

Viviana Cavaliere (BNL) July 2019 Probing SMEFT with diboson processes

1

RICO

Why study diboson?

- One of the main goals of the LHC is to study the mechanism of Electroweak Spontaneous Symmetry Breaking.
- This process determines particle content of the Standard Model:

(massless vector) W^a_μ, B_μ (Higgs doublet) σ, χ^a

(massive vector) W^+_μ, W^-_μ, Z_μ (Higgs field) H

- The dynamics of massive bosons is a window into the physics of spontaneous symmetry breaking.
- New Physics associated to Electroweak Symmetry Breaking could alter the dynamics of the Higgs, W and Z bosons
- No direct observation of new physics at the LHC after Higgs boson discovery
	- Precision measurements are more important than ever
- Several extensions of the SM predict additional processes with multiple bosons in the final state
	- 2 • Any observed deviation of multiboson production cross sections from their SM predictions could be an early sign of new physics

Standard Model Production Cross Section Measurements

Status: March 2019

- 5-300 pb: Inclusive (QCD) diboson production:
	- Sensitive to higher order QCD (and QED) perturbative corrections
	- SM gauge structure: Triple Gauge Couplings (TGC)

Standard Model Production Cross Section Measurements

Status: March 2019

- <0.01 pb: VBS/VBF (QED) diboson production
	- Sensitive to higher order QED perturbative corrections
	- The nature of EWSB SM gauge structure: Triple Gauge Couplings (TGC)

Standard Model Production Cross Section Measurements

Status: March 2019

- 10-3-10-1pb: Inclusive (QCD) triboson production
	- Sensitive to higher order QCD (and QED) perturbative corrections
	- SM gauge structure: Triple Gauge Couplings (TGC) and Quartic Gauge Couplings (QGC)

Two paths to BSM Physics

- **Direct Searches**
- Indirect searches

- Diboson, VV, VH, HH
- **Dilepton**
- …..

Run2 and beyond: Resonance limits to local operators

- Now that these bounds have been pushed away from v
- \bullet USE $v/M < 1$:
- bound many models at once
- bound multiple resonances at same time

†Small-radius (large-radius) jets are denoted by the letter j (J).

The EFT approach to New Physics

- In absence of new particles, the SM can be considered as an effective low-energy theory.
- Any Beyond Standard Model physics can be thought of as modifications of the interactions containing only SM fields
- Assuming that the SM describes physics well in the energy range up to the scale Λ and new physics occurs only above that scale, the physics phenomena can be described by an effective Lagrangian

Classify the effect of any beyond SM model using operators with $D > 4$

$$
\mathcal{L} = \mathcal{L}_4^{\text{SM}} + \frac{1}{\Lambda} \mathcal{L}_5 + \frac{1}{\Lambda^2} \mathcal{L}_6 + \dots
$$

$$
\frac{1}{\Lambda^2} \mathcal{L}_6 \rightarrow \left(\frac{E}{\Lambda}\right)^2 \qquad \frac{1}{\Lambda^4} \mathcal{L}_8 \rightarrow \left(\frac{E}{\Lambda}\right)^4
$$

For large scales $E/\Lambda \ll 1$, only operators with lower mass dimension will matter.

$$
\mathcal{L}^{\text{eff}} = \mathcal{L}_{\text{SM}} \left\{ \sum_{i} \frac{c_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} \right\} + \sum_{j} \frac{c_j^{(8)}}{\Lambda^4} \mathcal{O}_j^{(8)} + \dots
$$

$$
c_i^{(D)} \simeq \frac{(\text{coupling})^{n_i - 2}}{(\text{high mass scale})^{D-4}}
$$

EFT on VV, VVjj

$$
\mathcal{L}^{\text{eff}} = \mathcal{L}_{\text{SM}} \left[\sum_{i} \frac{c_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} \right] + \sum_{j} \frac{c_j^{(8)}}{\Lambda^4} \mathcal{O}_j^{(8)} + \dots
$$

 $n=5,7$: violate lepton number

- Full-lep
- (Full-had)

