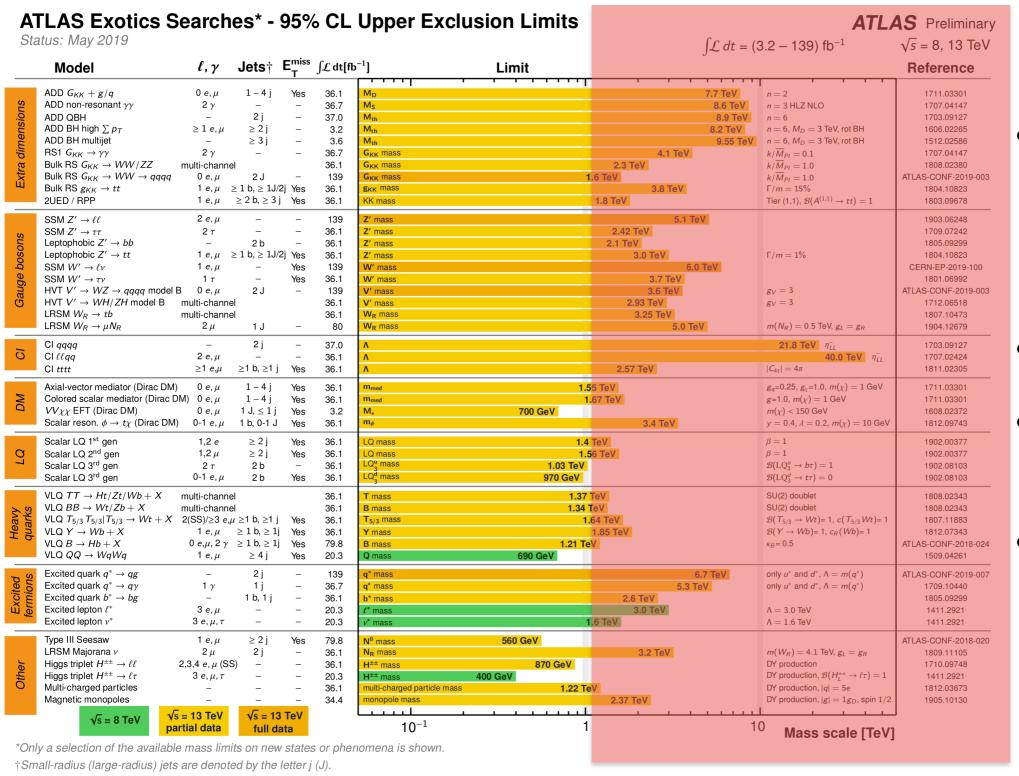
Two paths to BSM Physics

- Direct Searches
- Indirect searches

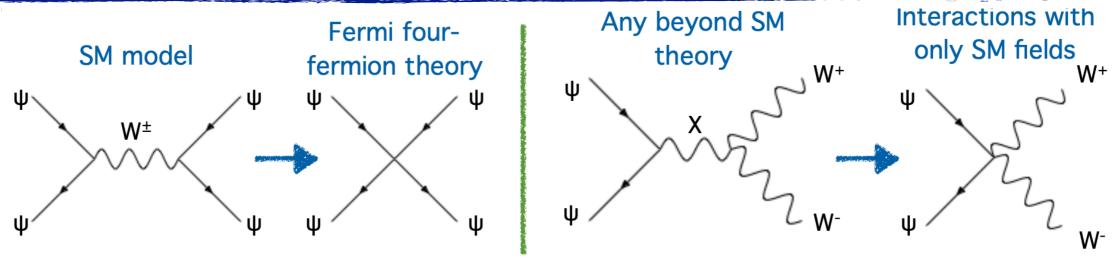




Direct Searches



- CMS and ATLAS have been searching for direct resonances in several final states:
 - Diboson, VV, VH, HH
 - Dilepton
 - •



Run2 and beyond: Resonance limits to local operators

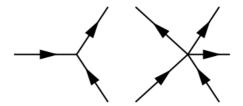
- Now that these bounds have been pushed away from v
- USE v/M < 1:
- bound many models at once
- bound multiple resonances at same time

The EFT approach to New Physics

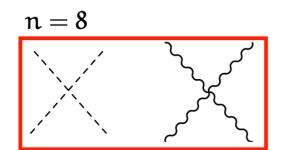
- In absence of new particles, the SM can be considered as an effective low-energy theory.
- Any Beyond Standard Model physics can be thought of as modifications of the interactions containing only SM fields
- Assuming that the SM describes physics well in the energy range up to the scale Λ and new physics occurs only above that scale, the physics phenomena can be described by an effective Lagrangian

Classify the effect of any beyond SM model using operators with D > 4

$$\mathcal{L} = \mathcal{L}_4^{\mathrm{SM}} + \frac{1}{\Lambda} \mathcal{L}_5 + \frac{1}{\Lambda^2} \mathcal{L}_6 + \dots$$
$$\frac{1}{\Lambda^2} \mathcal{L}_6 \to \left(\frac{E}{\Lambda}\right)^2 \qquad \frac{1}{\Lambda^4} \mathcal{L}_8 \to \left(\frac{E}{\Lambda}\right)^4$$

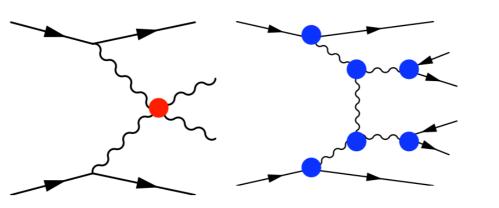

For large scales $E/\Lambda \ll 1$, only operators with lower mass dimension will matter.

$$\mathcal{L}^{ ext{eff}} = \mathcal{L}_{ ext{SM}} + \sum_i rac{c_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_j rac{c_j^{(8)}}{\Lambda^4} \mathcal{O}_j^{(8)} + \dots$$

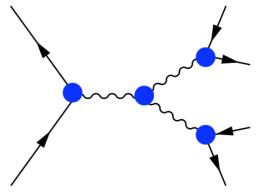

$$c_i^{(D)} \simeq \frac{(\text{coupling})^{n_i - 2}}{(\text{high mass scale})^{D - 4}}$$

EFT on VV, VVjj

$$\mathcal{L}^{ ext{eff}} = \mathcal{L}_{ ext{SM}} + \sum_i rac{c_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_j rac{c_j^{(8)}}{\Lambda^4} \mathcal{O}_j^{(8)} + \dots$$


n=5,7 : violate lepton number

n = 6


VVjj

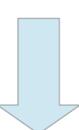
- Semi-lep
- Full-lep
- (Full-had)

VV

- Semi-lep
- Full-lep
- Full-had

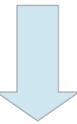
Two approaches for an EFT interpretation

Top-Down


(most common for individual channels)

Bottom-Up

(more convenient for combination)


Signal model

Simulate the signal, to predict a reconstruction-level observable.

Observable (reco)

Compare to data for an EFT interpretation.

Data

EFT interpretation.

EFT interpretation.

Signal model

Compare to particle-level signal model for an EFT interpretation.

Observable (truth)

Use data to measure a particle-level observable. Simulation for unfolding detector response.

Data

EFT models

- dim-6
 - SMEFT model
 - Adopted global EFT fit.
 - Simultaneous fit of top/SM/BSM analyses -
 - 50 operators.
 - (Development of dim-8 is on-going.)

- dim-8
 - Eboli model dim-8
 - Used by both CMS and ATLAS for aQGC interpretation for now.
 - 18 independent operators

Operators

Gauge	
Fields	

	$1: X^3$
Q_G	$f^{ABC}G_{\mu}^{A u}G_{ u}^{B ho}G_{ ho}^{C\mu}$
$Q_{\widetilde{G}}$	$f^{ABC}\widetilde{G}_{\mu}^{A u}G_{ u}^{B ho}G_{ ho}^{C\mu}$
Q_W	$\epsilon^{IJK}W_{\mu}^{I u}W_{ u}^{J ho}W_{ ho}^{K\mu}$
$Q_{\widetilde{W}}$	$\epsilon^{IJK}\widetilde{W}_{\mu}^{I u}W_{ u}^{J ho}W_{ ho}^{K\mu}$

2	$2:H^{6}$		$3: H^4D^2$	5:	$\psi^2 H^3 + \text{h.c.}$
Q_H	$(H^{\dagger}H)^3$	$Q_{H\square}$	$(H^\dagger H)\Box(H^\dagger H)$	Q_{eH}	$(H^\dagger H)(ar{l}_p e_r H)$
		Q_{HD}	$\left(H^\dagger D^\mu H\right)^* \left(H^\dagger D_\mu H\right)$	Q_{uH}	$(H^\dagger H)(ar q_p u_r \widetilde H)$
	Hig	ggs		Q_{dH}	$H (H^\dagger H)(ar q_p d_r H)$

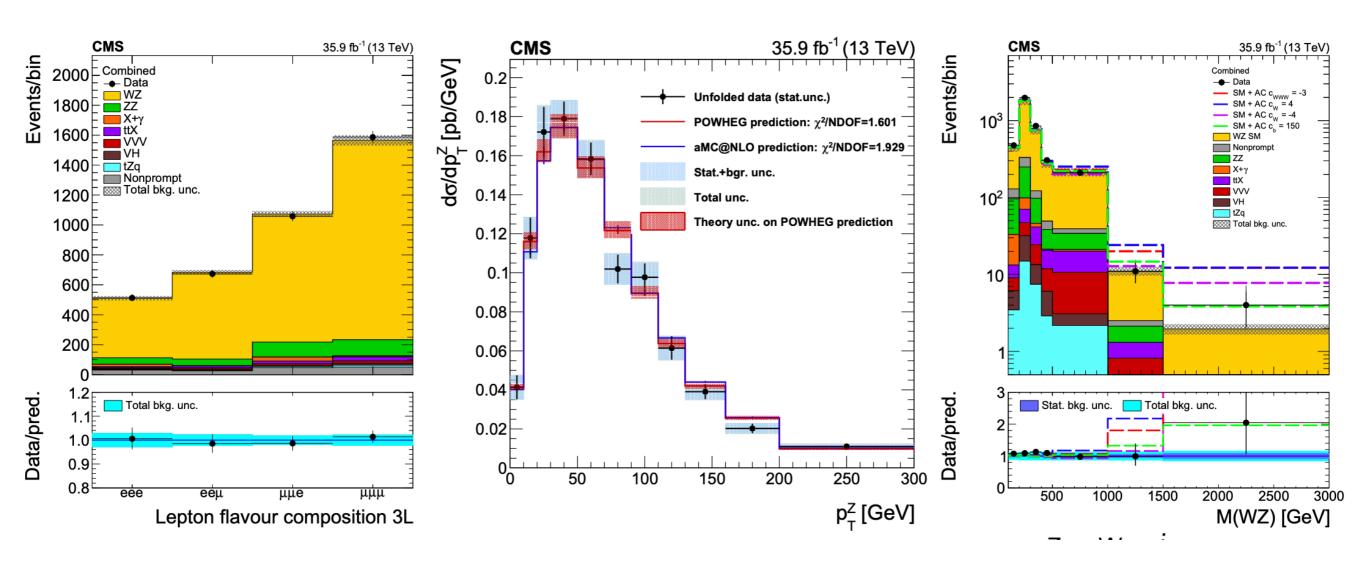
 $4:X^2H^2$

 $6:\psi^2XH+\text{h.c.}$

Fields

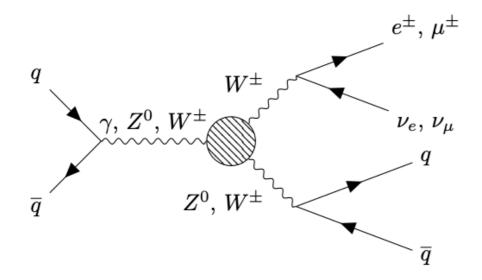
fermion

 $7:\psi^2H^2D$

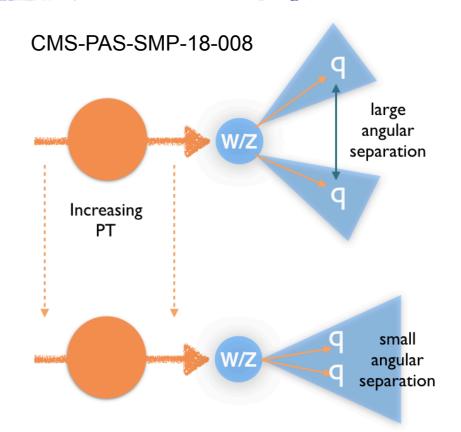

Gauge & Higgs **Fields**

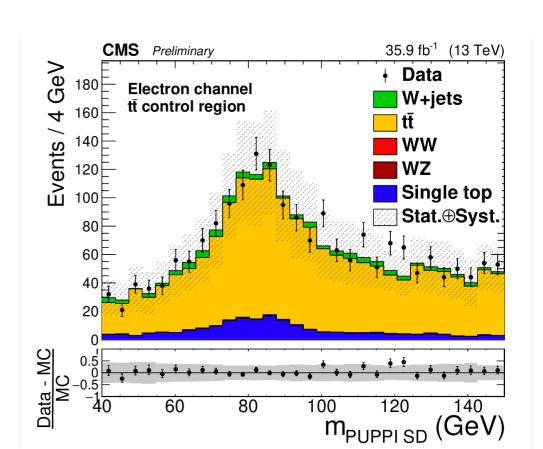
Q_{HG}	$H^\dagger H G^A_{\mu u} G^{A\mu u}$
$Q_{H\widetilde{G}}$	$H^\dagger H \widetilde{G}^A_{\mu u} G^{A\mu u}$
Q_{HW}	$H^\dagger H W^I_{\mu u} W^{I\mu u}$
$Q_{H\widetilde{W}}$	$H^\dagger H \widetilde{W}^I_{\mu u} W^{I\mu u}$
Q_{HB}	$H^\dagger H B_{\mu u} B^{\mu u}$
$Q_{H\widetilde{B}}$	$H^\dagger H \widetilde{B}_{\mu u} B^{\mu u}$
Q_{HWB}	$H^\dagger au^I H W^I_{\mu u} B^{\mu u}$
$Q_{H\widetilde{W}B}$	$H^\dagger au^I H \widetilde{W}^I_{\mu u} B^{\mu u}$

