The Precision Higgs Frontier

Daniel de Florian ICAS - UNSAM Argentina

Ist COFI Workshop on Precision Electroweak July 17, 2019

Higgs discovered, re-discovered and re-re-discovered

Higgs discovered, re-discovered and re-re-discovered

Run I mass combination: ATLAS and CMS (2015) 125.09 GeV

Uncertainty in mass ~ 0.2%, better than for top (~0.5%)!

Higgs discovered, re-discovered and re-re-discovered

Uncertainty in mass ~ 0.2%, better than for top (~0.5%)!

Cross sections in "agreement" with SM in all channels (large errors yet)

Couplings

$H \rightarrow b\bar{b}$ observation! ~80 fb⁻¹

observed significance 5.4σ

signal strength : $1.01 \pm 0.12(\text{stat.})^{+0.16}_{-0.15}(\text{syst.})$

$t\bar{t}H$ observation!

 $\sigma_{t\bar{t}H} \times B_{\gamma\gamma} = 1.59^{+0.43}_{-0.39} \text{ fb} = 1.59^{+0.38}_{-0.36} \text{ (stat.)} {}^{+0.15}_{-0.12} \text{ (exp.)} {}^{+0.15}_{-0.11} \text{ (theo.) fb.}$

4.9 σ signal strength : 1.38 ± 0.41

even Searching for

 $H \to \mu^+ \mu^-$

second generation much more difficult

Everything looks SM-like within (large) uncertainties

There is plenty of room for discoveries yet

Everything looks SM-like within (large) uncertainties

There is plenty of room for discoveries yet

Search for new states Resonances: "Descriptive TH"

• Explore Higgs sector with precision

less known (room for surprises!)
more sensitive (Portal) to new physics
Potential : look at multiple Higgs production

• EXP and TH : (for Higgs) Precision is the name of the game

Search for new *interactions* Deviations: "Precision TH"

~20 years from now!

HL-LHC projections

(S2) TH uncertainties scaled down by factor 2, EXP scaled according to $\sqrt{\mathscr{L}}$

- Precision becomes critical
- TH: can we improve calculations? are we missing sources of uncertainty?
 EXP: using the most accurate results?

TH Precision in Higgs Production

Production Channels at the LHC

associated production with heavy quarks

Higgs boson production: how to achieve high precision in ggF

Perturbative expansion in QCD $\alpha_s \sim 0.11$

$$C_0 \alpha_s^0 + C_1 \alpha_s^1 + C_2 \alpha_s^2 + C_3 \alpha_s^3 + \dots$$

$$\sigma = \sigma^{(0)} (1 + 0.89 + 0.55 + 0.3 + ...)$$

$$\alpha_s^0 + \alpha_s^1 + \alpha_s^2 + \alpha_s^3$$

Slow convergence : requires high orders

Complicated by loop at the lowest order...

 $m_{
m top}
ightarrow \infty$ approximation

For light Higgs can use effective Lagrangian : one loop less!

 $X^{\mu\nu\rho\sigma}_{\bullet b} = \frac{1}{2} \int \overline{p} f \sigma x i f \sigma (g^{\mu\rho} g^{\nu\sigma} - g^{\mu\sigma} g^{\nu\rho}) + f_{ace} f_{bde} (g^{\mu\nu} g^{\rho\sigma} - g^{\mu\sigma} g^{\nu\rho}) + f_{ace} f_{bde} (g^{\mu\nu} g^{\rho\sigma} - g^{\mu\sigma} g^{\nu\rho})$

NLO exact

Dawson (1991); Djouadi, Spira, Zerwas (1991)

Graudenz, Spira, Zerwas (1993)

Improved by Threshold Resummation of

Higgs at N3LO

- Very relevant observable called for higher orders (slow convergence)
- Impressive calculation : new techniques
- Threshold expansion (very high order)
 Now full calculation Mistlberger (2018)
 Within heavy top approximation