- Semi-lep
- Full-lep
- Full-had

Two approaches for an EFT interpretation

EFT models

- dim-6
	- SMEFT model
	- Adopted global EFT fit.
		- Simultaneous fit of top/SM/BSM analyses -
		- 50 operators.
		- (Development of dim-8 is on-going.)
- dim-8
	- Eboli model dim-8
	- Used by both CMS and ATLAS for aQGC interpretation for now.
	- 18 independent operators

Operators

WZ @ 13 TeV (CMS)

CMS SMP-18-002

- 3 leptons plus missing ET
- Dominant background: misidentified leptons
- Dominant uncertainties:
	- Misidentified lepton

WW and WZ at 13 TeV (CMS)

- Identify leptonically decaying W boson while other W or Z boson decays to jets
- Select dijet events and boosted events such that the decay jets merge into a single jet

- AntiKt jet with 0.8 cone with pT > 200 GeV
- hadronic V candidate, mWV > 900 GeV
- Reject b jets = = > which reduces t tbar contribution
- apply PUPPI+SD on AK8, τ21 < 0.55, W+jets from sidebands

Maximizes sensitivity to aTGC ==> more events at high mass!

WW and WZ at 13 TeV (CMS)

• mWV used to extract limits on EFT

Comparison of limits

WW @13 TeV (ATLAS)

- WW (s-channel and H-induced)
- WW signal region (SR):
	- 1 $e\mu$ pair of isolated central leptons
	- No additional leptons ==> suppress VV
	- No jet with pT > 35 GeV & no central b-jets ==> reduce top
	- missing $p_T > 20$ GeV & $p e^{\mu}$ $\tau > 30$ GeV ==>reduce DY
	- $m_{e\mu}$ > 55 GeV (orthogonal to HWW analysis)
- Backgrounds (% of SR):
	- tt⁻ and W t (~ 26%): from top-enriched Data CR
	- Non-prompt leptons, mostly W+jets (∼ 3%): estimate relies on fake rate from Data
	- DY (∼ 4%), Multi-bosons (∼ 3%): using simulated samples

Fiducial cross section and unfolded cross section measurement

WW @13 TeV (ATLAS)

- Considering Effective Field Theory with five dimension-6 operators associated to the couplings: cWWW , cW , cB, cWWW , cW
- Unfolded p_T leading lepton distribution which is sensitive to anomalous couplings (especially last bin), and was used to constrain aTGC
- Signal including aTGC generated with madgraph5 amc@nlo+pythia8
- Competitive 95% CL intervals for aTGC are derived via a profile likelihood ratio test statistic, thanks to high center-ofmass energy

Comparison

EWK production: Vector Boson Scattering

- VV+2jets production dominated by $O(\alpha s^2)$ QCD processes
- VLVL scattering linked to the mechanism responsible for the EWSB
- Typical signature: two high pT jets in the forward-backward region with large rapidity separation and low hadronic activity elsewhere

Operators (Eboli model)

Higgs Fields

$$
\mathcal{L}_{S,0} = [(D_{\mu} \Phi)^{\dagger} D_{\nu} \Phi] \times [(D^{\mu} \Phi)^{\dagger} D^{\nu} \Phi]
$$

$$
\mathcal{L}_{S,1} = [(D_{\mu} \Phi)^{\dagger} D^{\mu} \Phi] \times [(D_{\nu} \Phi)^{\dagger} D^{\nu} \Phi]
$$

Gauge & Higgs Fields

$$
\mathcal{L}_{M,0} = \text{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi
$$

\n
$$
\mathcal{L}_{M,1} = \text{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi
$$

\n
$$
\mathcal{L}_{M,2} = \left[B_{\mu\nu} B^{\mu\nu} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right]
$$

\n
$$
\mathcal{L}_{M,3} = \left[B_{\mu\nu} B^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right]
$$

\n
$$
\mathcal{L}_{M,4} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} D^{\mu} \Phi \right] \times B^{\beta\nu}
$$

