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Introduction

PDF’s are an important or dominant uncertainty to precision
measurements at the LHC of e.g. sin2 θW and MW

There are many measurements, in particular of W and Z
production at the LHC which can constrain PDFs in the
relevant phase space

In-situ constraints can also be used to constrain PDFs in the
context of the measurements themselves

This talk:

Overview of particularly interesting and relevant measurements
Overview of related phenomenological studies
Some personal thoughts
Some “unrelated” technical work in progress
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W mass at LHC

Current ATLAS measurement of mW performed using 1D p`T and MT

distributions (in bins of η`)
Highest possible precision required on lepton momentum and hadronic
recoil scale/resolution
p`T (and pνT ) distributions depend not only on mW but also critically on
pW
T as well as polarization → strong dependence on QCD calculation and

PDFs

MT distribution still sensitive to pW
T and polarization due to finite

detector acceptance
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Eur. Phys. J. C 78 (2018) 110 (ATLAS)
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W mass: PDF Uncertainties

Eur. Phys. J. C 78 (2018) 110 (ATLAS)

mW = 80370± 7(stat.)±11(exp. syst)±14(mod. syst.) MeV

mW = 80370± 7(stat.)±11(exp.)±8.3(QCD) ±5.5(EWK)±9.2(PDF) MeV

PDF Uncertainty (MeV)

per |η|-charge cat. 20-34
per-charge 14-15
full combination 9.2

PDFs determine the W rapidity
spectrum and lepton decay angles
through W polarization

Well-defined correlations between
phase space regions and processes
which are already partly exploited
in present measurement to reduce
uncertainty

Can be further exploited in the
future Category
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W mass: PDF Uncertainties

arXiv:1902.10229 (HL-LHC Yellow Report)

Projected additional reduction in PDF uncertainties from
additional measurements HL-LHC (or LHeC) could
significantly reduce PDF uncertainty on mW
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In-situ PDF constraints: Weak Mixing Angle Case

CMS weak mixing angle measurement exploits in-situ
constraints to reduce PDF uncertainties with Bayesian
reweighting of Monte Carlo replicas (equivalent to profiling of
nuisance parameters associated with Hessian representation)
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Drell Yan Production at the LHC

Production and decay of Z/γ∗ → `+`− or W → `ν at the LHC, inclusive

in additional hadronic activity, can be characterized by a 5-dimensional

differential cross section

θ and φ are the decay

angles of the

lepton/neutrino in the

rest-frame of the Z/γ∗ or

W , defined e.g. in the

Collins-Soper frame

Josh Bendavid (CERN) PDF Constraints 7



Drell Yan Measurements
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Drell-Yan differential cross sections can be measured very precisely

Sensitivity to PDFs

Measurements integrated in p``T reduce the impact of higher-order QCD

corrections (but acceptance cuts on lepton pT and η are necessarily

present for all fiducial cross sections...)
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Drell Yan Measurements
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Drell Yan Measurements
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Precise normalized cross sections/shape also relevant, limited by lepton

efficiencies → correlations across phase-space crucial
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W Differential Cross Sections/charge asymmetry

Eur. Phys. J. C 76 (2016) 469 (CMS)

W differential cross sections and charge asymmetries provide constraints
on the valence quark pdfs

Main systematic uncertainties: Lepton efficiencies, multi-jet background

estimate

Josh Bendavid (CERN) PDF Constraints 11



W Differential Cross Sections/charge asymmetry
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Correlations of Lepton Efficiency Uncertainties
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Forward W/Z Production at LHC (LHCb)

JHEP 09 (2016) 136

LHCb has complementary coverage for charged leptons,
starting from η > 2 up to η < 4.25(4.5)

Provides complementary information on PDFs
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Forward W/Z Production at LHC (LHCb)

JHEP 10 (2016) 030 (LHCb)

LHCb has complementary coverage for charged leptons,
starting from η > 2 up to η < 4.25(4.5)

Provides complementary information on PDFs
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Forward W/Z Production at LHC (LHCb)

arXiv:1508.06954 G. Bozzi, L. Citelli, M. Vesterinen, A. Vicini

Complementarity of forward phase space for PDFs in W mass
context demonstrated in simplified phenomenological studies
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W+charm

Eur. Phys. J. C (2019) 79:269 (CMS)
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Impact of Resummation in predictions for PDF Fits

M. Boonekamp https://indico.cern.ch/event/801961/contributions/3368455/attachments/

1824716/2985820/psKfactors_050419.pdf
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Impact of Resummation in predictions for PDF Fits

p`T > 20 GeV, |η`| < 2.5
M. Boonekamp https://indico.cern.ch/event/801961/contributions/3368455/attachments/