68273802 loop and phase space integrals

Inclusive over parton radiation
 Observe stabilization
 Small correction (2% at M_H/2)
 Scale variation at N3LO ~2%

Improved Higgs Cross-section @ LHC

√at I3 TeV Higgs Cross-Section WG

Great improvement over the last years

Without QCD corrections : fail by more than a factor of 2

Need to attack in many fronts to further improve: pdf, top mass, EW

Improved Higgs Cross-section @ LHC

√at I3 TeV Higgs Cross-Section WG

Great improvement over the last years

Without QCD corrections : fail by more than a factor of 2

Need to attack in many fronts to further improve: pdf, top mass, EW

Improved Higgs Cross-section @ LHC

√at I3 TeV Higgs Cross-Section WG

• Great improvement over the last years

Without QCD corrections : fail by more than a factor of 2

Need to attack in many fronts to further improve: pdf, top mass, EW

but one source of uncertainty

 $\sigma_{\rm QCD}^{\rm LO} = 20.6 \text{ pb}, \quad \sigma_{\rm QCD/EW}^{\rm LO} = 21.7 \text{ pb}, \quad +5.3\% \text{ at LO}$ $\sigma_{\rm QCD}^{\rm NLO} = 32.66 \text{ pb}, \quad \sigma_{\rm QCD/EW}^{\rm NLO} = 34.41 \text{ pb} \quad +5.3\% \text{ at NLO}$

total factorization at NLO

Higgs Precision Era : DISTRIBUTIONS

Rapidity @ N3LO

Cieri, Chen, Gehrmann, Glover, Huss (2018)

- relies on qT subtraction method (assumption on 3rd order coeff.)
- will include decay and fiducial
- Flat K-factor (expected)
- similar features as inclusive convergence, scale dependence

agrees with Dulat, Mistlberger, Pelloni (2018) Threshold expansion

 $pp \rightarrow H + \text{jet}$

0000,000,0000

•3 NNLO calculations large mt approximation R.Boughezal, C. Focke, W. Giele, X. Liu, F. Petriello R.Boughezal, F.Caola, K.Melnikov, F.Petriello, M.Schulze X. Chen, T. Gehrmann, M. Jaquier, N. Glover

- •3 now in agreement (numerical accuracy far from trivial)
- Most recently including H decays
- •Fiducial cross sections

 $- H \rightarrow \gamma \gamma$ $- H \rightarrow WW^* \rightarrow (2l, 2\nu)$ $- H \rightarrow ZZ^* \rightarrow 4l$

Beyond the large top mass approximation: full NLO

0000

Jones, Kerner, Luisoni (2018)

Large K-factor ~ 2 For the scale choice $\mu = H_T/2$:

- K-factor very similar to HTL
- K-factor nearly flat at large p_T
- ~8% increase from including m_T in virtuals

top quark mass scheme uncertainty

Beyond the large top mass approximation: full NLO

Rescale NLO by $K_{NNLO} = NNLO_{HTL}/NLO_{HTL}$

Produce NLO improved NNLO predictions for $H \rightarrow \gamma \gamma$ with fiducial cuts, **Project:** Produce NLO improved NNLO

pⁱ¹ [GeV]

bottom-top quark interference in $pp \rightarrow H + jet$

similar NLO to top-mediated in HTL

 q_T resummation performed :uncertainties O(20%) from bottom quark mass scheme

Transverse momentum distribution M_H^2, q_T^2 Two scales problem

• QCD based on convergence of perturbative expansion $\alpha_s \ll 1$, $C_n \sim \mathcal{O}(1)$

Convergence spoiled when two scales are very different (small qT)

Converge of perturbative expansion restored after resummation sum "dominant logarithms" to all orders in coupling constant