\n
$$
\mathcal{L}_{M,5} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} D^{\nu} \Phi \right] \times B^{\beta\mu}
$$

\n
$$
\mathcal{L}_{M,6} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\nu} D^{\mu} \Phi \right]
$$

\n
$$
\mathcal{L}_{M,7} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\nu} \Phi \right]
$$

Gauge Fields

$$
\mathcal{L}_{T,0} = \text{Tr} \left[W_{\mu\nu} W^{\mu\nu} \right] \times \text{Tr} \left[W_{\alpha\beta} W^{\alpha\beta} \right]
$$
\n
$$
\mathcal{L}_{T,1} = \text{Tr} \left[\hat{W}_{\alpha\nu} \hat{W}^{\mu\beta} \right] \times \text{Tr} \left[\hat{W}_{\mu\beta} \hat{W}^{\alpha\nu} \right]
$$
\n
$$
\mathcal{L}_{T,2} = \text{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times \text{Tr} \left[\hat{W}_{\beta\nu} \hat{W}^{\nu\alpha} \right]
$$
\n
$$
\mathcal{L}_{T,5} = \text{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times B_{\alpha\beta} B^{\alpha\beta}
$$
\n
$$
\mathcal{L}_{T,6} = \text{Tr} \left[\hat{W}_{\alpha\nu} \hat{W}^{\mu\beta} \right] \times B_{\mu\beta} B^{\alpha\nu}
$$
\n
$$
\mathcal{L}_{T,7} = \text{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times B_{\beta\nu} B^{\nu\alpha}
$$
\n
$$
\mathcal{L}_{T,8} = B_{\mu\nu} B^{\mu\nu} B_{\alpha\beta} B^{\alpha\beta}
$$
\n
$$
\mathcal{L}_{T,9} = B_{\alpha\mu} B^{\mu\beta} B_{\beta\nu} B^{\nu\alpha}
$$

WZ VBS: aQGC

CMS-SMP-18-001

ZZ VBS (CMS) *[Eur. Phys. J. C 78 \(2018\) 165](http://dx.doi.org/10.1140/epjc/s10052-018-5567-9)*

- fully leptonic final state $ZZ \rightarrow III$ ($I = e, \mu$)
	- low σ, small BR, large irreducible QCD background \rightarrow all final state particles can be reconstructed \rightarrow favorable for EWSB study
	- clean leptonic final state \rightarrow small reducible background
- MZZ is used to constrain the aQGCs
	- the results are statistically limited so far

involve U(1) fields only accessible via the final state of neutral gauge bosons

WV, ZV VBS (V=W,Z): aQGC (CMS)

CMS-PAS-SMP-18-006

- $WV \rightarrow V + a$ large radius jet, $ZV \rightarrow H + a$ large radius jet
- sensitivity is enhanced by requiring tight dijet selections and centrality of leptonically decayed W
	- major backgrounds: $V+jets$ and tt (for WV) \bullet not sensitive to SM yet
- MWV and MZV are used to constrain aQGCs
- stringent limits are set and improve the results with fully leptonic final state by factors of up to seven

CMS

ATLAS has a results with 2.7 sigma <https://arxiv.org/abs/1905.07714>

35.9 fb⁻¹ (13 TeV)

Summary

Discussion points

- Variables and binning:
	- What variables to measure (in case of unfolded distributions)
	- Which are the most sensitive to aGCs/EFT parameters?
	- Often only most obvious variables, correlated with the centre-of-mass energy are used
	- Useful to receive feedback on other interesting distributions (angular variables, 2 D distributions)

Discussion points

- **Unitarization**
	- Clipping? removing EFT signals above a certain threshold on truth level
	- easiest to implement but not well studied

Since dibosons processes can have very high energy, we can easily go outside the validity region of the EFT approach.