Q_{eW}	$(\bar{l}_p\sigma^{\mu u}e_r) au^IHW^I_{\mu u}$	$Q_{Hl}^{\left(1 ight) }$	$(H^\dagger i \overleftrightarrow{D}_\mu H) (\bar{l}_p \gamma^\mu l_r)$
Q_{eB}	$(ar{l}_p\sigma^{\mu u}e_r)HB_{\mu u}$	$Q_{Hl}^{(3)}$	$(H^\dagger i \overleftrightarrow{D}_\mu^I H) (\bar{l}_p au^I \gamma^\mu l_r)$
Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{H} G^A_{\mu\nu}$	Q_{He}	$(H^\dagger i \overleftrightarrow{D}_\mu H) (\bar{e}_p \gamma^\mu e_r)$
Q_{uW}	$(ar{q}_p \sigma^{\mu u} u_r) au^I \widetilde{H} W^I_{\mu u}$	$Q_{Hq}^{(1)}$	$(H^\dagger i \overleftrightarrow{D}_\mu H) (\bar{q}_p \gamma^\mu q_r)$
Q_{uB}	$(ar q_p \sigma^{\mu u} u_r) \widetilde H B_{\mu u}$	$Q_{Hq}^{(3)}$	$(H^\dagger i \overleftrightarrow{D}_{\mu}^I H) (\bar{q}_p au^I \gamma^\mu q_r)$
Q_{dG}	$(ar{q}_p \sigma^{\mu u} T^A d_r) H G^A_{\mu u}$	Q_{Hu}	$(H^\dagger i \overleftrightarrow{D}_\mu H) (\bar{u}_p \gamma^\mu u_r)$
Q_{dW}	$(ar q_p \sigma^{\mu u} d_r) au^I H W^I_{\mu u}$	Q_{Hd}	$(H^\dagger i \overleftrightarrow{D}_\mu H) (\bar{d}_p \gamma^\mu d_r)$
Q_{dB}	$(ar q_p \sigma^{\mu u} d_r) H B_{\mu u}$	$Q_{Hud} + \mathrm{h.c.}$	$i(\widetilde{H}^\dagger D_\mu H)(\bar{u}_p \gamma^\mu d_r)$
	<u> </u>	<u> </u>	

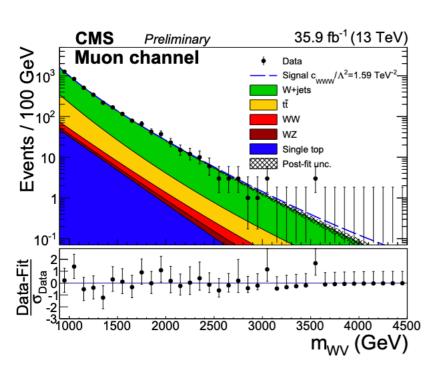

WZ @ 13 TeV (CMS)

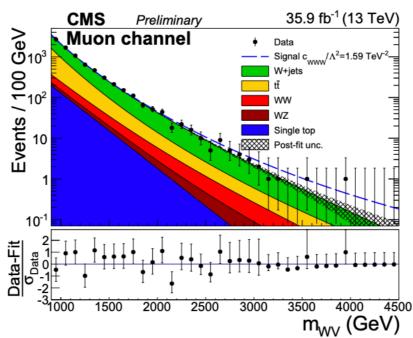
- 3 leptons plus missing ET
- Dominant background: misidentified leptons
- Dominant uncertainties:
 - Misidentified lepton

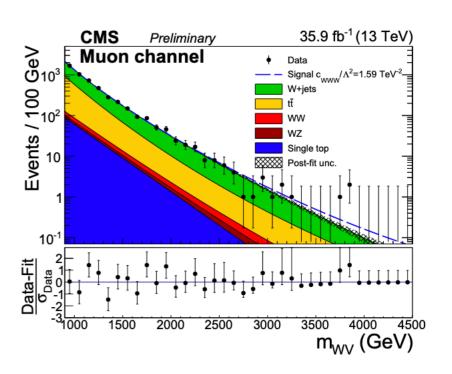

WW and WZ at 13 TeV (CMS)


- Identify leptonically decaying W boson while other W or Z boson decays to jets
- Select dijet events and boosted events such that the decay jets merge into a single jet

- AntiKt jet with 0.8 cone with pT > 200 GeV
- hadronic V candidate, mWV > 900 GeV
- Reject b jets ==> which reduces t tbar contribution
- apply PUPPI+SD on AK8, τ21 < 0.55, W+jets from sidebands


Maximizes sensitivity to aTGC ==> more events at high mass!





WW and WZ at 13 TeV (CMS)

mWV used to extract limits on EFT

Parametrization	aTGC	Expected limit	Observed limit	Run I limit
	$c_{\rm WWW}/\Lambda^2~({ m TeV}^{-2})$	[-1.44, 1.47]	[-1.58, 1.59]	[-2.7, 2.7]
EFT	$c_{\rm W}/\Lambda^2~({\rm TeV}^{-2})$	[-2.45, 2.08]	[-2.00, 2.65]	[-2.0, 5.7]
	$c_{\rm B}/\Lambda^2~({ m TeV^{-2}})$	[-8.38, 8.06]	[-8.78, 8.54]	[-14, 17]

Comparison of limits

Limits on anomalous couplings

$$\delta \mathcal{L}_{\mathrm{AC}} = \frac{c_{WWW}}{\Lambda^{2}} \mathrm{Tr} [W_{\mu\nu} W^{\nu\rho} W^{\mu}_{\rho}] + \frac{c_{W}}{\Lambda^{2}} (D_{\mu} H)^{\dagger} W^{\mu\nu} (D_{\nu} H) + \frac{c_{B}}{\Lambda^{2}} (D_{\mu} H)^{\dagger} B^{\mu\nu} (D_{\nu} H)$$

3-lepton analysis CMS SMP-18-002

- From M(WZ) up to 3 TeV
- No excess observed

S CMS

35.9 fb⁻¹ (13 TeV)

4

4

4

4

5

6

CMS

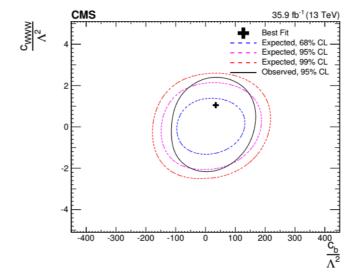
35.9 fb⁻¹ (13 TeV)

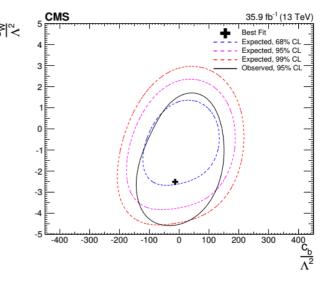
Expected, 68% CL

Expected, 95% CL

Observed, 95% CL

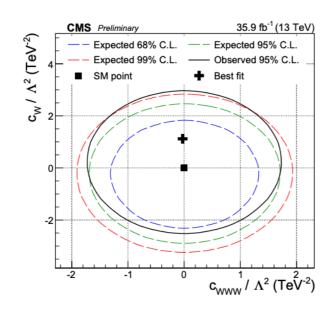
Observed, 95% CL

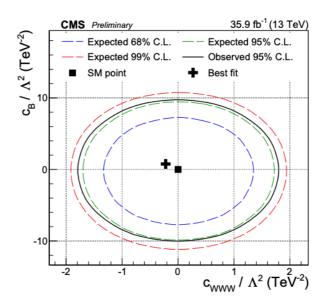

Observed, 95% CL

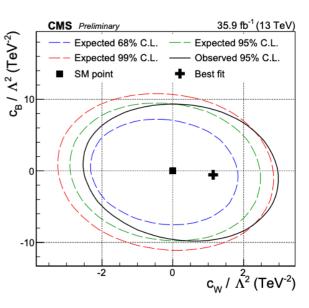

A

CWWW

A

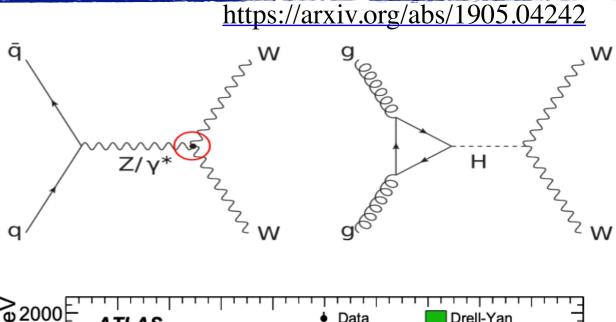

CWWW

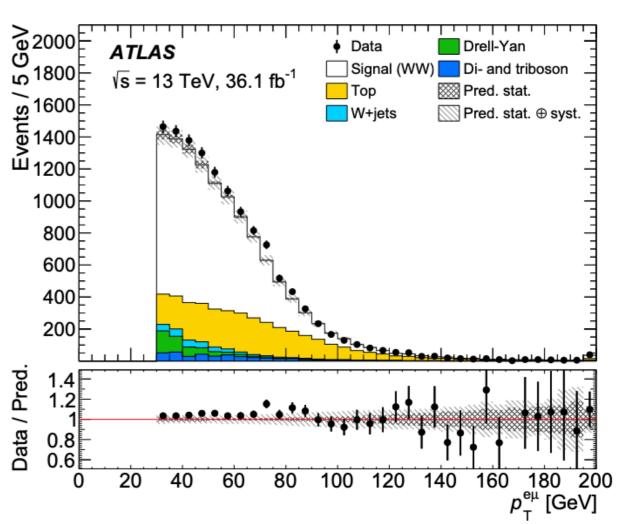




Boosted analysis CMS PAS-SMP-18-008

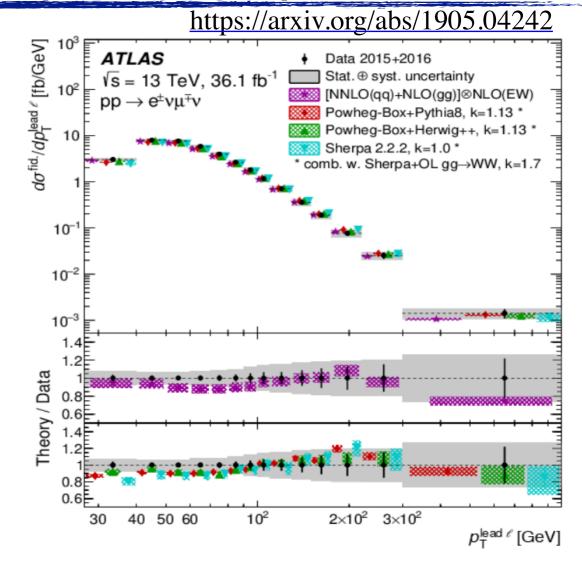
- From M(WV) up to 4.5 TeV
- Gained factor >10 in C_B limit from WW component



