Jet substructure tools

Kyle Lee Stony Brook University

Ist COFI Workshop on Precision Electroweak 07/16/19 - 07/20/19

- Asymptotic freedom "only" allows us to compute interactions of quarks and gluons at short-distance (partonic cross-sections).
- Detectors are long-distance away. Experiments can only see hadrons and not free partons.

IR-safe observables:

- Observables which are independent of long-distance physics. Asymptotic freedom is enough to guarantee a full theoretical (perturbative) calculation.
- One of the simplest observable: $e^+e^- \rightarrow \text{hadrons}$

IR-safe observables:

• Observables which are independent of long-distance physics. Asymptotic freedom is enough to guarantee a full theoretical (perturbative) calculation.

• One of the simplest observable: $e^+e^- \rightarrow hadrons$

1-loop example: individually divergent, but finite sum!

• Asking a long-distance sensitive question will give sensitivity to non-perturbative physics!

In summary,

IR safe observables

$$\sigma_{exp} = \sigma_{pert}$$

Factorizable observables

• Allows separation of dynamics :

$$\sigma_{exp} = \sigma_{pert,1} \, \sigma_{pert,2} \, \cdots \, \sigma_{NP,1} \, \sigma_{NP,2} \, \cdots$$

• F_{NP} is a non-perturbative, but universal function.

ex: PDFs or FFs

IR-safe observables

• Jet cross-section is an another IR-safe observable!

- Azimuthal angle ϕ and pseudorapidity $\eta = -\ln\left(\tan\frac{\theta}{2}\right)$
- We open the cylinder and plot observed particles' P_T and it's angular distribution.
- Jets = collimated spray of particles.

Why do we have jets?

- Production of jet is consistent with the partonic picture of QCD.
- High probability of collinear and soft splittings: with $p_1^2 = 0$, $p_2^2 = 0$ $\frac{1}{(p_1 + p_2)^2} = \frac{1}{2E_1E_2(1 - \cos\theta)} \to \infty \text{ when } p_1 \to 0 \text{ or } p_2 \to 0 \text{ or } p_1 \sim p_2$

(Of course, probability cannot be infinities. Should really think of it as degenerate states.)

No unique way to define a jet

- Particles within some radius 'R' in (η, ϕ) - plane are defined as a jet.

Recombination-type algorithm (k_T - type)

 Begin with list of particles
 Define metrics (a = -1, 0, 1 for k_T, Cambridge-Aachen(CA), anti-k_T)

$$d_{ij} = \frac{\min\left(p_{T_i}^{2a}, p_{T_j}^{2a}\right)}{R^2} [(\eta_i - \eta_j)^2 + (\phi_i - \phi_j)^2]$$
$$d_i = p_{T_i}^{2a}$$

$$d_{\min} = \min\{d_{ij}, d_i\}$$

3.Merge particle i and j if d_{min} = d_{ij}.
Add i to list of jets if d_{min} = d_i.
4.Back to 1 until only left with list of jets.

Jets at the LHC

• Jets are produced copiously at the LHC

• At the LHC, 60 - 70 % of ATLAS & CMS papers use jets in their analysis!

Internal structure of Jets

• Precise determination of the internal structures of jets

Jet substructures and characteristic scales

Application of jet studies at the LHC

• Precision probe of QCD

process	sensitivity to PDFs
W asymmetry W and Z production (differential) W+c production Drell-Yan (DY): high invariant mass Drell-Yan (DY): low invariant mass	 → quark flavour separation → valence quarks → strange quark → sea quarks, high-x → low-x
W,Z +jets	→ gluon medium-x
Inclusive jet and di-jet production	→ gluon and $\alpha_s(M_z)$
Direct photon	→ gluon medium, high-x
ttbar, single top	→ gluon and $\alpha_s(M_z)$

• Constrain BSM Models

Fat jet from BSM signal

• Probe of quark gluon plasma

Cross Section

Jet substructure tools

Some applications more relevant to this workshop :

- Determination of PDFs
- α_s extraction
- Boosted boson discrimination
 / low-mass resonance searches
- Top quark mass determination

Baikov Davier Pich Boito SM review	т-decays
HPQCD (Wilson loops) HPQCD (c-c correlators) Maltmann (Wilson loops) PACS-CS (SF scheme) ETM (ghost-gluon vertex) BBGPSV (static potent.)	lattice
ABM BBG JR NNPDF MMHT	structure functions
ALEPH (jets&shapes) OPAL(j&s) JADE(j&s) Dissertori (3j) JADE (3j) DW (T) Abbate (T) Hoang	e ⁺ e ⁻ jets & shapes
GFitter CMS (tt cross section)	electroweak precision fits hadron collider
0.11 0.115 0.12 C	0.125 0.13 $\alpha_{s}^{}(M_{z}^{2})$