1824716/2985820/psKfactors_050419.pdf
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Impact of Resummation in predictions for PDF Fits

p`T > 20 GeV, |η`| < 2.5
M. Boonekamp https://indico.cern.ch/event/801961/contributions/3368455/attachments/

1824716/2985820/psKfactors_050419.pdf
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Impact of Resummation in predictions for PDF Fits

p`T > 20 GeV, |η`| < 2.5

M. Boonekamp https://indico.cern.ch/event/801961/contributions/3368455/attachments/

1824716/2985820/psKfactors_050419.pdf

Resummation corrections are relevant for predictions of W and Z
differential fiducial cross sections (mainly due to lepton pT cuts in fiducial
phase space definition)
Effect may be small in absolute terms, but is relevant compared to the
precision of the experimental measurements, in particular for normalized
cross sections
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W vs lepton charge asymmetry at the Tevatron

Phys. Rev. D 91, 032007 (2015) (D0)

Lepton charge asymmetry vs η is a convolution of PDF effect with V-A
structure of W decay
W charge asymmetry as a function of W rapidity more directly probes the
PDFs (but less directly accessible experimentally)
Tevatron experiments historically provided both measurements

n.b. at Tevatron, asymmetries are sensitive to sign of η or y due to pp̄

collisions → final results are “CP” folded A(−η/y)→ −A(η/y)
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W vs lepton charge asymmetry at the Tevatron

(a) Lepton Charge Asymmetry (b) W Charge Asymmetry

Phys. Rev. D 91, 032007 (2015) (D0), Phys. Rev. Lett. 112, 151803 (2014) (D0)

Unfolding to W rapidity using missing transverse momentum and MW

constraint

Resolving resulting twofold ambiguity requires assumption about relative

fractions of incoming quark vs antiquark in proton beam (plus smaller

effect from gluon-initiated production) → 10% effect in total, with

non-negligible uncertainty from PDF’s → some circularity in using data in

this form for PDF determination
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W vs lepton charge asymmetry at the Tevatron

(a) Lepton Charge Asymmetry (b) W Charge Asymmetry

Phys. Rev. D 91, 032007 (2015) (D0), Phys. Rev. Lett. 112, 151803 (2014) (D0)

On the other hand, lepton charge asymmetry vs η` does not contain all

available information, since information on p`T , pνT and ∆φ`,ν are lost
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W Helicity/Rapidity at LHC

(a) left-handed W+ (b) right-handed W+ (c) W+ Rapidity

At tree level:
All W production at LHC is qq̄ induced
Direction of the W relative to the incoming quark determines the
helicity
Only two helicity amplitudes/polarization states
W has zero transverse momentum

Full information on valence quark PDF’s in the relevant x range

contained in dσ/dy broken down into the two helicity states

JHEP12(2017)130 E. Manca, O. Cerri, N. Foppiani, G. Rolandi
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W Helicity/Rapidity at LHC

(a) left-handed W+ (b) right-handed W+ (c) W+ Rapidity

Direction of incoming quark depends even more on PDF’s in pp vs pp̄
collisions

gluon-induced contribution from higher order effects larger and more

uncertain (also due to higher Ecm compared to Tevatron)

JHEP12(2017)130 E. Manca, O. Cerri, N. Foppiani, G. Rolandi
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W Helicity/Rapidity at LHC

(a) left-handed W+ (b) right-handed W+

2D distribution of charged lepton pT and η can discriminate
between helicity states as well as rapidity of the W

JHEP12(2017)130 E. Manca, O. Cerri, N. Foppiani, G. Rolandi
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W Helicity/Rapidity at LHC

(a) Gen-Level Fit

Left and right polarization components can be extracted simultaneously
as a function of W rapidity, using only charged lepton kinematics
Avoids dependence on less precisely measured missing transverse
momentum (at the cost of some statistical dilution)

Avoids circular dependence on PDFs since quark vs anti-quark fraction for

each rapidity is measured

JHEP12(2017)130 E. Manca, O. Cerri, N. Foppiani, G. Rolandi
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W Helicity/Rapidity at LHC

Left and right polarization components can be extracted simultaneously
as a function of W rapidity, using only charged lepton kinematics

Resulting measurement would have sensitivity to PDFs

Important systematic uncertainty from W pT distribution (which is

implicitly integrated over)

JHEP12(2017)130 E. Manca, O. Cerri, N. Foppiani, G. Rolandi
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W mass from charged lepton kinematics