- H known at N3LO
- H+jet known at N2LO
- resummation functions known at N3LL

♦ qT resummation performed at (~)N3LL Bizon et al (2018)

$$\sigma^{N^aLL} \sim H(\alpha_s)^{N^aLO} \times e^{S(\log M_H/q_T)^{N^aLL}}$$

RadISH

+ matching with f.o. distribution O(a-1)

very good convergence N2LL to N3LL µ_F = µ_R = m_H/2

reduction in scale dependence (accidentally small in some cases)

perturbative uncertainties around 6% for 5<q_T<35 GeV

similar results for fiducial case H → $\gamma\gamma$

VBF at NNLO

♦ (SF) DISxDIS like approach ~1% accurate picture

neglect color exchange between lower and upper legs

Cacciari, Dreyer, Karlberg, Salam,^HZanderighi (2015) Cruz-Martinez, Gehrmann, Glover, Huss (2018)

Uncovered ^{*q*} error in earlier calculation stemming from (NLO) VBF-3j piece

NNLO differential corrections larger (5-10%) than for inclusive (1%)
NNLO beyond NLO band
-4% correction from NNLO to NLO with VBF cuts
Known at N3LO for inclusive case

F. Dreyer, A. Karlberg (2016)

 $p_T^{j_1}$ [GeV]

 $H \rightarrow b\bar{b}$

VH at NNLO

Full NNLO production and decay (narrow width)

Previously NNLO production and NLO decay

007

کل

 $\sim Z$

g

Ferrera, Somogyi, Tramontano (2017) Caola, Luisoni, Melnikov, Röntsch (2017)

cross section with usual boosted cuts

W, Z

σ (fb)	NNLO(prod)+NLO(dec)	full NNLO
$pp \to W^+H + X \to l\nu_l b\bar{b} + X$	$3.94^{+1\%}_{-1.5\%}$	$3.70^{+1.5\%}_{-1.5\%}$
$pp \to ZH + X \to \nu\nu b\bar{b} + X$	$8.65^{+4.5\%}_{-3.5\%}$	$8.24^{+4.5\%}_{-3.5\%}$

accepted xsection reduced by full NNLO (6%)
 ~ O(EW) corrections

substantial impact on distributions trivial at LO

some effects accounted by PS (NNLOPS) Astil, Bizon, Re, Zanderighi (2018)

sizeable $gg \rightarrow HV$ above top threshold

Width from interference $H \rightarrow \gamma \gamma$

000

000

In diphoton channel, interference small for total cross section but asymmetry produces shift in invariant mass : enhanced by detector resolution

Off-shell effects and ing the feet of the second of the se

signal background $\mathcal{A}_{ij\to X} = \mathcal{A}_{ij\to H} \quad \Delta_{\mathrm{H}} \quad \mathcal{A}_{H\to X} \quad +\mathcal{A}_{continuum}$ Propagator $\Delta_{H}^{2}(q^{2}) \sim \frac{1}{(q^{2} - M_{H}^{2})^{2} + \Gamma_{H}^{2}M_{H}^{2}} \sim \frac{\pi}{M_{H}\Gamma_{H}}\delta(q^{2} - M_{H}^{2}) + \mathcal{O}\left(\frac{\Gamma_{H}}{M_{H}}\right) \mathbb{ZWA}$

$\begin{array}{c} \textbf{Off-shell effects and interfectors for the background} \\ \textbf{signal} & \textbf{background} \\ \textbf{oesijt-work for the Higgs Hoson?} \\ \textbf{Mathematical Structure} \\ \textbf{Mathemat$

But above threshold decay amplitude compensates $1/(q^2)^2$

$$\int |\mathcal{A}_{H \to VV}|^2 \sim (q^2)^2$$

Sizeable contribution from off-shellEnhances effect of interference

Width measurement from off-shell

 $gg \to H \to VV$

$gg \to (H) \to VV$ signal-background interference

 $gg \to (H) \to VV$ signal-background interference

 $gg \to (H) \to VV$ signal-background interference

Caola, Dowling, Melnikov, Röntsch, Tancredi (2016) Campbell, Ellis, Czakon, Kirchner (2016)