Discussion points

- Tools? What is the best approach to interpolate between EFT !=0 points?
	- MC@NLO, aMC@NLO (reweighting, possibility to generate single terms), etc…
- Theory uncertainties on tails

Other possibilities: VH boosted

- **VH resonance analysis**
	- Relies on V+Hf production modeling
	- Modeling systematics are dominant
	- V+bb is constrained with a specific control region but V+c is not

- Large systematics imposed $==$ high mass is limited by statistics, we don't care?
- What if we want to looks for non-resonant new physics: Electroweak Precision Tests in High-Energy Diboson Processes
	- **arXiv:1712.01310v1**
	- Need precision!

Ideas for the future (end of Run2-Run3)

- The idea for the future is to perform a global analysis of Higgs and diboson measurements at the LHC.
- Even though the choice of basis for the $D=6$ operators should be equivalent (up to EOM), it is relevant for how these combinations will be performed in practice.

Partially available at NLO

Easy UV matching (SUSY, Comp Higgs, ...)

Traditional param. Not easy UV matching

Interplay between diboson and Higgs

- The combined analysis will substantially increase the sensitivity to the coefficients of the D=6 operators in SMEFT.
- The idea is to provide combined limits in the (g^*, Λ) plane with different energy cuts. We are also working towards a robust determination of the uncertainties associated to D=8 operators and SMEFT NLO corrections

Summary

- Combined dim-6 EFT fit of aTGC measurements seems doable and worthwhile
	- Which measurements to include, which operator basis?
	- How to implement fit, treat correlation?
	- How can this be helpful in the greater scheme of things (global EFT fit)?
- For aQGC measurements situation less transparent
	- Different models and unitarizations schemes used in Run 1
	- Many measurements ongoing or planned
- Prospect show good potential for future runs/colliders

Backup

ZZ production

- Fully leptonic final state (electrons/muons)
	- Very clean experimental signature
- Only on-shell: $66 < m_Z < 116$ GeV
- Main background from 'fake' leptons.
- Measurement uncertainty is dominated by statistics.
- Dominant experimental uncertainties:
	- lepton reconstruction and identification efficiencies.

ZZ production

 $\frac{1}{22}$ [pb]

- Best available SM predictions are based on fixed-order MATRIX NNLO QCD calculations:
- NNLO QCD + NLO QCD gginitiated contribution + NLO EWK corrections + EWK-ZZjj

- Differential cross sections measured as a function of 20 observables.
- Δy(j1-j2) and m(jet1, jet2) are particularly sensitive to the EWK-ZZjj process

Search for neutral aTGCs

$$
\mathcal{L}_{\rm ZZV} = -\frac{e}{M_Z^2}\left(f_4^{\rm V}(\partial_\mu {\rm V}^{\mu\beta}) Z_\alpha (\partial^\alpha Z_\beta) + f_5^{\rm V}(\partial^\sigma V_{\sigma\mu}) \tilde{Z}^{\mu\beta} Z_\beta \right)
$$

•Primary signature of non-0 nTGC is increase in ZZ cross-section at high ZZ invariant masses and high Z bosons pT.

Limits already surpass LEP and will improve with Run2 Data

large angular

separation

small angular separation

Diboson Summary

- A lot of work has gone into understanding the theory aspects
	- We can currently test up to NNLO!
- Uncertainties on total cross section measurements are approaching the luminosity uncertainty
- Uncertainties on differential measurements still dominated by statistics
- Theory uncertainties are important as well
- Can mitigate lumi, theory uncertainties with ratios

39

⁽a) Transverse momentum of the four-lepton system.

Diboson Summary

- A lot of work has gone into understanding the theory aspects
	- We can currently test up to NNLO!
- Uncertainties on total cross section measurements are approaching the luminosity uncertainty
- Uncertainties on differential measurements still dominated by statistics
- Theory uncertainties are important as well
- Can mitigate lumi, theory uncertainties with ratios
- Synergies with searches in the same final states
	- X**→** WW **→** lvlv: [Eur. Phys. J. C 78 \(2018\) 24](https://link.springer.com/content/pdf/10.1140/epjc/s10052-017-5491-4.pdf)
	- X**→** ZZ**→** llll [arXiv:1712.06386](https://arxiv.org/abs/1712.06386)
	- X**→** ZZ**→** llvv [arXiv:1712.06386](https://arxiv.org/abs/1712.06386)