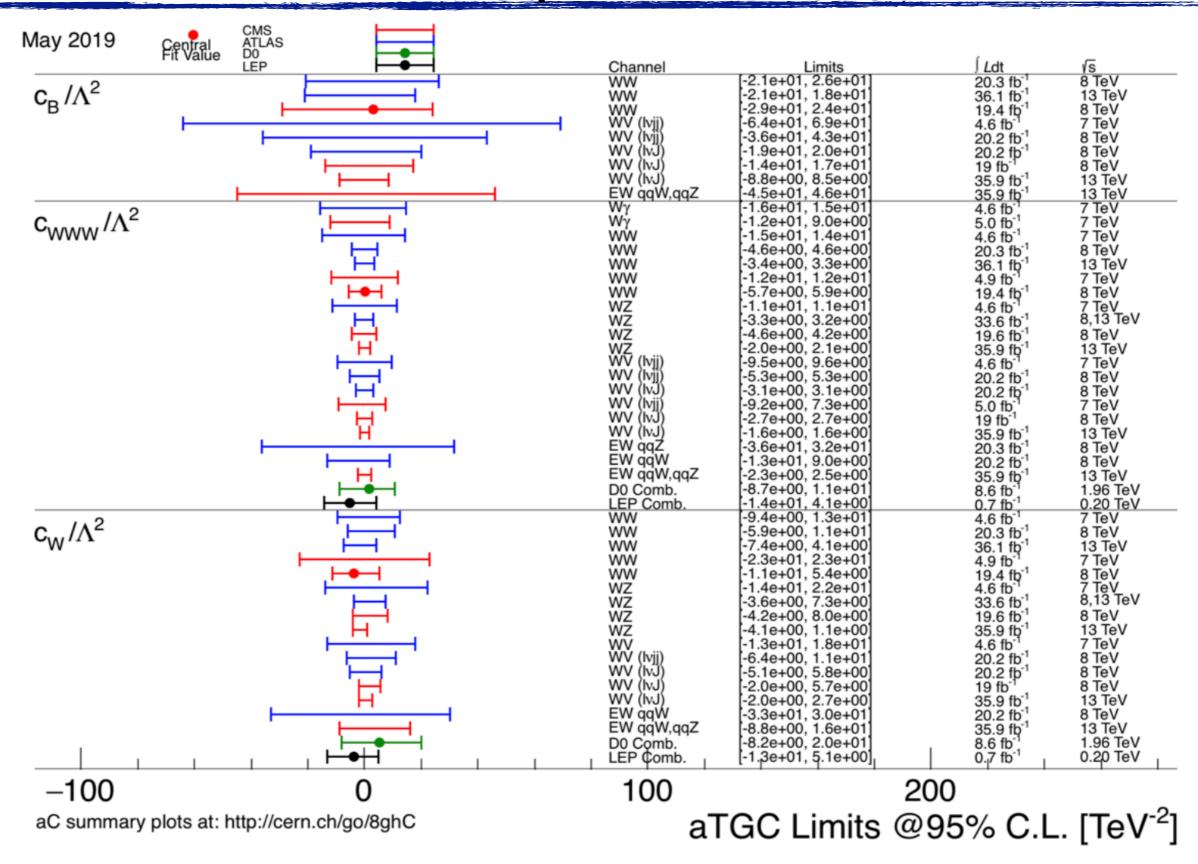


WW @13 TeV (ATLAS)

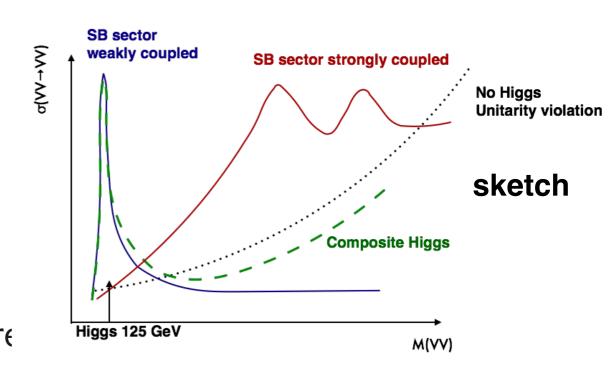
- WW (s-channel and H-induced)
- WW signal region (SR):
 - 1 eµ pair of isolated central leptons
 - No additional leptons ==> suppress VV
 - No jet with pT > 35 GeV & no central b-jets
 ==> reduce top
 - missing $p_T > 20 \text{ GeV } \& p^{e\mu}_T > 30 \text{ GeV}$ ==>reduce DY
 - $m_{e\mu} > 55$ GeV (orthogonal to HWW analysis)
- Backgrounds (% of SR):
 - tt⁻ and W t (~ 26%): from top-enriched
 Data CR
 - Non-prompt leptons, mostly W+jets (~
 3%): estimate relies on fake rate from Data
 - DY (~ 4%), Multi-bosons (~ 3%): using simulated samples

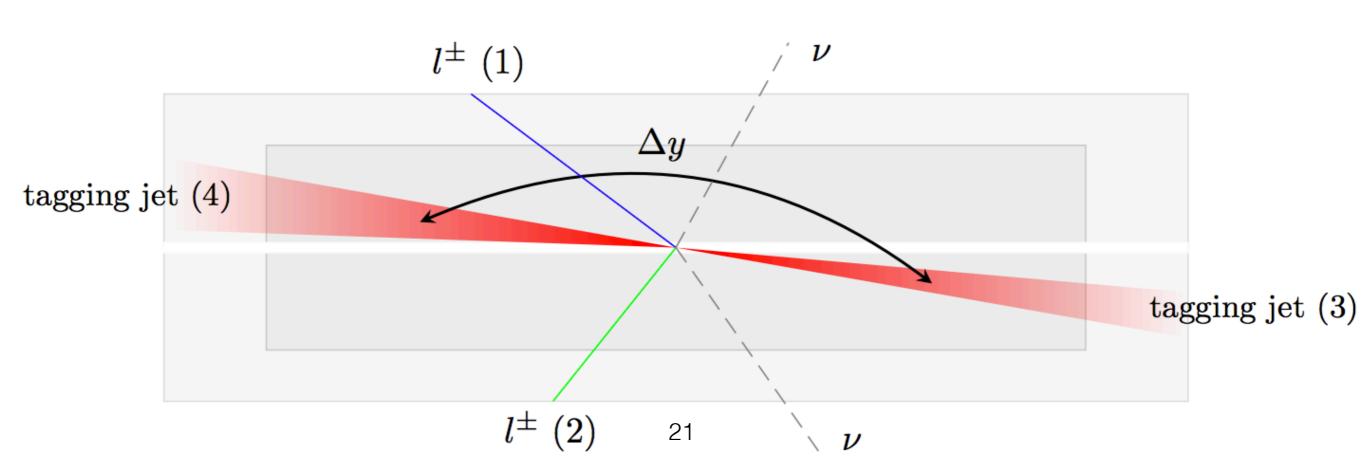


Fiducial cross section and unfolded cross section measurement


WW @13 TeV (ATLAS)

- Considering Effective Field Theory with five dimension-6 operators associated to the couplings: cWWW, cW, cB, cWWW, cW
- Unfolded p_T leading lepton distribution which is sensitive to anomalous couplings (especially last bin), and was used to constrain aTGC
- Signal including aTGC generated with madgraph5 amc@nlo+pythia8
- Competitive 95% CL intervals for aTGC are derived via a profile likelihood ratio test statistic, thanks to high center-ofmass energy


Parameter	Observed 95% CL [TeV ⁻²]	Expected 95% CL [TeV ⁻²]
c_{WWW}/Λ^2	[-3.4 , 3.3]	[-3.0, 3.0]
c_W/Λ^2	[-7.4 , 4.1]	[-6.4, 5.1]
c_B/Λ^2	[-21, 18]	[-18, 17]
$c_{\tilde{W}WW}/\Lambda^2$	[-1.6, 1.6]	[-1.5, 1.5]
$c_{\tilde{W}}/\Lambda^2$	[-76, 76]	[-91,91]


Comparison

EWK production: Vector Boson Scattering

- VV+2jets production dominated by $O(\alpha s2)$ QCD processes
- V_LV_L scattering linked to the mechanism responsible for the EWSB
- Typical signature: two high pT jets in the forward-backward region with large rapidity separation and low hadronic activity elsewhere

Operators (Eboli model)

Higgs Fields

$$\mathcal{L}_{S,0} = \left[(D_{\mu}\Phi)^{\dagger} D_{\nu}\Phi \right] \times \left[(D^{\mu}\Phi)^{\dagger} D^{\nu}\Phi \right]$$

$$\mathcal{L}_{S,1} = \left[(D_{\mu} \Phi)^{\dagger} D^{\mu} \Phi \right] \times \left[(D_{\nu} \Phi)^{\dagger} D^{\nu} \Phi \right]$$

Gauge & Higgs Fields

$$\mathcal{L}_{M,0} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right] \\
\mathcal{L}_{M,1} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right] \\
\mathcal{L}_{M,2} = \left[B_{\mu\nu} B^{\mu\nu} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right] \\
\mathcal{L}_{M,3} = \left[B_{\mu\nu} B^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right] \\
\mathcal{L}_{M,4} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} D^{\mu} \Phi \right] \times B^{\beta\nu} \\
\mathcal{L}_{M,5} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} D^{\nu} \Phi \right] \times B^{\beta\mu} \\
\mathcal{L}_{M,6} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\nu} D^{\mu} \Phi \right] \\
\mathcal{L}_{M,7} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\nu} \Phi \right] \\
\mathcal{L}_{M,7} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\nu} \Phi \right]$$

Gauge Fields

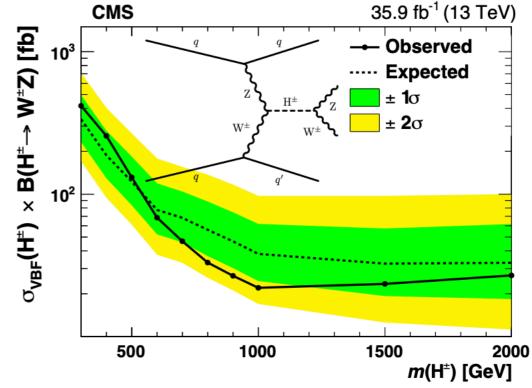
$$\mathcal{L}_{T,0} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times \operatorname{Tr} \left[\hat{W}_{\alpha\beta} \hat{W}^{\alpha\beta} \right]$$

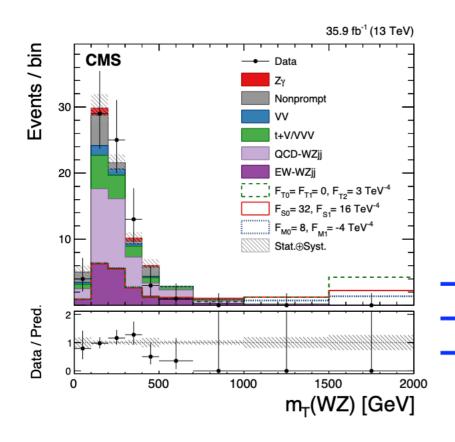
$$\mathcal{L}_{T,1} = \operatorname{Tr} \left[\hat{W}_{\alpha\nu} \hat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\hat{W}_{\mu\beta} \hat{W}^{\alpha\nu} \right]$$

$$\mathcal{L}_{T,2} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\hat{W}_{\beta\nu} \hat{W}^{\nu\alpha} \right]$$

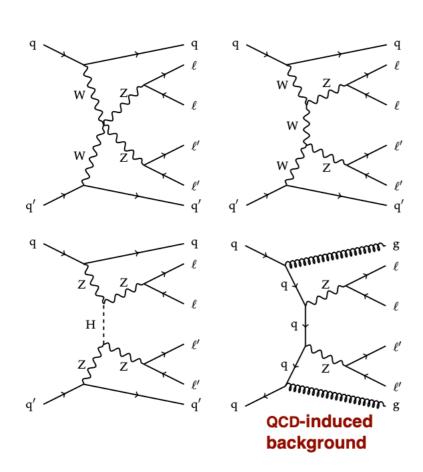
$$\mathcal{L}_{T,5} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times B_{\alpha\beta} B^{\alpha\beta}$$

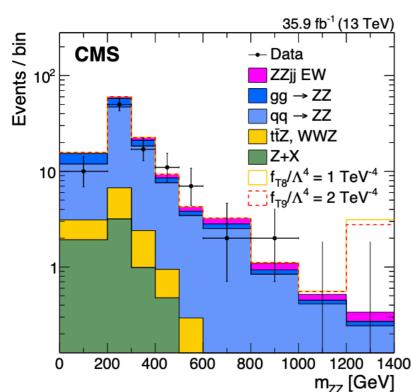
$$\mathcal{L}_{T,6} = \operatorname{Tr} \left[\hat{W}_{\alpha\nu} \hat{W}^{\mu\beta} \right] \times B_{\mu\beta} B^{\alpha\nu}$$


$$\mathcal{L}_{T,7} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times B_{\beta\nu} B^{\nu\alpha}$$


$$\mathcal{L}_{T,8} = B_{\mu\nu} B^{\mu\nu} B_{\alpha\beta} B^{\alpha\beta}$$

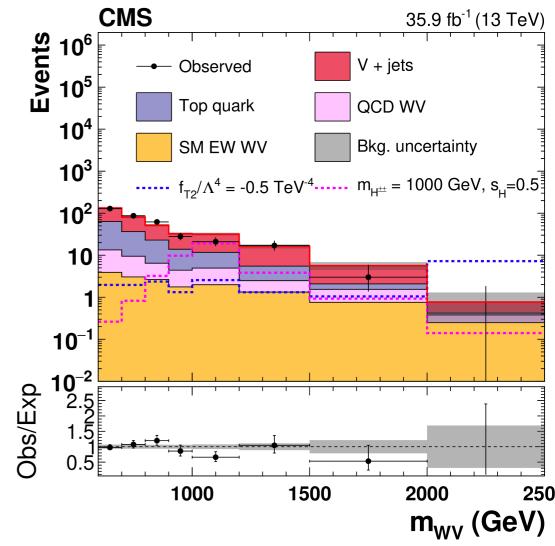
$$\mathcal{L}_{T,9} = B_{\alpha\mu} B^{\mu\beta} B_{\beta\nu} B^{\nu\alpha}$$


WZ VBS: aQGC


- aQGCs are constrained with m_T(WZ)
- limits on $\sigma \times BF$ for VBF production of H[±]