Inclusive Jets

Jet angularity

 D_2, τ_{21}

Heavy quark jet mass

QCD factorization

Also exclusive processes and $pp \to Z/\gamma + {\rm jet} + X$

Dasgupta, Dreyer, Salam, Soyez `15

Kaufmann, Mukherjee, Vogelsang`15

Kang, Ringer, Vitev `16

Dai, Kim, Leibovich `16

QCD factorization

Also exclusive processes and $pp \to Z/\gamma + {\rm jet} + X$

Dasgupta, Dreyer, Salam, Soyez `15 Kaufmann, Mukherjee, Vogelsang `15 Kang, Ringer, Vitev `16 Dai, Kim, Leibovich `16

Determination of PDFs

- Sensitivity to gluon pdfs.
- One less NP function to fit compared to inclusive hadron

QCD factorization

Jet angularity

• A generalized class of IR safe observables ($-\infty < a < 2$), angularity (applied to jet):

0.1

0.12

g

Factorization for the jet angularity

- Replace $J_c(z, p_T R, \mu) \to \mathcal{G}_c(z, p_T R, \tau_a, \mu)$
- When $\tau_a \ll R^{2-a}$, refactorize \mathcal{G}_c .

Relevant modes for $\tau_a \ll R^{2-a}$

 $\begin{array}{ll} \tau_{a} \sim z \, \theta^{2-a} & \mbox{Collinear} & \\ z_{c} \sim 1 & \theta_{c} \sim \tau_{a}^{\frac{1}{2-a}} & \mu_{C} \sim p_{T} \tau_{a}^{\frac{1}{2-a}} \\ \mbox{(Collinear-)soft} & \\ \theta_{s} \sim R & z_{cs} \sim \frac{\tau_{a}}{R^{2-a}} & \mu_{S} \sim \frac{p_{T} \tau_{a}}{R^{1-a}} \\ \mbox{Hard-collinear} & \\ \theta_{\mathcal{H}} \sim R & z_{\mathcal{H}} \sim 1 & \mu_{\mathcal{H}} \sim p_{T} R \end{array}$

000000000000000

Factorization for the jet angularity

- Replace $J_c(z, p_T R, \mu) \to \mathcal{G}_c(z, p_T R, \tau_a, \mu)$
- When $au_a \ll R^{2-a}$, refactorize \mathcal{G}_c .

• The ungroomed case ($au_a \ll R^{2-a}$)

$$\mathcal{G}_{i}(z, p_{T}R, \tau_{a}, \mu) = \sum_{j} \mathcal{H}_{i \to j}(z, p_{T}R, \mu) \mathcal{C}_{j}(\tau_{a}, p_{T}, \mu) \otimes S_{j}(\tau_{a}, p_{T}, R, \mu)$$

$$p_{T}R \qquad p_{T}\tau_{a}^{\frac{1}{2-a}} \qquad \frac{p_{T}\tau_{a}}{R^{1-a}} \stackrel{\text{last step}}{\longrightarrow} \stackrel{2^{\text{nd step}}}{\longrightarrow} \stackrel{1^{\text{st step}}}{\longrightarrow} \stackrel{2^{\text{nd step}}}{\longrightarrow} \stackrel{1^{\text{st step}}}{\longrightarrow} \stackrel{2^{\text{nd step}}}{\longrightarrow} \stackrel{1^{\text{nd step}}}{\longrightarrow} \stackrel{1^{\text{nd step}}}{\longrightarrow} \stackrel{2^{\text{nd step}}}{\longrightarrow} \stackrel{1^{\text{nd step}}}{\longrightarrow} \stackrel{2^{\text{nd step}}}{\longrightarrow} \stackrel{1^{\text{nd step}}}{\longrightarrow} \stackrel{1^{\text{nd step}}}{\longrightarrow} \stackrel{2^{\text{nd step}}}{\longrightarrow} \stackrel{1^{\text{nd step}}}{\longrightarrow} \stackrel{2^{\text{nd step}}}{\longrightarrow} \stackrel{1^{\text{nd step}}}{\longrightarrow} \stackrel{2^{\text{nd step}}}{\longrightarrow} \stackrel{1^{\text{nd step}}}{\longrightarrow} \stackrel{2^{\text{nd step}}}{\longrightarrow} \stackrel{2^{\text{nd step}}}{\longrightarrow} \stackrel{1^{\text{nd step}}}{\longrightarrow} \stackrel{2^{\text{nd step}}}{\longrightarrow} \stackrel{1^{\text{nd step}}}{\longrightarrow} \stackrel{2^{\text{nd step}}}{\longrightarrow}$$