Phenomenological study in LHCb-like acceptance
(30 < p`T < 50GeV,2 < η` < 4.5) comparing 1D fit of p`T distribution to
2D fit of (p`T , η

`) distribution, with and without posterior weighting (∼
equivalent to profiling) of PDF’s

2D fit is closely related to previous study, differs from ATLAS fit to p`T in

categories of η` because the latter effectively leaves the normalization in

each η` bin freely floating (and uses coarser η` binning)

Eur. Phys. J. C (2019) 79: 497, S. Farry, O. Lupton, M. Pili, M. Vesterinen
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Towards experimental measurement

Phenomenological studies motivate a 2D fit to charged lepton pT ,|η|
distribution to extract W rapidity distribution decomposed into left, right
(longitudinal) polarization states

Equivalent to measuring unpolarized cross section, and A0,A4 angular
coefficients integrated over mass and pW

T

(Can and should also measure unfolded 2D p`T , |η`| distribution)

Such a fit can also be used to extract MW with strong in-situ PDF
constraints

Experimentally challenging, must control all the usual ingredients to

maximum precision:

Lepton energy/momentum scale
Lepton efficiencies
QCD background estimate

Theoretical modeling of boson production and decay (+QED

effects)

Must correctly model normalization as well as shape for predictions and
experimental/theoretical uncertainties, with proper correlations

At least a minimal cut on missing transverse energy and/or transverse

mass might be necessary/desirable to suppress QCD background
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In-situ PDF Constraints

PDF Bayesian reweighting and/or profiling strongly desired to
reduce uncertainties

This implies detector level extraction of PDF constraints,
using e.g. Monte Carlo with full shower/hadronization/MPI +
detector simulation for prediction

Could still be done fully consistently at NNLO in QCD if using
Powheg-MINLO-NNLOPS or GENEVA for Monte Carlo

In both cases predictions would include resummation
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In-situ PDF Constraints

Ideally detailed information on in-situ constraints should be
provided in a useful form:

Reweighting of MC replicas: Post-fit weight for each replica
(nreplica floats)
Profiling of Hessian uncertainties: Post-fit value of nuisance
parameters associated with eigenvectors, plus postfit
covariance matrix (neigenvector + (n2eigenvector + neigenvector)/2
floats)

In principle the two are equivalent, but converting from a
small number of replicas to a covariance matrix of this nature
likely suffers from large numerical inaccuracies, so the latter
may be preferred where gaussian uncertainties is an
acceptable approximation...

Interesting possibilities for comparison between detector level
constraints, constraints from several different variants of
unfolded cross sections
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Avoiding Double Counting of PDF Constraints

Avoiding double counting of PDF constraints is critical for correct
statistical interpretation → W (and/or Z) inclusive/differential cross
sections and asymmetries from the same dataset must be excluded from
input PDFs (or else careful factorization of observables)

In particular when exploiting normalization information as well as shape,
any fit to lepton pT , η distribution in W production is ∼fully overlapping
with W differential cross section and/or charge asymmetry data

To the extent that theoretical modeling of W (and/or Z) production is
crucial, may also be desirable to exclude closely related datasets (e.g. W
and Z data from other LHC experiments and/or CM energies)

Thanks to NNPDF collaboration for providing at request of CMS

additional NNPDF3.1 sets with some/all W/Z data removed
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Towards experimental measurement

PDF Bayesian reweighting and/or profiling strongly desired to
reduce uncertainties

One possibility which allows consistent treatment of PDF
uncertainties with other experimental and theoretical
systematic uncertainties: (binned) profile likelihood fit

MW fit has one parameter of interest, but helicity-rapidity
extraction, or finely binned differential cross section
measurement could have tens or hundreds

Detailed model for all uncertainties could imply a large
number of nuisance parameters →, likelihood fit could
become technically complicated/challenging...
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Introduction: Maximum Likelhood Fits

Common framework for statistical interpretation of HEP data:
Maximum Likelihood Fits

Maximize the joint probability of the data ~x given some
parameters of the model ~θ which may include both
parameters of interest (POIs) such as production cross
sections, particle masses, etc, as well was nuisance
parameters, e.g. reconstruction efficiency or energy scale
allowed to vary within some prior constraint

Two variants:

Unbinned Maximum Likelihood Fit: Typically a small
number of observables (often 1, rarely more than 3) with a
large number of events, evaluate the continuous probability
density for each data event: − ln L = −

∑
events ln p(~xievent|~θ)

Binned Maximum Likelihood Fit: Likelihood is evaluated
using bin counts in a histogram: − ln L = −