Parameters	Exp. limit	Obs. limit	
$\overline{f_{ m M0}/\Lambda^4}$	[-11.2, 11.6]	[-9.15, 9.15] —	involve a mixture
$ m f_{M1}/\Lambda^4$	[-10.9, 11.6]	[-9.15, 9.45] —	of gauge and Higgs field interactions
$ m f_{S0}/\Lambda^4$	[-32.5, 34.5]	[-26.5, 27.5] —	involve interactions
$ m f_{S1}/\Lambda^4$	[-50.2, 53.2]	[-41.2, 42.8] —	with the Higgs field
\rightarrow f _{T0} / Λ^4	[-0.87, 0.89]	[-0.75, 0.81] —	purely from the
\rightarrow f _{T1} / Λ^4	[-0.56, 0.60]	[-0.49, 0.55]	SU(2) gauge
\rightarrow f _{T2} / Λ^4	[-1.78, 2.00]	[-1.49, 1.85] —	fields
		·	

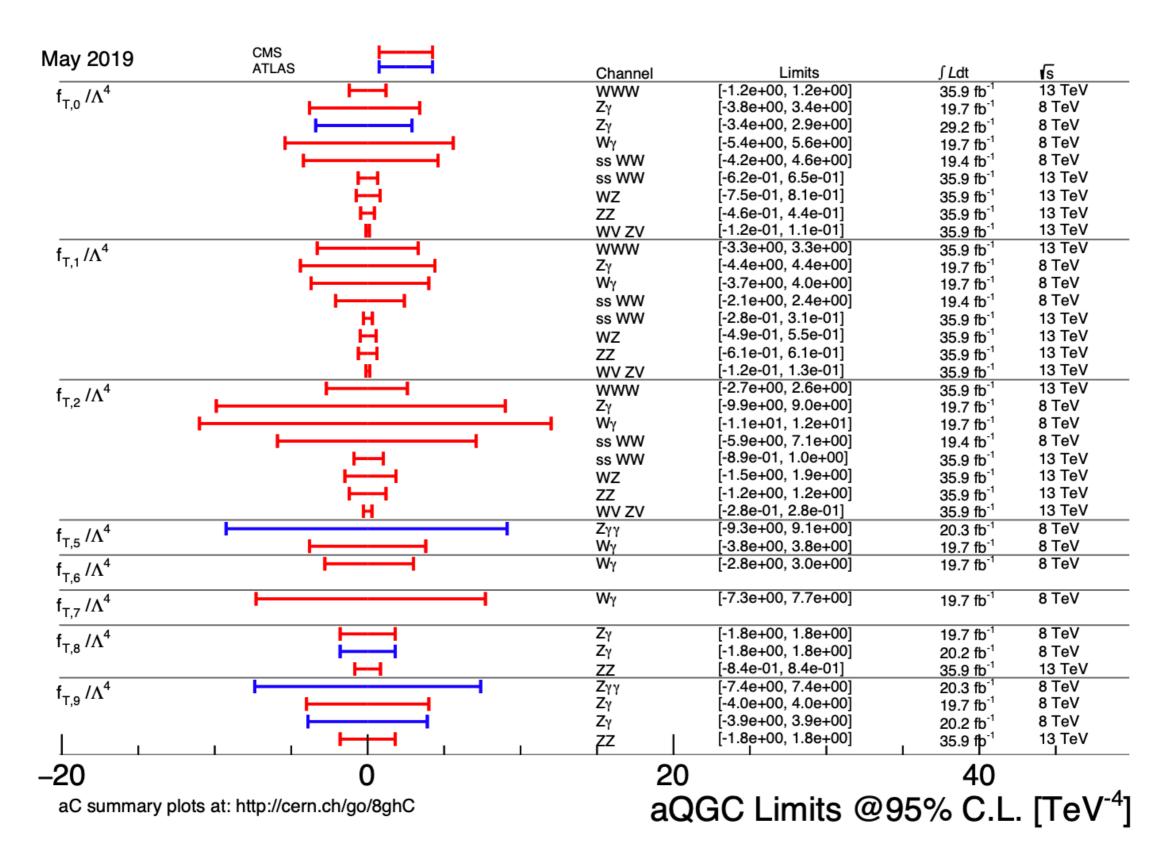
- fully leptonic final state $ZZ \rightarrow IIII$ (I = e, μ)
 - low σ, small BR, large irreducible QCD background → all final state particles can be reconstructed → favorable for EWSB study
 - clean leptonic final state → small reducible background
- MZZ is used to constrain the aQGCs
 - the results are statistically limited so far


Coupling	Exp. lower	Exp. upper	Obs. lower	Obs. upper
$f_{\rm T0}/\Lambda^4$	-0.53	0.51	-0.46	0.44
$f_{ m T1}/\Lambda^4$	-0.72	0.71	-0.61	0.61
$f_{ m T2}/\Lambda^4$	-1.4	1.4	-1.2	1.2
$f_{ m T8}/\Lambda^4$	-0.99	0.99	-0.84	0.84
$f_{\mathrm{T9}}/\Lambda^4$	-2.1	2.1	-1.8	1.8
				V

involve U(1) fields only accessible via the final state of neutral gauge bosons

WV, ZV VBS (V=W,Z): aQGC (CMS)

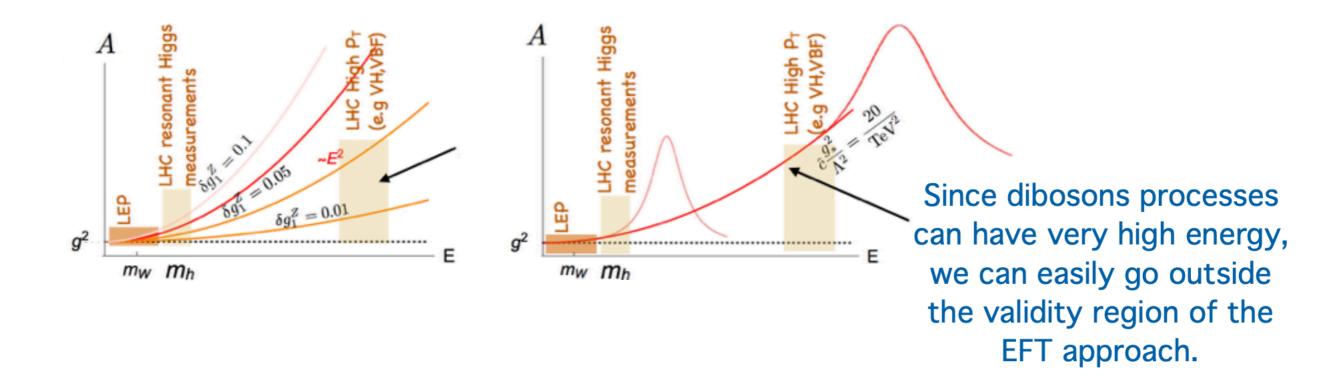
CMS-PAS-SMP-18-006


- WV→Iv + a large radius jet , ZV→II + a large radius jet
- sensitivity is enhanced by requiring tight dijet selections and centrality of leptonically decayed W
 - major backgrounds: V+jets and tt (for WV) not sensitive to SM yet
- MWV and MZV are used to constrain aQGCs
- stringent limits are set and improve the results with fully leptonic final state by factors of up to seven

	Observed (WV)	Expected (WV)	Observed (ZV)	Expected (ZV)	Observed	Expected
	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})
$f_{\rm S0}/\Lambda^4$	[-2.7, 2.7]	[-4.2, 4.2]	[-40, 40]	[-31,31]	[-2.7, 2.7]	[-4.2, 4.2]
$f_{\mathrm{S1}}/\Lambda^4$	[-3.3, 3.4]	[-5.2, 5.2]	[-32, 32]	[-24, 24]	[-3.4, 3.4]	[-5.2, 5.2]
$f_{ m M0}/\Lambda^4$	[-0.69, 0.69]	[-1.0, 1.0]	[-7.5, 7.5]	[-5.3, 5.3]	[-0.69, 0.70]	[-1.0, 1.0]
$f_{ m M1}/\Lambda^4$	[-2.0, 2.0]	[-3.0, 3.0]	[-22, 23]	[-16, 16]	[-2,0,2.1]	[-3.0, 3.0]
$f_{ m M6}/\Lambda^4$	[-1.4, 1.4]	[-2.0, 2.0]	[-15, 15]	[-11, 11]	[-1.3, 1.3]	[-1.4, 1.4]
$f_{ m M7}/\Lambda^4$	[-3.4, 3.4]	[-5.1, 5.1]	[-35, 36]	[-25, 26]	[-3.4, 3.4]	[-5.1, 5.1]
$f_{\mathrm{T0}}/\Lambda^4$	[-0.12, 0.11]	[-0.17, 0.16]	[-1.4, 1.4]	[-1.0, 1.0]	[-0.12, 0.11]	[-0.17, 0.16]
$f_{ m T1}/\Lambda^4$	[-0.12, 0.13]	[-0.18, 0.18]	[-1.5, 1.5]	[-1.0, 1.0]	[-0.12, 0.13]	[-0.18, 0.18]
$f_{ m T2}/\Lambda^4$	[-0.28, 0.28]	[-0.41, 0.41]	[-3.4, 3.4]	[-2.4, 2.4]	[-0.28, 0.28]	[-0.41, 0.41]

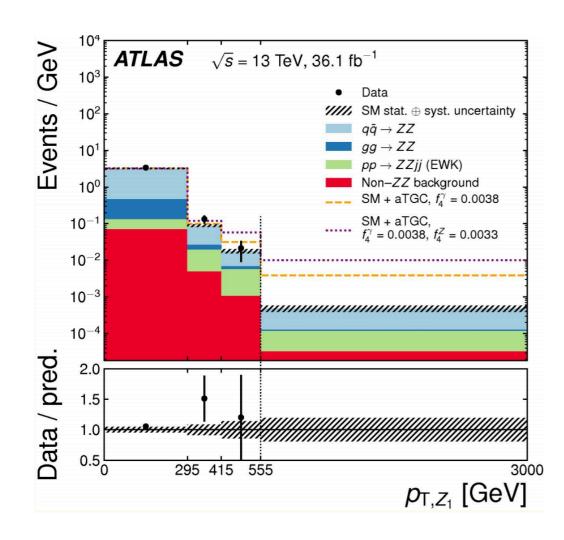
ATLAS has a results with 2.7 sigma https://arxiv.org/abs/1905.07714

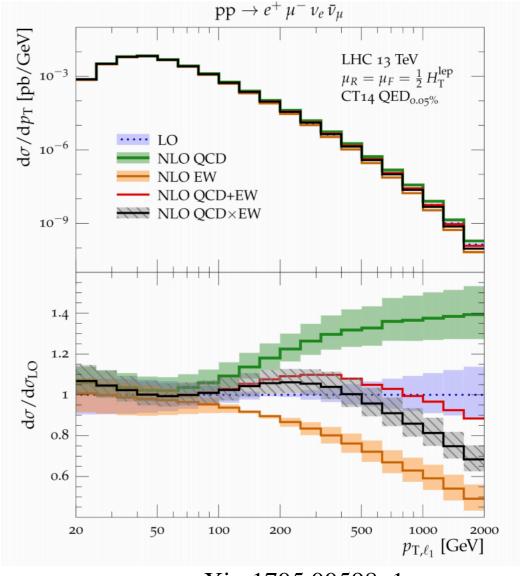
Summary



Discussion points

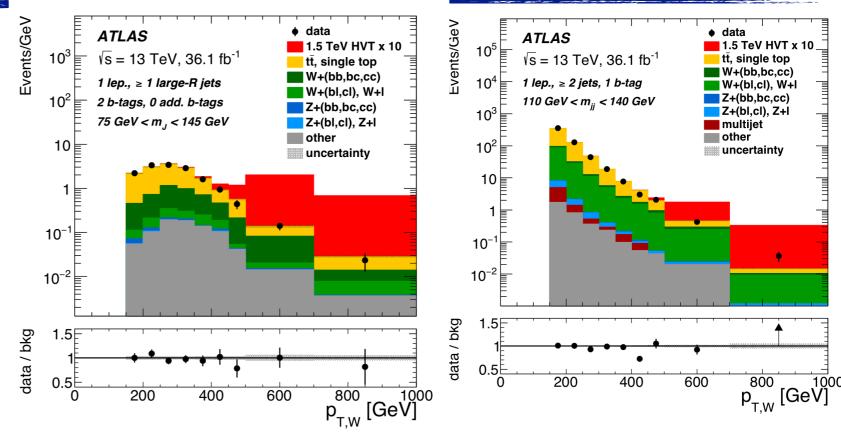
- Variables and binning:
 - What variables to measure (in case of unfolded distributions)
 - Which are the most sensitive to aGCs/EFT parameters?
 - Often only most obvious variables, correlated with the centre-of-mass energy are used
 - Useful to receive feedback on other interesting distributions (angular variables, 2 D distributions)


Discussion points

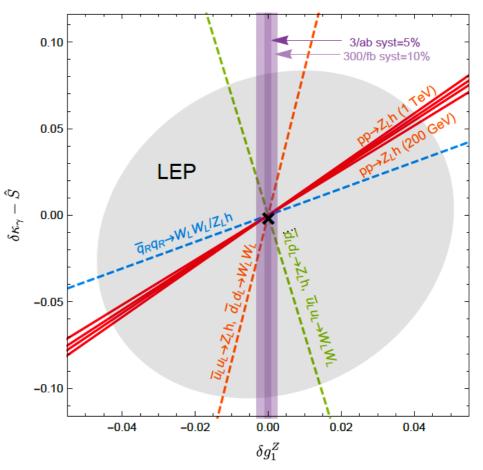

- Unitarization
 - Clipping? removing EFT signals above a certain threshold on truth level
 - easiest to implement but not well studied

Discussion points

- Tools? What is the best approach to interpolate between EFT != 0 points?
 - MC@NLO, aMC@NLO (reweighting, possibility to generate single terms), etc...
- Theory uncertainties on tails



arXiv:1705.00598v1


Other possibilities: VH boosted

VH resonance analysis

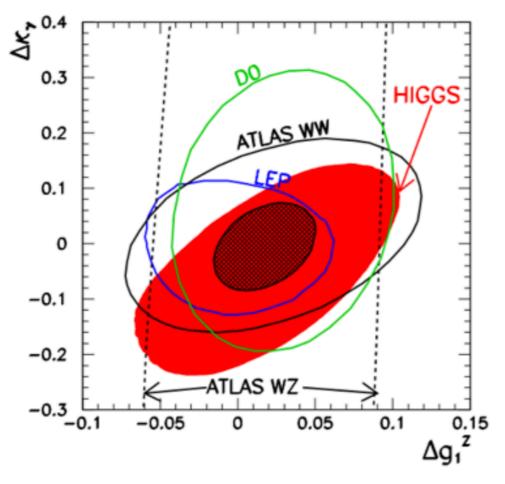
- Relies on V+Hf production modeling
- Modeling systematics are dominant
- V+bb is constrained with a specific control region but V+c is not

- Large systematics imposed ==> high mass is limited by statistics, we don't care?
- What if we want to looks for non -resonant new physics: Electroweak Precision Tests in High-Energy Diboson Processes
 - · arXiv:1712.01310v1
 - Need precision!