Available for massless partons @NLO (+1/mT expansion below threshold)
 But mass effects not-negligible (helicity flip in interference)

 $K_{\rm intf} = 1.65 \simeq \sqrt{K_{\rm sigl} K_{\rm bkgd}}$

 K-factor for ZZ interference about geometric mean for signal and bckg
 Larger for WW

 $gg \to (H) \to VV$ signal-background interference

Caola, Dowling, Melnikov, Röntsch, Tancredi (2016) Campbell, Ellis, Czakon, Kirchner (2016)

Available for massless partons @NLO (+ $1/m_T$ expansion below threshold) But mass effects not-negligible (helicity flip in interference)

 $K_{\text{intf}} = 1.65 \simeq \sqrt{K_{\text{sigl}} K_{\text{bkgd}}}$

K-factor for ZZ interference about geometric mean for signal and bckg Larger for WW

Inclusion of leptonic decay, H interference and all channels

2000

Higgs pair production

Higgs pair production

Need to measure HHH and HHHH couplings to explore the details of SSB mechanism

$$V = \frac{\lambda}{4} \left(2vH + H^2 \right)^2 = \frac{1}{2} \left(2\lambda v^2 \right) H^2 + \lambda v H^3 + \frac{\lambda}{4} H^4$$

Compared to ~50 pb for single Higgs(3 orders per extra H)

Problem: to measure nH coupling need to measure (n-1)H production Much smaller cross sections (a) 13 TeV g $\cos \infty$ ~ 30 fb challenging HQ4500 events/exp at 150 fb⁻¹ h9 0000 HH next discovery at the LHC?? g $\infty \infty$ HQ ~ 0.05 fb impossible Η $q \mod$

Compared to ~50 pb for single Higgs(3 orders per extra H)

Problem: to measure nH coupling need to measure (n-1)H production

Much smaller cross sections @ 13 TeV

~ 30 fb challenging

4500 events/exp at 150 fb⁻¹ HH next discovery at the LHC??

~ 0.05 fb impossible

Compared to ~50 pb for single Higgs(3 orders per extra H)

•Several recent phenomenological studies 20%-30% uncertainty in triple Higgs coupling ?

Baur, Plehn, Rainwater (2003) Dolan, Englert, Spannowsky (2012) Baglio et al (2012) Papaefstathiou, Yang, Zurita (2012)

More pessimistic ~ 100% call for 100 TeV Collider with 3000 fb⁻¹ Azatov, Contino, Panico, Son (2015)

• Other ways to probe the HHH coupling (indirectly)

HH upper limits

- Combined upper limits on Higgs pair production
- Experiments have different sensitivities on the different channels, but similar when combined

Reaching ~ O(10) xSM sensitivity

HH production channels

Associated production with top

Higgs-strahlung

\sqrt{s} [TeV]	$\sigma_{gg \to HH}^{\rm NLO}$ [fb]	$\sigma_{qq' \to HHqq'}^{\text{NLO}}$ [fb]	$\sigma_{q\bar{q}' \rightarrow WHH}^{\rm NNLO}$ [fb]	$\sigma_{q\bar{q} \rightarrow ZHH}^{\text{NNLO}}$ [fb]	$\sigma^{\rm LO}_{q\bar{q}/gg \to t\bar{t}HH}$ [fb]
8	8.16	0.49	0.21	0.14	0.21
14	33.89	2.01	0.57	0.42	1.02
33	207.29	12.05	1.99	1.68	7.91
100	1417.83	79.55	8.00	8.27	77.82

Gluon-gluon fusion dominates Only some contribute with HHH

LO production of HH in gg fusion

Full NLO calculation (partially numerical)

Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Schubert, Zirke (2016) Baglio, Campanario, Glaus, Mühlleitner, Spira, Streicher (2018)