∑
bins ln p(Nibin|~θ)
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Introduction: Maximum Likelihood Fits

Unbinned Maximum Likelihood Fit: Typically a small number of
observables (often 1, rarely more than 3) with a large number of events,
evaluate the continuous probability density for each data event:
− ln L = −

∑
events ln p(~xievent|~θ) → small feature space, many examples

Binned Maximum Likelihood Fit: Likelihood is evaluated using bin
counts in a histogram: − ln L = −

∑
bins ln p(Nibin|~θ) → Moderately

sized feature space, 1 example
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Introduction: Maximum Likelihood Fits

Special case: Binned template fits: Probability for observing
a given number of counts in a given histogram bin is itself
encoded in a set of histogram “templates” which are scaled
and/or interpolated as a function of the model parameters

Multi-dimensional histograms can always be “unrolled”
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Binned Maximum Likelihood Fits at the LHC

Large scale binned maximum likelihood fits used e.g. for some
Higgs measurements typically performed with combination of
RooFit+Minuit2
e.g. in CMS implemented in Higgs combination tool:

Likelihood constructed and computed in RooFit
Minimization with Minuit2
Gradient for minimization evaluated numerically with some
variation of finite difference method (implemented internally in
Minuit)

Numerical precision of gradients strongly limited by finite
difference method (though maybe smarter adapative
algorithms could be used here)

Large number of POI’s and/or nuisance parameters can make
convergence slow or unstable

Large number of events can further exacerbate numerical
precision and stability issues (looking for very small relative
change in likelihood value)
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What is TensorFlow?

TensorFlow is a library for high performance numerical
computation

Typical workflow:

Construct a computational graph using TensorFlow library in
python
Execute graph (transparent-to-user compilation and execution
on threaded/vectorized CPU’s, GPU’s, etc)

Originally developed at Google for deep learning applications

Efficient and numerically stable computation of
gradients by backpropagation, needed for Stochastic
Gradient Descent in training of deep neural networks
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Binned Maximum Likelihood Fits in Tensorflow

Most important in this context: Efficient and numerically
stable computation of gradients (using standard backprop)

Parallelization, use of GPU’s etc also interesting

Goal is to be free of any technical constraints for what
concerns the level of detail and sophistication needed for
modeling experimental and theoretical systematic uncertainties

JB, work in progress
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Likelihood Construction in TensorFlow

Any template shape fit can be expressed as a many-channel counting
experiment

Negative log-likelihood can be written as

L =
∑
ibin

(
−nobs

ibin ln nexp
ibin + nexp

ibin

)
+

1

2

∑
ksyst

(
θksyst − θ0ksyst

)2
(1)

nexp
ibin =

∑
jproc

rjprocn
exp
ibin,jproc

∏
ksyst

κ
θksyst
ibin,jproc,ksyst (2)

nexp
ibin,jproc is the expected yield per-bin per-process

rjproc is the signal strength multiplier per-process

θksyst are the nuisance parameters associated with each systematic
uncertainty

κibin,jproc,ksyst is the size of the systematic effect per-bin, per-process,
per-nuisance

(The above assumes all shape uncertainties are implemented as

log-normal variations on individual bin yields, which is appropriate for e.g.

PDF/QCD scale variations, but not for things like momentum

scale/resolution variations)
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Likelihood Construction in TensorFlow

Full contents of datacards can be represented by a few numpy
arrays:

nbin × nproc 2D tensor for expected yield per-bin per-process

nbin × nproc × nsyst 3D tensor for κ (actually lnκ) values

parameterizing size of systematic effect from each nuisance

parameter on each bin and process (actually two tensors, one each

for lnκup and lnκdown to allow for asymmetric uncertainties)

POI’s and nuisance parameters implemented as TensorFlow
Variables

Full likelihood constructed as TensorFlow computation graph
with observed data counts as input

Some details:
Precompute as much as possible with numpy arrays which are
loaded into graph via tf data api from h5py arrays on disk
Double precision everywhere

Offsetting of likelihood in optimal placement within the graph to

minimize precision loss
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Likelihood Construction in TensorFlow

Any template shape fit can be expressed as a many-channel counting
experiment

Negative log-likelihood can be written as

L =
∑
ibin

(
−nobs

ibin ln nexp
ibin + nexp

ibin

)
+

1

2

∑
ksyst

(
θksyst − θ0ksyst

)2
(3)

nexp
ibin =

∑
jproc

rjprocn
exp
ibin,jproc

∏
ksyst

κ
θksyst
ibin,jproc,ksyst (4)