Ideas for the future (end of Run2-Run3)

- The idea for the future is to perform a global analysis of Higgs and diboson measurements at the LHC.
- Even though the choice of basis for the D=6 operators should be equivalent (up to EOM), it is relevant for how these combinations will be performed in practice.

EWPO


diboson

Higgs

Warsaw	SILH	BSM primaries
$\mathcal{O}_T = (H^\dagger \overset{\leftrightarrow}{D}_\mu H)^2$ $\mathcal{O}_{He} = (iH^\dagger \overset{\leftrightarrow}{D}_\mu H)(\bar{e}_R \gamma^\mu e_R)$ $\overset{\circlearrowleft}{\text{symb}}_\perp$ $\mathcal{O}_{HL} = (iH^\dagger \overset{\leftrightarrow}{D}_\mu H)(\bar{L}_L \gamma^\mu L_L)$ $\overset{\circlearrowleft}{\text{symb}}_\perp$	$\mathcal{O}_{T} = (H^{\dagger} \overset{\leftrightarrow}{D}_{\mu} H)^{2}$ $\mathcal{O}_{He} = (iH^{\dagger} \overset{\leftrightarrow}{D}_{\mu} H)(\bar{e}_{R} \gamma^{\mu} e_{R})$ $\mathcal{O}_{W} = ig(H^{\dagger} \sigma^{a} \overset{\leftrightarrow}{D}^{\mu} H) D^{\nu} W^{a}_{\mu\nu}$	$\Delta \mathcal{L}^{V}_{ee}$
$\mathcal{O}'_{HL} = (iH^{\dagger}\sigma^{a}\overset{\leftrightarrow}{D_{\mu}}H)(\bar{L}_{L}\sigma^{a}\gamma^{\mu}L_{L})$ $\mathcal{O}_{WB} = igg'H^{\dagger}\sigma^{a}HW^{a}_{\mu\nu}B^{\mu\nu}$ $\mathcal{O}_{WW} = g^{2} H ^{2}W^{a}_{\mu\nu}W^{a\mu\nu}$ $\mathcal{O}_{BB} = g'^{2} H ^{2}B_{\mu\nu}B^{\mu\nu}$ $\mathcal{O}_{GG} = g_{s}^{2} H ^{2}G^{A}_{\mu\nu}G^{A\mu\nu}$ $\mathcal{O}_{y_{f}} = y_{f} H ^{2}\bar{f}_{L}\widetilde{H}f_{R} \qquad f = u,d,e$	$\mathcal{O}_B = ig'(H^\dagger \overset{\leftrightarrow}{D^\mu} H) \partial^\nu B_{\mu\nu}$ $\mathcal{O}_{HW} = ig(D^\mu H)^\dagger \sigma^a (D^\nu H) W^a_{\mu\nu}$ $\mathcal{O}_{HB} = ig'(D^\mu H)^\dagger (D^\nu H) B_{\mu\nu}$ $\mathcal{O}_{BB} = g'^2 H ^2 B_{\mu\nu} B^{\mu\nu}$ $\mathcal{O}_{GG} = g_s^2 H ^2 G^A_{\mu\nu} G^{A\mu\nu}$ $\mathcal{O}_{y_f} = y_f H ^2 \bar{f}_L \widetilde{H} f_R f = u, d, e$	$egin{array}{c} \Delta \mathcal{L}_{g_1^Z} \ \Delta \mathcal{L}_{\kappa_{m{\gamma}}} \ \Delta \mathcal{L}_{\gamma_{m{\gamma}}}^h \ \Delta \mathcal{L}_{Z\gamma}^h \ \Delta \mathcal{L}_{GG}^h \ \Delta \mathcal{L}_{ff}^h \ \Delta \mathcal{L}_{V_uV^{\mu}}^h \end{array}$
$\mathcal{O}_H = (\partial^{\mu} H ^2)^2$ Partially available at NLO	$\mathcal{O}_H = (\partial^{\mu} H ^2)^2$ Easy UV matching (SUSY, Comp Higgs,)	Traditional param. Not easy UV matchin

Interplay between diboson and Higgs

- The combined analysis will substantially increase the sensitivity to the coefficients of the D=6 operators in SMEFT.
- The idea is to provide combined limits in the (g^*, Λ) plane with different energy cuts. We are also working towards a robust determination of the uncertainties associated to D=8 operators and SMEFT NLO corrections

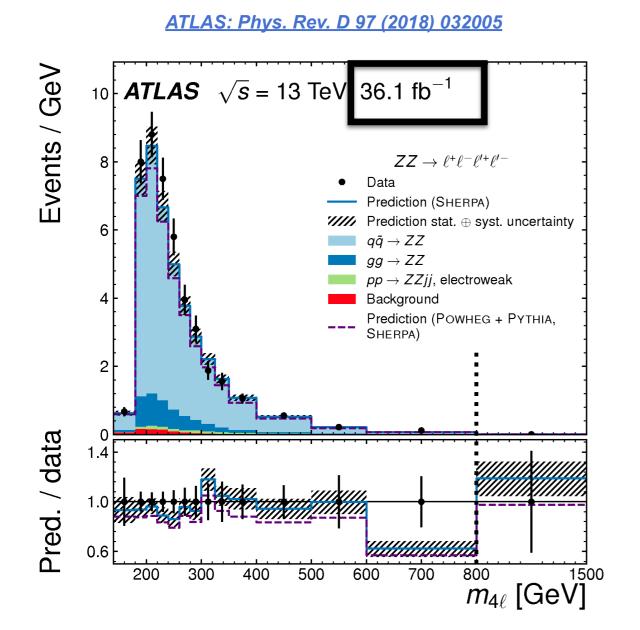
[plots from arXiv:1304.1151]

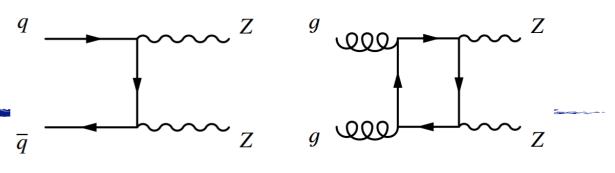
Summary

- Combined dim-6 EFT fit of aTGC measurements seems doable and worthwhile
 - Which measurements to include, which operator basis?
 - How to implement fit, treat correlation?
 - How can this be helpful in the greater scheme of things (global EFT fit)?
- For aQGC measurements situation less transparent
 - Different models and unitarizations schemes used in Run 1
 - Many measurements ongoing or planned
- Prospect show good potential for future runs/colliders

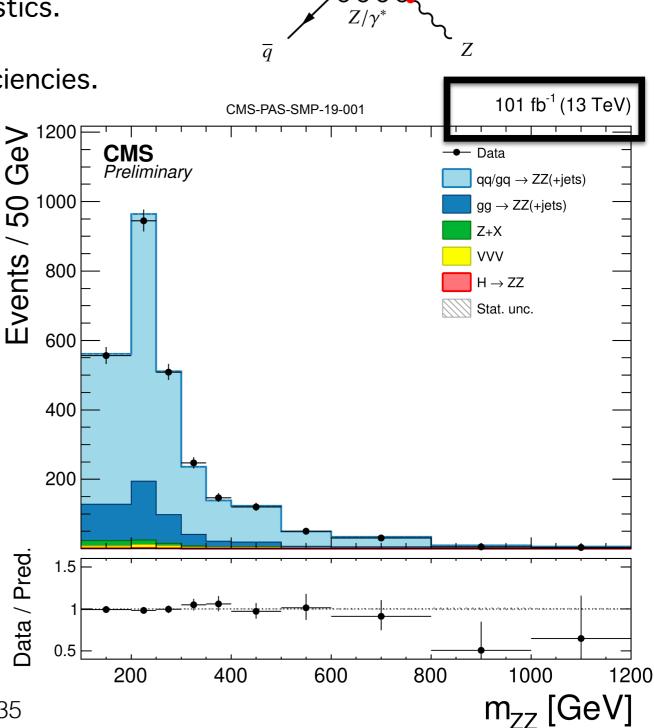
Backup

ZZ production

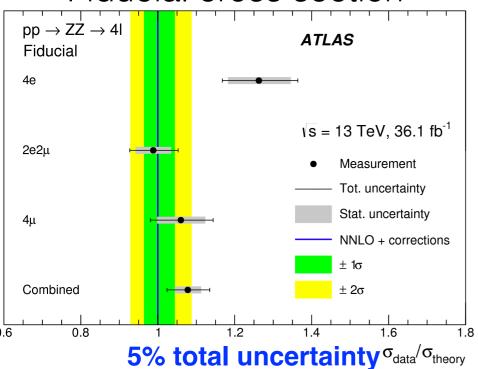

- Fully leptonic final state (electrons/muons)
 - Very clean experimental signature
- Only on-shell: 66 < m_Z < 116 GeV
- Main background from 'fake' leptons.
- Measurement uncertainty is dominated by statistics.
- Dominant experimental uncertainties:
 - lepton reconstruction and identification efficiencies.