-14% wrt naive approx. bigger for large invariant masses

- Provides solid results and distributions
- Understand approximations to be used at NNLO

- As expected, very similar pattern to single Higgs
- Large QCD corrections
- •Scale band: overlap between NLO and NNLO
- Reduction in scale dependence
- •Recently improved by NNLL threshold resummation deF, J. Mazzitelli (2018)

deF, Grazzini, Hanga, Kallweit, Lindert, Maienrhöfer, Mazzitelli, Rathlev (2018)

recently matched to full NLO in 3 different schemes (uncertainty estimate)

Grazzini, Heinrich, Jones, Kallweit, Kerner, Lindert, Mazzitelli (2018)

estimate uncertainty on lack of top mass at NNLO about 3%

1) NNLO_{NLO-i}

Rescale NLO by $K_{NNLO} = NNLO_{HTL}/NLO_{HTL}$

2) NNLO_{B-proj}

Project real radiation contributions to Born configurations, rescale by LO/LO_{HTL}

3) NNLO_{FTapprox}

NNLO HTL correction rescaled for each multiplicity by:

$$\mathcal{R}(ij \to HH + X) = \frac{\mathcal{A}_{\text{Full}}^{\text{Born}}(ij \to HH + X)}{\mathcal{A}_{\text{HEFT}}^{(0)}(ij \to HH + X)}$$

	\sqrt{s}	$13 { m TeV}$	
	NLO [fb]	$27.78^{+13.8\%}_{-12.8\%}$	_
	$\rm NLO_{FTapprox}$ [fb]	$28.91^{+15.0\%}_{-13.4\%}$	_
	$NNLO_{NLO-i}$ [fb]	$32.69^{+5.3\%}_{-7.7\%}$	IH + X
$\mathcal{R}(ij \rightarrow$	$NNLO_{B-proj}$ [fb]	$33.42^{+1.5\%}_{-4.8\%}$	$\frac{\mathbf{U}\mathbf{U} + \mathbf{V}}{\mathbf{U}\mathbf{U} + \mathbf{V}}$
	$NNLO_{FTapprox}$ [fb]	$31.05^{+2.2\%}_{-5.0\%}$	$\begin{bmatrix} I II + \Lambda \end{bmatrix}$
	M_t unc. NNLO _{FTapprox}	$\pm 2.6\%$	
ISS	NNLO _{FTapprox} /NLO	1.118	

New Physics in HH

Incorporated into Effective Lagrangian (higher dimensional operators)

$$\mathcal{L} = \mathcal{L}_{SM} + \Delta \mathcal{L}_6 + \Delta \mathcal{L}_8 + \dots$$

Dimension 6 operators for HH production

• EFT HH production

full m_T at NLO Buchalla, Capozi, Celis, Heinrich, Scyboz (2018)
 HTL at NNLO deF, Fabre, Mazzitelli (2018)

Combination applying $K_{NNLO} = NNLO_{HTL}/NLO_{HTL}$ to full m_T at NLO

deF, Jones, Mazzitelli @ Les Houches (2019)

One (big) issue: top mas scheme definition

Sizeable uncertainties (can reach 30%), hard to reduce

higher order corrections (3-loop with top) resummation very complicated (several regions with diff. treatments)

Single Higgs off-shell production affected same way: width extraction...

Conclusions. **Prospects**. Requirements

Amazing progress in LHC calculations during the last 2 decades

But to reach the TH accuracy required by the HL-LHC we will need:

- Higher order pQCD calculations (move towards N3LO)
- Resummation improvements
- EW/QED corrections
- Improvements in PS (>NL) and matching with fixed order
- Higher Precision in pdfs (N3LO?)
- More accurate extraction of coupling constant
- More rigorous treatment of TH uncertainties
- + many more

Involve both signal and background

• SM and SM+EFT tools (complete framework for global fits)

Precision physics rules and is FUN