Kang, KL, Ringer, arXiv:1801.00790

 $C_{i}(\tau) \qquad \qquad \mu_{C} \sim p_{T}(\tau_{a})^{\frac{1}{2-a}} \\ \mu_{S} \sim \frac{p_{T}\tau_{a}}{R^{1-a}}$

 $\mathcal{G}_c(p_T,$

- When we measure a substructure v from the jet, once we evolve to μ_J the remaining evolution to μ_H is given by DGLAP evolution!
- Two step factorization:
 a) production of a jet
 b) probing the internal structure of the jet produced.

• Non-perturbative effects:

$$u_S \sim \frac{p_T \tau_a}{R^{1-a}}$$

 Multi-Parton Interactions (MPI) (Underlying Events (UE))

Multiple secondary scatterings of partons within the protons may enter and contaminate jet.

• Non-perturbative effects:

• Multi-Parton Interactions (MPI) (Underlying Events (UE))

Multiple secondary scatterings of partons within the protons may enter and contaminate jet.

• Pileups

Secondary proton collisions in a bunch may enter and contaminate jet.

• Non-perturbative effects:

Non-perturbative Model

$$\frac{d\sigma}{d\eta dp_T d\tau} = \int dk F_\kappa(k) \frac{d\sigma^{\text{pert}}}{d\eta dp_T d\tau} \left(\tau - \frac{R}{p_T}k\right)$$

• Single parameter NP shape function :

Stewart, Tackmann, Waalewijn `15
$$F_{\kappa}(k) = \left(\frac{4k}{\Omega_{\kappa}^2}\right) \exp\left(-\frac{2k}{\Omega_{\kappa}}\right) \qquad \Omega_{\kappa} = \int dk \, k \, F(k)$$

• Both hadronization and MPI effects in jet mass is well-represented by shifting first-moments.

$$\Omega_{\kappa} = \Omega_{\kappa}^{\text{had}} + \Omega_{\kappa}^{\text{MPI}}$$

 $\Omega_{\kappa}^{had} = \langle 0 | \mathcal{O} | 0 \rangle \sim 1 \text{ GeV}$ is universal. Lee, Sterman `07

Kang, KL, Liu, Ringer `18

Kang, KL, Liu, Ringer `18

Kang, KL, Liu, Ringer `18

Soft Drop Grooming

• Taming wide angle soft radiations, giving sensitivity to MPI, PU, and NGLs directly changing distribution.

Soft Drop Grooming

• Taming wide angle soft radiations, giving sensitivity to UE, PU, and NGLs directly changing distribution.

Groom jets to reduce sensitivity to the wide-angle soft radiation.

- Soft drop grooming algorithms:
- 1. Reorder emissions in the identified jet according to their relative angle using C/A jet algorithm.
- 2. Recursively remove soft branches until soft drop condition is met:

$$\frac{\min[p_{T,1}, p_{T,2}]}{p_{T,1} + p_{T,2}} > z_{\text{cut}}\left(\frac{\Delta R_{12}}{R}\right)$$

Larkoski, Marzani, Soyez, Thaler `14 Frye, Larkoski, Schwartz, Yan `16

Relevant modes in the groomed jet

 $\tau_a \sim z \, \theta^{2-a}$

 $z > z_{\rm cut} (\theta/R)^{\beta}$

37

• The ungroomed case ($\tau_a \ll R^{2-a}$)

Hard-collinear

$$\theta_{\mathcal{H}} \sim R \qquad z_{\mathcal{H}} \sim$$

 $\begin{array}{ll} \mbox{Collinear} \\ z_c \sim 1 & \theta_c \sim \tau_a^{\frac{1}{2-a}} \end{array}$

(Collinear-)soft $\theta_s \sim R \quad z_{cs} \sim \frac{\tau_a}{R^{2-a}}$

• The groomed case ($\tau_{a,gr}/R^{2-a} \ll z_{cut} \ll 1$)