Ge

Events


Data / Pred

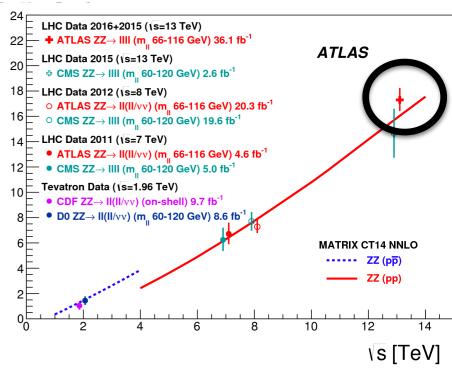
35

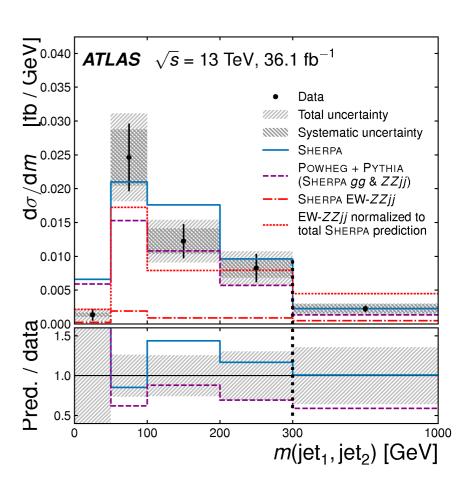


TGC vertex —> prohibited in SM

Fiducial cross section

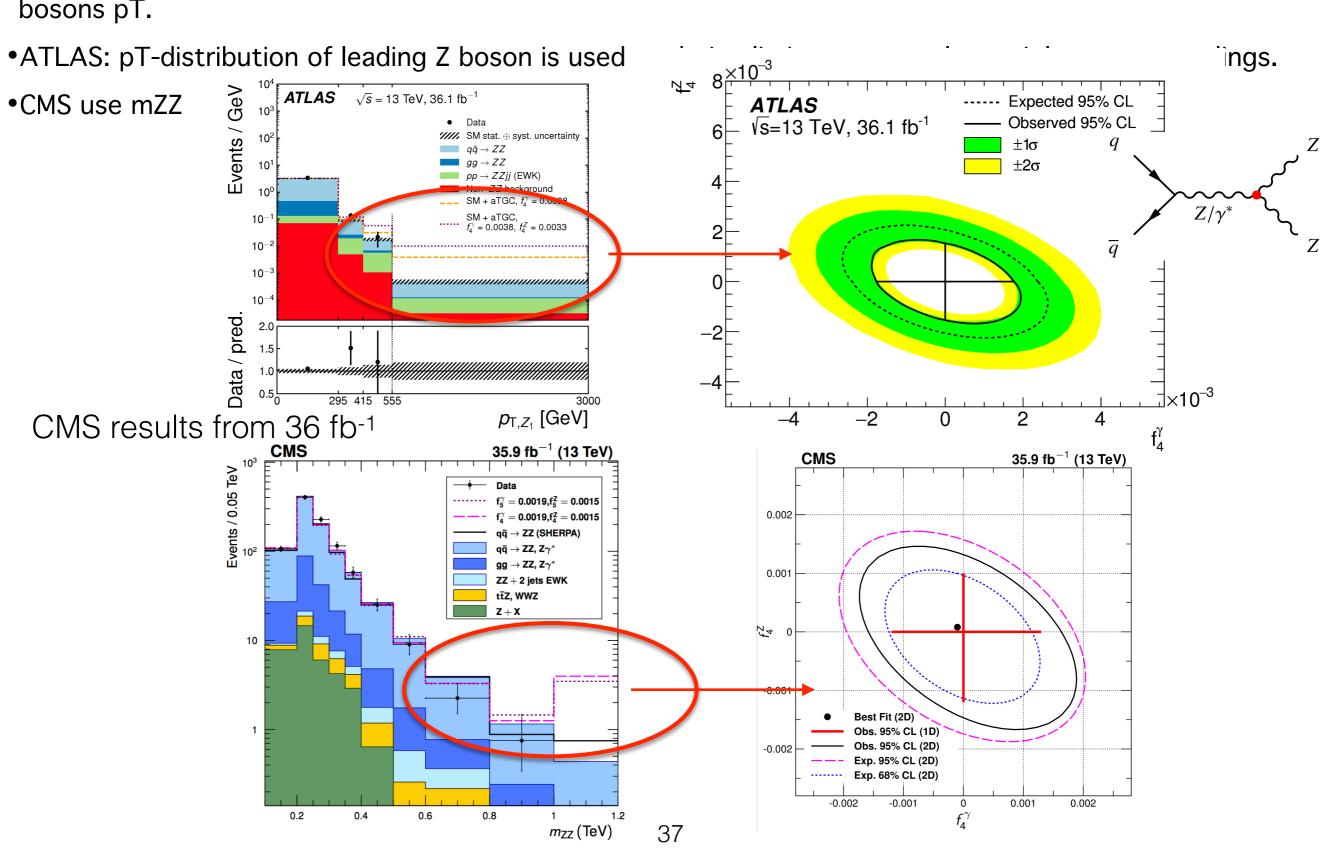
- Differential cross sections measured as a function of 20 observables.
- Δy(j1-j2) and m(jet1, jet2) are particularly sensitive to the EWK-ZZjj process


ZZ production

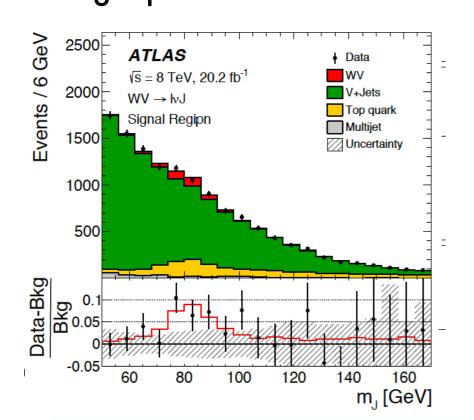

tot [pb]

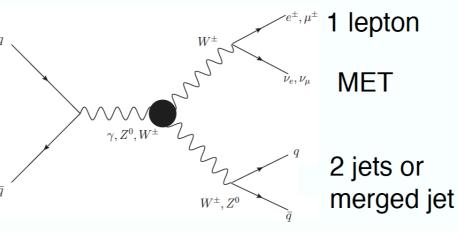
- Best available SM predictions are based on fixed-order MATRIX NNLO QCD calculations:
- NNLO QCD + NLO QCD gginitiated contribution + NLO EWK corrections + EWK-ZZjj

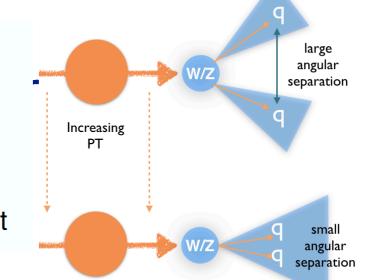
CMS 35.9 fb⁻¹ (13 TeV) $\frac{1}{\sigma_{\rm fid}} \frac{d\sigma_{\rm fid}}{d\rho_{\rm T}^{\ell_1}} \left(\frac{1}{{\rm GeV}}\right)$ POWHEG+MCFM+Pyth 100 120 $p_{\mathsf{T}}^{\ell_1}$ (GeV) 36


Total cross section

Search for neutral aTGCs
$$\mathcal{L}_{\text{ZZV}} = -\frac{e}{M_{\text{Z}}^2} \left(\mathbf{f_4^V} (\partial_{\mu} V^{\mu\beta}) Z_{\alpha} (\partial^{\alpha} Z_{\beta}) + \mathbf{f_5^V} (\partial^{\sigma} V_{\sigma\mu}) \tilde{Z}^{\mu\beta} Z_{\beta} \right)$$


•Primary signature of non-0 nTGC is increase in ZZ cross-section at high ZZ invariant masses and high Z bosons pT.


WW/WZ->lvjj

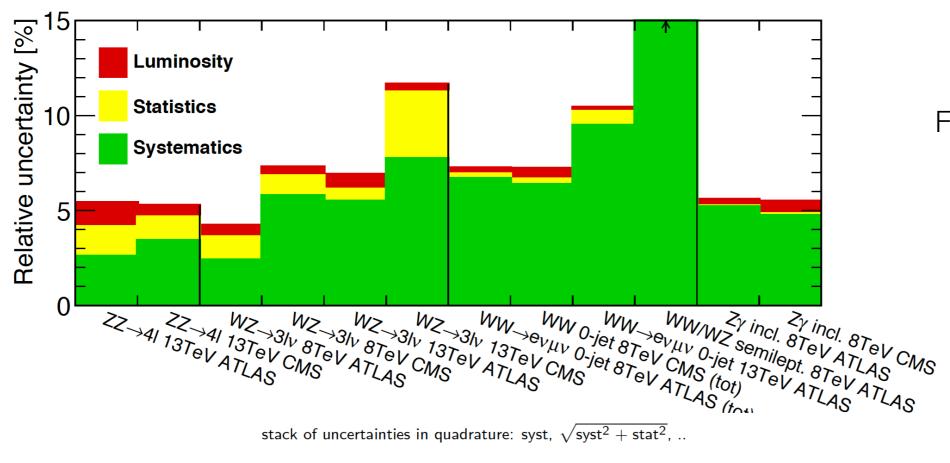

 Identify leptonically decaying W boson while other W or Z boson decays to jets

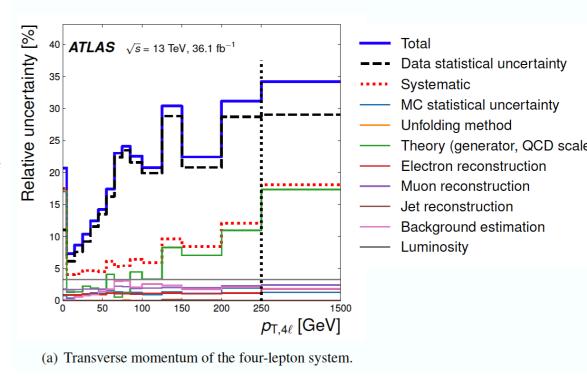
 Select dijet events and boosted events such that the decay jets merge into a single jet



Maximizes sensitivity to aTGC

Phys. Rev. D 95 (2017) 032001

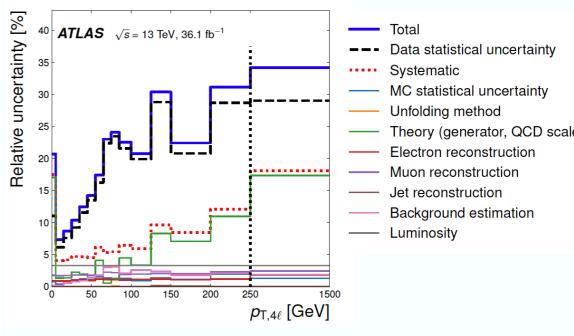

Comparison of CMS results — Similar trends in ATLAS results


8 TeV	WW→ℓνℓν	WZ→ ℓνℓℓ	WV→ℓ <i>v</i> jj
$c_{\rm WWW}/\Lambda^2$	[-5.7, 5.9]	[-4.6, 4.2]	[-2.7,2.7]
$c_{\rm W}/\Lambda^2$	[-11.4,5.4]	[-4.2, 8.0]	[-2.0,5.7]
$c_{\rm B}/\Lambda^2$	[-29.2, 23.9]	[-260, 210]	[-14,17]

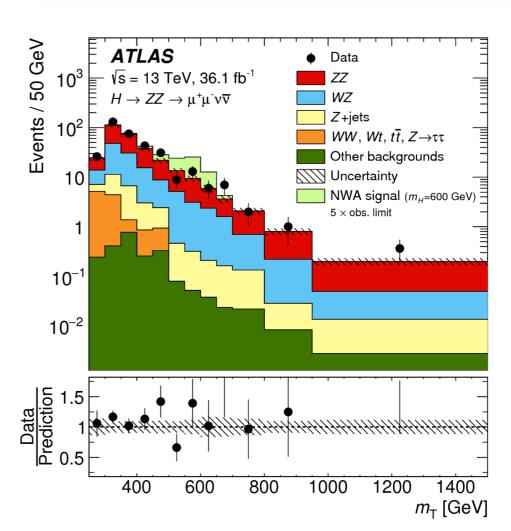
Limits already surpass LEP and will improve with Run2 Data

Diboson Summary

- A lot of work has gone into understanding the theory aspects
 - We can currently test up to NNLO!
- Uncertainties on total cross section measurements are approaching the luminosity uncertainty
- Uncertainties on differential measurements still dominated by statistics
- Theory uncertainties are important as well
- Can mitigate lumi, theory uncertainties with ratios



From Elena Yatsenko talk LHCEWWG-MB: https://indico.cern.ch/ event/706190/


Diboson Summary

- A lot of work has gone into understanding the theory aspects
 - We can currently test up to NNLO!
- Uncertainties on total cross section measurements are approaching the luminosity uncertainty
- Uncertainties on differential measurements still dominated by statistics
- Theory uncertainties are important as well
- Can mitigate lumi, theory uncertainties with ratios

- Synergies with searches in the same final states
 - X→ WW → lvlv: <u>Eur. Phys. J. C 78 (2018) 24</u>
 - X → ZZ → IIII <u>arXiv:1712.06386</u>
 - X→ ZZ→ IIvv <u>arXiv:1712.06386</u>

(a) Transverse momentum of the four-lepton system.

ssWW and ZZ

- Two forward jets well separated in rapidity highest pT jets considered as tag jets
- Two same-sign leptons & ET_{miss}
- Non-VBS EW processes with the same final state contribute to the signal → suppressed through kinematic

Data 2012

Syst. Uncertainty

Other non-prompt

8

 $|\Delta y_{ii}|$

W[±]W[±]jj Strong

Conversions

W[±]W[±]ij Electroweak

cuts ATLAS 8 TeV

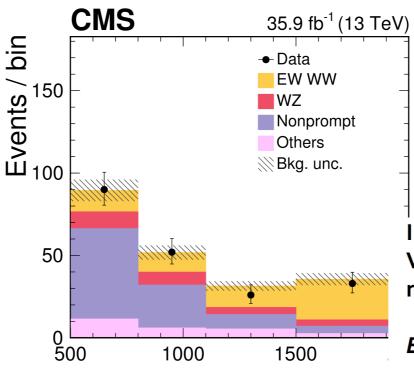
• 3.6 σ evidence

ATLAS

20

15

10


 $m_{ii} > 500 \text{ GeV}$

measured sigma of
 1.5± 0.5 fb

20.3 fb⁻¹, $\sqrt{s} = 8 \text{ TeV } \boxtimes$

CMS 13 TeV

- 5.5 σ observation
- measured sigma of 3.8± \(\bar{0} \)
 0.7 (stat) ± 0.4 (syst) fb

CMS 13 TeV ZZ VBS in 41
 Start from inclusive ZZ measurement

80b

600

 Add 2 jets in VBS Topology

Inclusive region: m_{jj}>100GeV

Phys. Lett. B 774 (2017) 682

CMS

200

400

10

VBS region: $|\Delta \eta_{jj}| > 2.4 + m_{jj} > 400 \text{ GeV}$

non-VBS region: $|\Delta \eta_{ii}| < 2.4$ or $m_{ii} < 400$ GeV

EWK signal significance 2.7σ (exp 1.6σ)

Phys. Rev. Lett. 113, 141803

CMS-SMP-17-004

m_{jj} (GeV)

41

35.9 fb⁻¹ (13 TeV)