(a) Transverse momentum of the four-lepton system.

ssWW and ZZ

- Two forward jets well separated in rapidity highest pT jets considered as tag jets
- Two same-sign leptons & ET_{miss}
- Non-VBS EW processes with the same final state contribute to the signal **→** suppressed through kinematic cuts ATLAS 8 TeV CMS 13 TeV
	- 3.6 **σ** evidence
	- measured sigma of 1.5± 0.5 fb

nid

- Start from inclusive ZZ measurement
	- Add 2 jets in VBS Topology

Inclusive region: m_{ii}>100GeV **VBS region:** $\left|\Delta\eta_{jj}\right| > 2.4 + m_{jj} > 400$ GeV non-VBS region: $|\Delta\eta_{ii}| < 2.\stackrel{\sim}{4}$ or $m_{ii} < 400$ GeV

EWK signal significance 2.70 (exp 1.60)

Simulation Tools

WW/WZ ->lvjj

- 20.2 fb^{-1} of 8 TeV data
- \sim 6 times higher branching fraction than fully-leptonic channels.
- Two topologies: $WV \rightarrow \ell \nu j j$ (resolved) $WV \rightarrow \ell \nu J$ (boosted)
- Dominant background: $W/Z + jets$

Resolved topology:

- Two anti-kt R =0.4 \bullet jets
- Large statistics and lower systematic uncertainty

Boosted topology:

- One anti-kt $R=1$ jet \bullet
- **High sensitivity to** \bullet aTGCs due to probing higt p_T range

WW/WZ->lvjj

- Fiducial cross section is measured independently for the $WV \to \ell \nu jj$ and $WV \to \ell \nu J$ phase spaces.
- The two phase spaces are *partially overlapping*: some $V \rightarrow qq'$ events can be reconstructed both as 2 small-R jets and as one large-R jet \Rightarrow no combination of the two cross section measurements.
- The cross-section is extracted from a fit of the signal and background templates to $m(jj)/m(J)$.

Both measurements are compatible with Standard Model predictions at NLO QCD.

Anomalous gauge couplings and rare processes

- WWV (V= Z/γ) couplings -> WW and WZ measurements (also Wy)
	- Effective Lagrangian: new physics effects are parameterized as deviations from SM coupli $\frac{\sum_{w}^{\infty} W}{\sqrt{2\pi}} = ig_1^V (W_{\mu\nu}^+ W^{\mu} V^{\nu} - W_{\mu}^+ V_{\nu} W^{\mu\nu}) + i\kappa_V W_{\mu}^+ W_{\nu} V^{\mu\nu} + \frac{i\lambda_V}{m_{\nu}^2} W_{\lambda\mu}^+ W_{\nu}^{\mu} V^{\nu\lambda}$
	- 5 parameters: Δg1Z (g1Z-1), Δ**κ**1Z (**κ**1Z -1), Δ**κ**1**^γ** (**κ**1**^γ**-1), **λ**Z, **λγ**
- Effective field theory (EFT) approach: cWWW=Λ², cW =Λ², cB=Λ² (WWZ, WWγ)
- ZZV (V= Z/**γ**) couplings -> ZZ measurements (also Z**γ**)
	- Effective vertex function approach: $\mathcal{L}_{ZZV}=-\frac{e}{M_\pi^2}\left(f_4^{\rm V}(\partial_\mu\rm{V}^{\mu\beta})Z_\alpha(\partial^\alpha Z_\beta)+f_5^{\rm V}(\partial^\sigma V_{\sigma\mu})\tilde{Z}^{\mu\beta}Z_\beta\right)$
- Tools: Start with SM prediction (usually NLO)
- Add weights to simulated sample corresponding to different aGC values, reweight from one point to the other
	- Commonly use Madgraph at LO, NLO becoming available
	- VBFNLO, MC@NLO also provide calculations for different point

Interpretation

- \blacksquare Fix this by
	- Introducing form factors.
		- LEP, TeVatron, LHC
	- Project scattering amplitude.
		- k-Matrix (ATLAS)
	- Limit range of validity.
		- SM EFT (ATLAS, CMS).