Hard-collinear $\theta_{\mathcal{H}} \sim R \qquad z_{\mathcal{H}} \sim 1$ Collinear $z_c \sim 1 \qquad \theta_c \sim \tau_a^{\frac{1}{2-a}}$ $\notin gr \operatorname{soft}$ $\theta_{\notin \operatorname{gr}} \sim R \qquad z_{\notin \operatorname{gr}} \sim z_{\operatorname{cut}} \left(\frac{\theta}{R}\right)^{\beta} = z_{\operatorname{cut}}$ $\in gr \operatorname{soft}$ (collinear-soft) $z_{\operatorname{egr}} \sim z_{\operatorname{cut}} \left(\frac{\theta}{R}\right)^{\beta} = z_{\operatorname{cut}}^{\frac{2-a}{2-a+\beta}} \theta_{\operatorname{egr}} \sim \left(\frac{\tau_a R^{\beta}}{z_{\operatorname{cut}}}\right)^{\frac{1}{2-a+\beta}}$

Factorization for the groomed jet angularity

$$J_c \to \mathcal{G}_c$$

• The ungroomed case ($au_a \ll R^{2-a}$)

$$\mathcal{G}_i(z, p_T R, \tau_a, \mu) = \sum_j \mathcal{H}_{i \to j}(z, p_T R, \mu) C_j(\tau_a, p_T, \mu) \otimes S_j(\tau_a, p_T, R, \mu)$$

• Jointly resums large logs $\alpha_s^n \ln^n R$ and $\alpha_s^n \ln^{2n} \tau_a^{\frac{1}{2-a}}/R$

• The groomed case (
$$\tau_{a,gr}/R^{2-a} \ll z_{cut} \ll 1$$
) $\theta_{\mathcal{H}} \sim R$
 $\theta_{dm} \sim R$

 $\mathcal{G}_{i}(z, p_{T}R, \tau_{a}, z_{\text{cut}}, \beta, \mu) = \sum_{j} \mathcal{H}_{i \to j}(z, p_{T}R, \mu) S_{j}^{\notin \text{gr}}(p_{T}, R, z_{\text{cut}}, \beta, \mu) C_{j}(\tau_{a}, p_{T}, \mu) \otimes S_{j}^{\in \text{gr}}(\tau_{a}, p_{T}, R, z_{\text{cut}}, \beta, \mu)$

• Jointly resums large logs $\alpha_s^n \ln^n R$, $\alpha_s^n \ln^{2n} \tau_a^{\frac{1}{2-a}}/R$, and $\alpha_s^n \ln^{2n} z_{\text{cut}}$

Phenomenology (groomed jet mass)

- Developed the formalism for single inclusive groomed jet mass cross-section.
- Shows very good agreement with the data.
- $\Omega_k = 1 \text{ GeV} \implies$ Reduced contamination as expected. NP effects mostly from hadronization.

See also ATLAS, arXiv: 1711.08341 Larkoski, Marzani, Soyez, Thaler `14 Frye, Larkoski, Schwartz, Yan `16

• General angularities show good agreement with Pythia with reduced contamination from MPI/PU.

α_s extraction

• World Average with 0.9% total uncertainty

 $\alpha_s(m_Z) = 0.1181 \pm 0.0011$

- Most precise input: lattice determination
- Most numerous input: e^+e^- event shape determination: thrust and C-parameter.
 - $3 4\sigma$ tension with lattice.

Using pp-extractions:

- High-quality of data pouring out of the LHC.
- Complimentary study to e^+e^- extractions.
- Currently feasible to determine with 10% uncertainty.

Les Houches 2017 I. Moult, B. Nachman, G. Soyez, J. Thaler (section coordinators)

α_s extraction

• Key challenges in α_s extraction is the degeneracy with non-perturbative effects.

α_s extraction

- Extend range of validity by two orders for 1 TeV jet.
- Reduced robustness to NP effects and increased sensitivity to $\, lpha_{s} \,$
- Groomed angularities or energy-energy correlations provide additional independent handles with `a'.
- Currently feasible to determine with 10% uncertainty.

Les Houches 2017 I. Moult, B. Nachman, G. Soyez, J. Thaler (section coordinators)

Electroweak scale objects as jets

• Hadronically decayed electroweak scale objects can have sufficiently high p_T to appear as multi-prong jets.

Boosted top

• Measuring jet substructures can help us distinguish the origin of the jets observed.