Data

ZZii EW

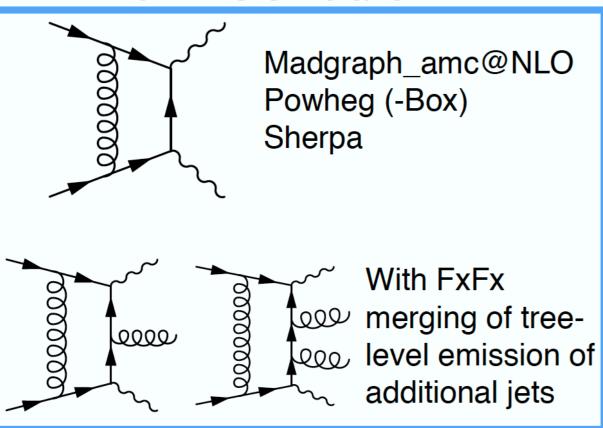
 $qq \rightarrow ZZ$

 $qq \rightarrow ZZ$

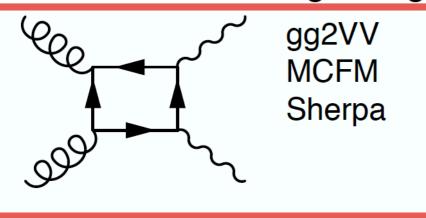
tīZ. WWZ

 $f_{T8}/\Lambda^4 = 1 \text{ TeV}^{-4}$

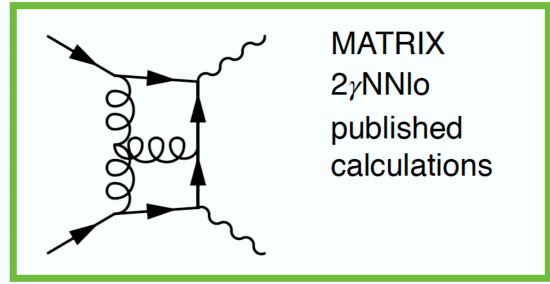
1000 1200 140

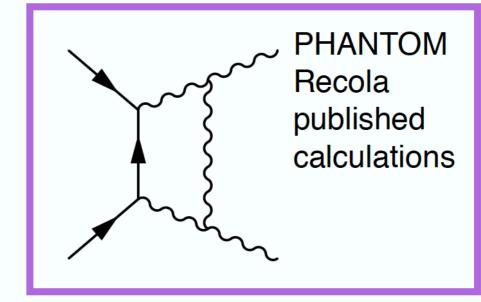

m_{ZZ} [GeV]

 $\int_{-1}^{10} f_{T9} / \Lambda^4 = 2 \text{ TeV}^{-4}$


Z+X

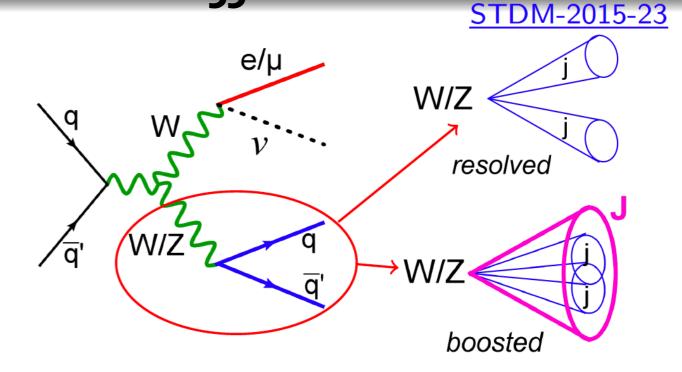
Simulation Tools


Full NLO simulation


simulation of tree level gluon-gluon (NNLO)

Full NNLO calculations

EWK corrections

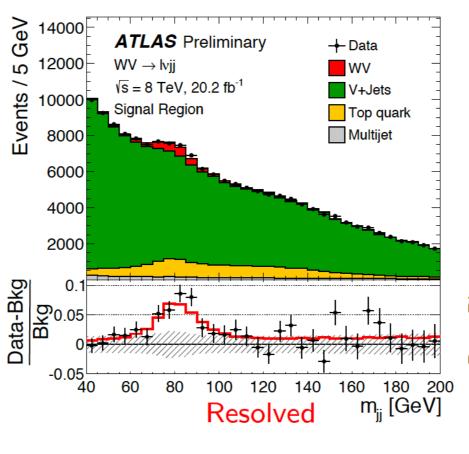


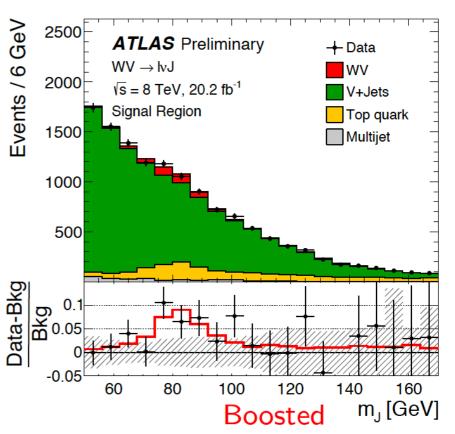
Pythia: Parton showering, hadronization, UE

PDFs: NNPDF commonly used now

WW/WZ ->lvjj

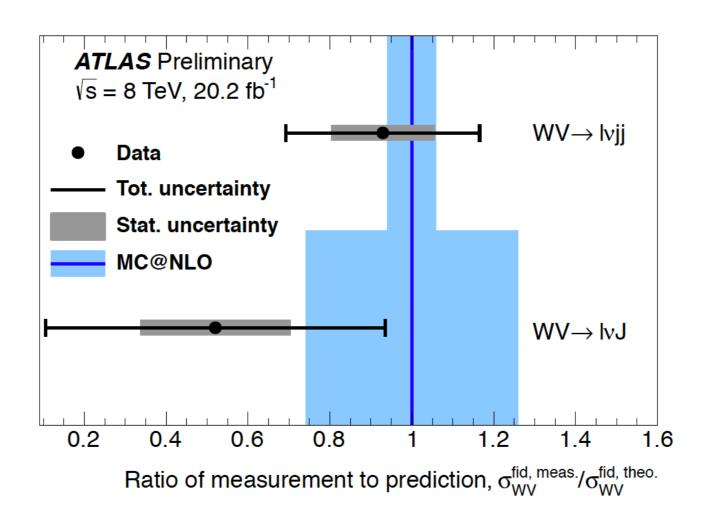
- \circ 20.2 fb⁻¹ of 8 TeV data
- ho \sim 6 times higher branching fraction than fully-leptonic channels.
- Two topologies: $WV \rightarrow \ell \nu jj$ (resolved) $WV \rightarrow \ell \nu J$ (boosted)
- Dominant background: W/Z+jets

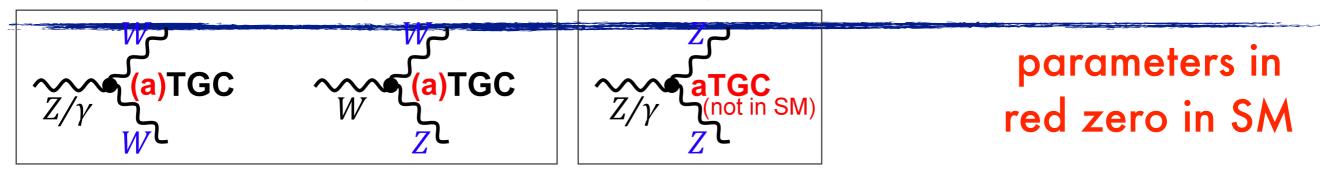



Resolved topology:

- Two anti-kt R=0.4 jets
- Large statistics and lower systematic uncertainty

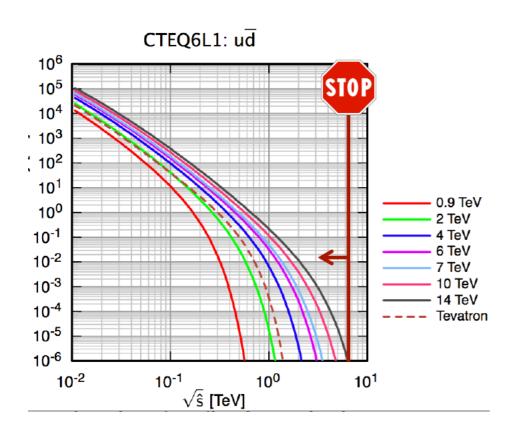
Boosted topology:

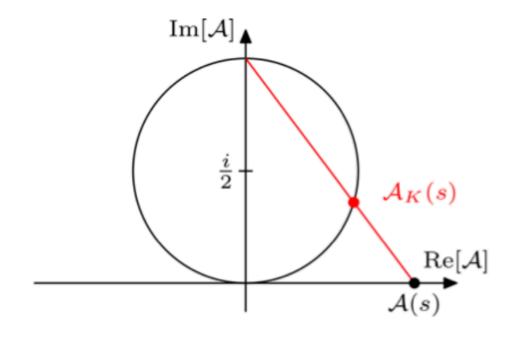

- One anti-kt R=1 jet
- High sensitivity to aTGCs due to probing higt p_T range


WW/WZ->lvjj

- Fiducial cross section is measured independently for the $WV \to \ell \nu jj$ and $WV \to \ell \nu J$ phase spaces.
- The two phase spaces are partially overlapping: some $V \to qq'$ events can be reconstructed both as 2 small-R jets and as one large-R jet => no combination of the two cross section measurements.
- The cross-section is extracted from a fit of the signal and background templates to m(jj)/m(J).

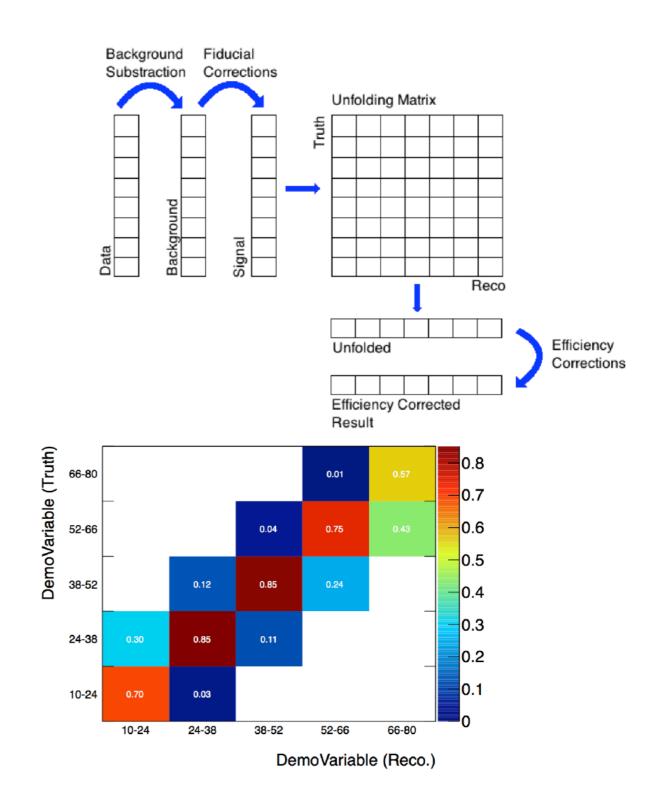
Both measurements are compatible with Standard Model predictions at NLO QCD.


Anomalous gauge couplings and rare processes


- WWV (V= Z/γ) couplings -> WW and WZ measurements (also Wγ)
 - Effective Lagrangian: new physics effects are parameterized as deviations from SM couplij $\frac{\mathcal{L}_{\text{WWV}}}{g_{\text{WWV}}} = i g_1^{\text{V}} (\mathbf{W}_{\mu\nu}^+ \mathbf{W}^\mu \mathbf{V}^\nu \mathbf{W}_\mu^+ \mathbf{V}_\nu \mathbf{W}^{\mu\nu}) + i \kappa_{\text{V}} \mathbf{W}_\mu^+ \mathbf{W}_\nu \mathbf{V}^{\mu\nu} + \frac{i \lambda_{\text{V}}}{m_{\text{W}}^2} W_{\lambda\mu}^+ W_\nu^\mu \mathbf{V}^{\nu\lambda}$
 - 5 parameters: Δg_1^z (g_1^z -1), $\Delta \kappa_1^z$ (κ_1^z -1), $\Delta \kappa_1^y$ (κ_1^y -1), λ_z , λ_y
- Effective field theory (EFT) approach: $cWWW=\Lambda^2$, $cW=\Lambda^2$, $cB=\Lambda^2$ (WWZ, WWY)
- ZZV (V= Z/γ) couplings -> ZZ measurements (also Zγ)
 - Effective vertex function approach: $\mathcal{L}_{\text{ZZV}} = -\frac{e}{M_Z^2} \left(\mathbf{f_4^V} (\partial_\mu V^{\mu\beta}) Z_\alpha (\partial^\alpha Z_\beta) + \mathbf{f_5^V} (\partial^\sigma V_{\sigma\mu}) \tilde{Z}^{\mu\beta} Z_\beta \right)$
- Tools: Start with SM prediction (usually NLO)
- Add weights to simulated sample corresponding to different aGC values, reweight from one point to the other
 - Commonly use Madgraph at LO, NLO becoming available
 - VBFNLO, MC@NLO also provide calculations for different point

Interpretation

- Fix this by
 - Introducing form factors.
 - LEP, TeVatron, LHC
 - Project scattering amplitude.
 - k-Matrix (ATLAS)
 - Limit range of validity.
 - SM EFT (ATLAS, CMS).