Interpretation

Unfolding

•Unfolded kinematic distributions:

•Remove detector effects to allow independent interpretation of Data.

•Commonly used method

- •Bayesian iterative unfolding.
- •Unfolding within detector acceptance.
- •Normalised distributions.
- •Published Results (HEPDATA):
	- •Fractional, binned kinematic distributions.
	- •Full correlation matrices.
	- •Statistical and systematic uncertainties, background contributions.

The k-framework (1307.1347)

• modifications of the SM couplings involving h in the unitary gauge

$$
\frac{\sigma_{WH}}{\sigma_{WH}^{SM}} = \kappa_W^2
$$
\n
$$
\frac{\sigma_{ZH}}{\sigma_{ZH}^{SM}} = \kappa_Z^2
$$
\n
$$
\frac{\sigma_{ZH}}{\sigma_{ZH}^{SM}} = \kappa_Z^2
$$
\n
$$
\frac{\Gamma_{ZZ^{(*)}}}{\Gamma_{bb}^{SM}} = \kappa_B^2
$$

- PROs:
	- Simple and intuitive (at first)
	- Good for exploratory analysis (of SM hypothesis)
- CONs:
	- Not so Simple and intuitive in more complex situations
	- Not supported by physical hypothesis
	- Not renormalizable

Why combine?

- **Diboson:** Several final states with same sensitivity, expect good improvement with combination
- **Diboson+Leptons:** allows to distinguish between models
- We use a model with a generalized interaction Lagrangian
- **Referred to as the Heavy Vector Triplet (HVT) model**
- Define HVT-A (weakly-coupled) and HVT-B (strongly-coupled) benchmarks •

Bosonic & leptonic channels: VV, VH, lv, ll

Step-by-step combination procedure:

- 1. Combine seperately VV , VH , and dilepton
- 2. Combine $VV+VH$
- **first time @ LHC**

Combination

- Orthogonality between channels guaranteed by selection on number of leptons, jets, b-tags, and selection on ETmiss
- Overlap between W and VH analyses removed by vetoing Higgs boson candidates overlapping W or Z mass window **j=small-R jet, J=large-R jet**

• HVT model for Iv+II: Require generator-level mass to be within mass window of W'/Z' pole to minimize effects of interference btw signal and dominant DY bkg $_{52}$

Cross section definitions

- Why fiducial cross-sections?
- Correction for detector effects
	- easy interpretation for theorists
	- preserve measurements for posterity
- No acceptance correction
	- less model dependence

53

Search for neutral aTGCs

$$
\mathcal{L}_{\rm ZZV} = -\frac{e}{M_Z^2}\left(f_4^{\rm V} (\partial_\mu {\rm V}^{\mu\beta}) Z_\alpha (\partial^\alpha Z_\beta) + f_5^{\rm V} (\partial^\sigma V_{\sigma\mu}) \tilde{Z}^{\mu\beta} Z_\beta \right)
$$

•Primary signature of non-0 nTGC is increase in ZZ cross-section at high ZZ invariant masses and high Z bosons pT.

•ATLAS: pT-distribution of leading Z boson is used to derive limits on anomalous triple gauge couplings.

•CMS use mZZ

Global Higgs and diboson constraints

[Duriex, Grojean, Gu, Wang, '17]

- importance of complementary measurements (different c.o.m. energies, polarizations, distributions)
- importance of diboson measurement precision (not studied much by exp. collaborations)
- order of magnitude improvement wrt LHC, and δy_c constraint (especially on δc_Z , δc_{ZZ} , $\delta c_{Z\Box}$, δy_b , δy_τ , λ_Z)
- LHC helps for $\bar{c}_{\gamma\gamma}$, δy_{μ} , and δy_t (below 500 GeV!)