Multi-prong jet substructures

- Construct an observable using a set of IRC safe observables to discriminate different configurations.
 - N-Jettiness as a basis :

$$\tau_N^{(\alpha)} = \frac{1}{p_T} \sum_{i \in J} p_{T,i} \min\{\Delta R_{i,1}^{\alpha}, \Delta R_{i,2}^{\alpha}, \cdots, \Delta R_{i,N}^{\alpha}\}$$

Note that $\tau_a = \tau_1^{(2-a)}$

Multi-prong jet substructures

• N-point energy (p_T) correlations as a basis :

$$e_2^{\alpha} = \frac{1}{p_T^2} \sum_{i < j \in J} p_{T,i} p_{T,j} \Delta R_{ij}^{\alpha}$$
$$e_3^{\alpha} = \frac{1}{p_T^3} \sum_{i < j < k \in J} p_{T,i} p_{T,j} p_{T,k} \Delta R_{ij}^{\alpha} \Delta R_{jk}^{\alpha} \Delta R_{ik}^{\alpha}$$

Soft Haze

Collinear Subjets

Larkoski, Moult, Neill `16-17

Multi-prong jet substructures

• N-point energy (p_T) correlations as a basis :

• Define $D_2 = \frac{e_3}{(e_2)^3}$ to discriminate the two configurations

• Each regions require respective factorization for analytical computation

Factorization of different regions

Collinear Subjets

$$\frac{d\sigma}{dZ \, de_2^{(\alpha)} de_3^{(\alpha)}} = \sum_{f, f_a, f_b} H_{n_t \bar{n}_t}^f J_{\bar{n}_t} P_{n_t \to n_a, n_b}^{f \to f_a f_b} \left(Z; e_2^{(\alpha)} \right) \int de_3^c de_3^{\bar{c}} de_3^s de_3^{cs} \right)$$
$$\delta \left(e_3^{(\alpha)} - e_3^c - e_3^{\bar{c}} - e_3^s - e_3^{cs} \right) J_{n_a}^{f_a} \left(Z; e_3^c \right) J_{n_b}^{f_b} \left(1 - Z; e_3^{\bar{c}} \right) S_{n_t \bar{n}_t} \left(e_3^s \right) S_{n_a n_b \bar{n}_t}^+ \left(e_3^{cs} \right)$$

- Gives resummation of large logarithms
- And likewise factorize 1-prong configuration, etc. $S_{n\bar{n}}$

Larkoski, Moult, Neill `16-17

Discrimination

• Study of performance and robustness of various jet substructure observables as two-prong taggers.

Les Houches 2017

- Systematically improvable analytic calculations of next-generation jet substructures.
- Gives separation of non-perturbative and perturbative effects.
- Subject to extraneous effects of hadron colliders; groomed, dichroic D_2, τ_{21}, \cdots

Low-mass resonance searches

Low-mass resonance searches

- Use jet substructure to probe small scales within a high p_T jet.
- Tagger : yes/no D_2, τ_{21}, \cdots
- Look at mass distributions measured on a tagged jet.

I. Moult UCLA `17

- Nontrivial correlation between tagger and jet mass
- Extended limits to 50-300 GeV low-mass resonances.

High p_T ISR + Z'

Top quark mass determination

• Most precise determination with help of MC:

Tevatron : $m_t^{\text{MC}} = 174.34 \pm 0.64 \text{ GeV}$ CMS : $m_t^{\text{MC}} = 172.44 \pm 0.49 \text{ GeV}$ ATLAS : $m_t^{\text{MC}} = 172.84 \pm 0.70 \text{ GeV}$

- Unclear which renormalization scheme definition $m_t^{\rm MC}$ relates to. (Sensitive to the details of MC generator)
- Need an observable which has a systematically improvable theoretical description and a clear connection to the field theoretic definition of top quark mass.

t

Measuring top mass with jet

- Construct jet sufficiently large enough to capture all the decay products.
- Dependence on jet properties must be understood or eliminated.
- Multi-scale problems (gives large logs) : m_t, Γ_t, m_J, p_T
- Effects in a hadron collider : ISR, UE, PU, hadronization, ...

Groomed top jet

• Groom away to remove soft contaminations

Groomed top jet

• Groom away to remove soft contaminations

Hoang, Mantry, Pathak, Stewart `17

Conclusions

- Factorization formalism for studying jet substructures was presented
- Discussed soft drop grooming and demonstrated its reduced sensitivity to NP wide angle contaminations.
- Groomed jet angularity and its application to α_s extraction was discussed.
- Multi-prong observables and their' application as taggers were discussed.
- Discussed low-mass resonance searches and top quark mass determination using jet substructures.

Thank you!