Interpretation

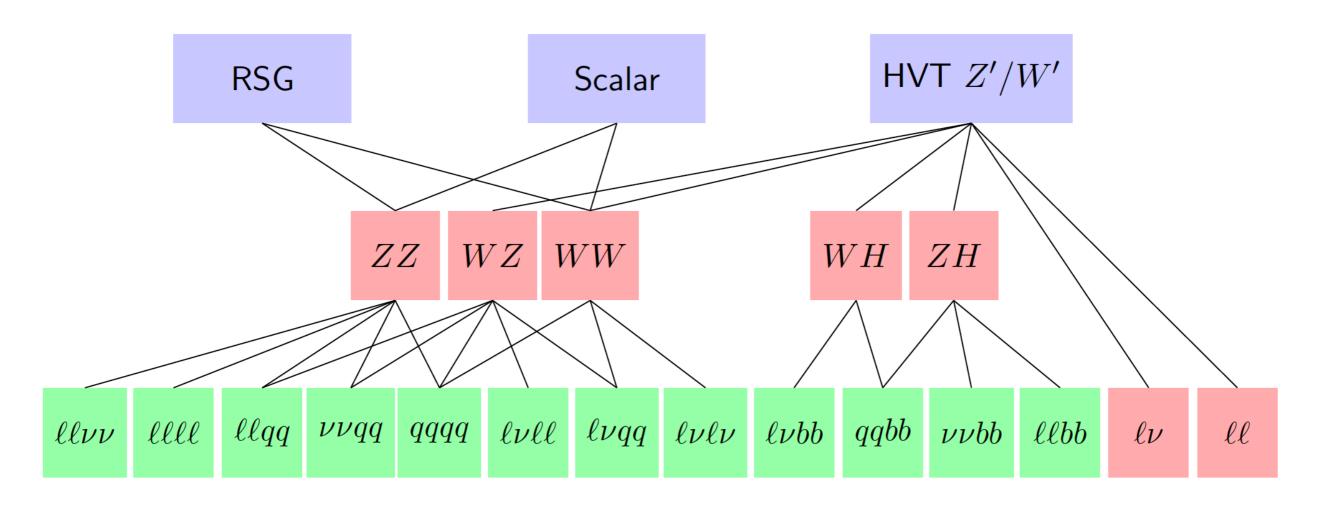
	Limits	Unitarisation Scheme	Vertex	Process
TGC	κ, λ, g ₁	FF, none	WW(Z/γ)	pp - WZ,Wγ,WW,Wjj
	f_4, f_5	FF, none	ZZ(Z/γ)	pp - ZZ, Zjj
	h ₃ ,h ₄	FF, none	Ζγ (Ζ/γ)	рр - Ζγ
	$a_{0,C}^{W},f_{T,M}$	FF, none	$WW\gamma\gamma$	pp - WW (excl), Wγγ
Q	$f_{T,M}$	FF, none	$\gamma\gamma Z(Z/\gamma)$	рр - Ζүү
QGC	$f_{s,M},\alpha_{4,5}$	FF, none, k-matrix	WWWW	pp - WWW,WWjj (ss)
1	$\alpha_{4,5}$	k-matrix	WZW(Z/γ)	pp - WZjj

Unfolding

- Unfolded kinematic distributions:
 - Remove detector effects to allow independent interpretation of Data.
- Commonly used method
 - Bayesian iterative unfolding.
 - Unfolding within detector acceptance.
 - Normalised distributions.
- Published Results (HEPDATA):
 - Fractional, binned kinematic distributions.
 - Full correlation matrices.
 - Statistical and systematic uncertainties, background contributions.

The k-framework (1307.1347)

modifications of the SM couplings involving h in the unitary gauge


- PROs:
 - Simple and intuitive (at first)
 - Good for exploratory analysis (of SM hypothesis)
- CONs:
 - Not so Simple and intuitive in more complex situations
 - Not supported by physical hypothesis
 - Not renormalizable

Why combine?

- **Diboson:** Several final states with same sensitivity, expect good improvement with combination
- · Diboson+Leptons: allows to distinguish between models
- We use a model with a generalized interaction Lagrangian
- · Referred to as the Heavy Vector Triplet (HVT) model
- Define HVT-A (weakly-coupled) and HVT-B (strongly-coupled) benchmarks

 $\mathcal{L}_{W}^{\mathrm{int}} = -g_{q}W_{\mu}^{a}\bar{q}_{k}\gamma^{\mu}\frac{\sigma_{a}}{2}q_{k} - g_{\ell}W_{\mu}^{a}\bar{\ell}_{k}\gamma^{\mu}\frac{\sigma_{a}}{2}\ell_{k} - g_{H}\left(W_{\mu}^{a}H^{\dagger}\frac{\sigma_{a}}{2}iD^{\mu}H + \mathrm{h.c.}\right)$ Dileptons $\begin{array}{c} \text{Dileptons} & \text{Dijets, tt, tb} \\ \text{Dijets, tt, tb} & \text{Dijets, tt, tb} \end{array}$

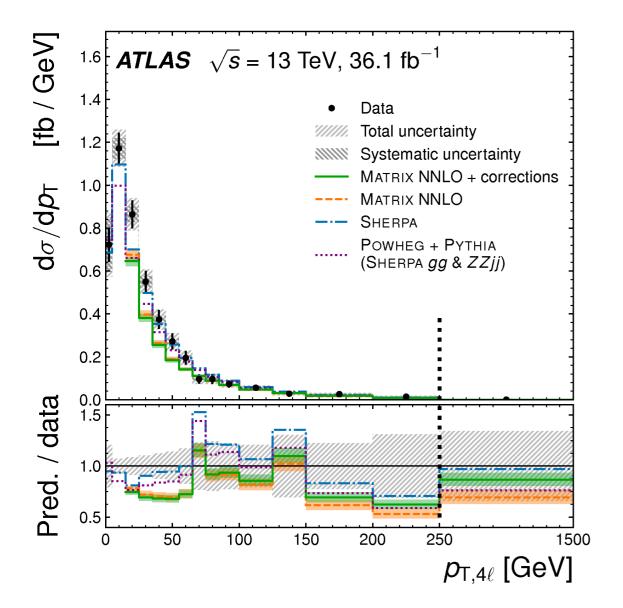
Bosonic & leptonic channels: VV, VH, Iv, II

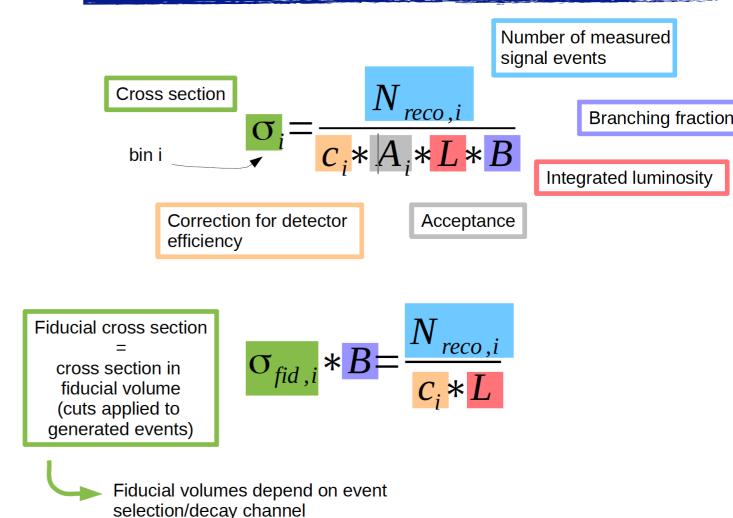
Step-by-step combination procedure:

- 1. Combine seperately VV, VH, and dilepton
- 2. Combine VV+VH
- 3. Combine VV+VH+dilepton first time @ LHC

Combination

- Orthogonality between channels guaranteed by selection on number of leptons, jets, b-tags, and selection on ETmiss
- Overlap between VV and VH analyses removed by vetoing Higgs boson candidates overlapping W or Z mass window


j=small-R jet, J=large-R jet


Channel	Diboson state	Selection				VBF cat.	Reference
		Leptons	$E_{ m T}^{ m miss}$	Jets	<i>b</i> -tags		
qqqq	WW/WZ/ZZ	0	veto	2J	_	_	[9]
$\nu \nu qq$	WZ/ZZ	0	yes	1 J	_	yes	[13]
$\ell \nu qq$	WW/WZ	$1e, 1\mu$	yes	2j, 1J	_	yes	[10]
$\ell\ell qq$	WZ/ZZ	$2e, 2\mu$	_	2j, 1J	_	yes	[13]
$\ell\ell u $	ZZ	$2e, 2\mu$	yes	_	0	yes	[14]
$\ell \nu \ell \nu$	WW	$1e+1\mu$	yes	_	0	yes	[12]
$\ell \nu \ell \ell$	WZ	$3e, 2e+1\mu, 1e+2\mu, 3\mu$	yes	_	0	yes	[11]
$\ell\ell\ell\ell$	ZZ	$4e, 2e+2\mu, 4\mu$	_	_	_	yes	[14]
qqbb	WH/ZH	0	veto	2J	1, 2	_	[15]
$\nu \nu bb$	ZH	0	yes	2j, 1J	1, 2	_	[16]
$\ell \nu bb$	WH	$1e, 1\mu$	yes	2j, 1J	1, 2	_	[16]
$\ell\ell bb$	ZH	$2e, 2\mu$	veto	2j, 1J	1, 2	_	[16]
$\ell \nu$	_	1e, 1µ	yes	_	_	_	[17]
$\ell\ell$	_	$2e, 2\mu$	_	_	_	_	[18]

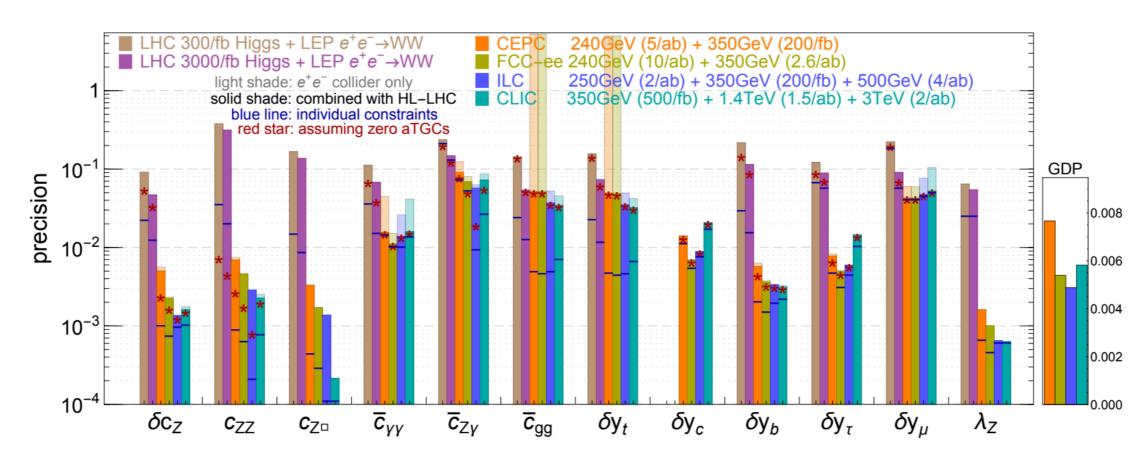
 HVT model for lv+ll: Require generator-level mass to be within mass window of W'/Z' pole to minimize effects of interference btw signal and dominant DY bkg

Cross section definitions

- Why fiducial cross-sections?
- Correction for detector effects
 - easy interpretation for theorists
 - preserve measurements for posterity
- No acceptance correction
 - less model dependence

- Why differential cross section?
- 1. check of SM calculations, and MC generators used in the analyses → feedback to theory groups
- 2. deviations from the Standard Model predictions could be due to new physics → high energy bins are sensitive to aGCs

Search for neutral aTGCs


$$\mathcal{L}_{\mathrm{ZZV}} = -rac{\mathrm{e}}{\mathrm{\textit{M}}_{\mathrm{Z}}^{2}}\left(\emph{\emph{f}}_{\mathrm{4}}^{\mathrm{V}}(\partial_{\mu}\mathrm{V}^{\mu\beta})\emph{\emph{Z}}_{lpha}(\partial^{lpha}\emph{\emph{Z}}_{eta}) + \emph{\emph{f}}_{\mathrm{5}}^{\phantom{\mathrm{V}}}(\partial^{\sigma}\emph{\emph{V}}_{\sigma\mu}) ilde{\emph{Z}}^{\mu\beta}\emph{\emph{Z}}_{eta}
ight)$$

- Primary signature of non-0 nTGC is increase in ZZ cross-section at high ZZ invariant masses and high Z bosons pT.
- •ATLAS: pT-distribution of leading Z boson is used to derive limits on anomalous triple gauge couplings.
- •CMS use mZZ

Global Higgs and diboson constraints

[Duriex, Grojean, Gu, Wang, '17]

- importance of complementary measurements (different c.o.m. energies, polarizations, distributions)
- importance of diboson measurement precision (not studied much by exp. collaborations)
- order of magnitude improvement wrt LHC, and δy_c constraint (especially on δc_Z , δc_{ZZ} , $\delta c_{Z\Box}$, δy_b , δy_{τ} , λ_Z)
- LHC helps for $\bar{c}_{\gamma\gamma}$, δy_{μ} , and δy_{t} (below 500 GeV!)