Likelihood evaluation reduced to essentially two large tensor contractions
(matrix multiplications)

Both dense and sparse implementations are used as appropriate
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Minimization

Minimization in TensorFlow normally done with variations on
Stochastic Gradient Descent, appropriate for very large
number of parameters in deep learning (10’s of thousands to
millions)

For O(100’s-1000’s) of parameters, more appropriate to use
second-order minimization techniques

Particularity: Loss function needs to be minimized
exhaustively. There is a global minimum, and further
statistical analysis (determining confidence interevals etc)
requires finding it to high accuracy

Hessian can be computed analytically but still slow and not
very optimal → use quasi-newton methods which approximate
hessian from change in gradient between iterations (the
MIGRAD algorithm in Minuit/Minuit2 belongs to this class of
algorithms, as does BFGS)
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Minimization

While the likelihood has a global minimum and is well
behaved in the vicinity, it is (apparently) NOT convex
everywhere in the parameter space

BFGS-type quasi-Newton methods are not appropriate since the
Hessian approximation can never capture non-convex features
Line search is not a good strategy even with a well-approximated
(or exact) Hessian, since this will tend to get stuck or have slow
convergence near saddle points/in non-convex regions

Major source of non-convexity is the polynomial interpolation of lnκ

for asymmetric log normal uncertainties

Started with trust-region based minimizer with SR1
approximation for hessian, as implemented in SciPy (minimal
adaptation required for existing TensorFlow-SciPy interface)

Bonus: this also supports arbitrary non-linear constraints
Caveat: Only likelihood and gradient evaluation done in
Tensorflow, rest of minimizer is in python/numpy
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Some Performance Tests

Likelihood Likelihood+Gradient Hessian

Combine, TR1950X 1 Thread 10ms 830ms -
TF, TR1950X 1 Thread 70ms 430ms 165s

TF, TR1950X 32 Thread 20ms 71ms 32s
TF, 2x Xeon Silver 4110 32 Thread 17ms 54ms 24s

TF, GTX1080 7ms 13ms 10s
TF, V100 4ms 7ms 8s

(1444 bins, 96 POI’s, 70 nuisance parameters, 180M expected events)
n.b. these numbers are with an older implementation, all have improved
Single-threaded CPU calculation of likelihood is 7x slower in Tensorflow
than in Roofit (to be understood and further optimized)
Gradient calculation in combine/Minuit is with 2n likelihood evaluations
for finite differences (optimized with caching)
Xeons are lower clocked than Threadripper, but have more memory
channels and AVX-512
Back-propagation calculation of gradients in Tensorflow is much more
efficient (in addition to being more accurate and stable)

Best-case speedup is already a factor of 100
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Some Performance Tests: Minimization

Minimization
L+Gradient scipy trust-constr scipy cpu usage

TF, TR1950X 32 Thread 71ms/call 200ms/iteration 2107%
2x Xeon Silver 4110 32 Thread 54ms/call 237ms/iteration 2587%

TF, GTX1080 (+TR1950X) 13ms/call 84 ms/iteration 1081%
TF, V100 (+2x Xeon 4110) 7ms/call 78ms/iteration 1558%

Each iteration of the SR1 trust-region algorithm requires
exactly 1 likelihood+gradient evaluation

Significant amount of processing power (and CPU bottleneck)
in scipy+numpy parts of the minimizer (non-trivial linear
algebra)
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Further Optimizing Minimization

Current SR1 trust-region implementation in scipy based on
conjugate gradient method for solving the quadratic
subproblem → large number of inexpensive sub-iterations
which don’t parallelize well

Have implemented several variants of quasi-newton trust
region minimizers natively in TensorFlow

Most advanced based on L-SR1 Orthonormal basis
minimization (arXiv:1506.07222), including a new
non-limited-memory variant with direct update to
eigen-decomposition of Hessian

Hessian-free methods (e.g “trust-krylov” in SciPy) are also
interesting since they can be used with exact Hessian-vector
products computed efficiently with backprop, but in practice
these require many Hessian-vector product evaluations
per-iteration
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Some Performance Tests: Minimization

Minimization
L+Gradient scipy trust-constr TF TrustSR1Exact

TF, TR1950X 32 T 71ms/call 200ms/iteration 89ms/iteration
2x Xeon Silver 4110 32 T 54ms/call 237ms/iteration 63ms/iteration

TF, GTX1080 (+TR1950X) 13ms/call 84ms/iteration 55ms/iteration
TF, V100 (+2x Xeon 4110) 7ms/call 78ms/iteration 51ms/iteration

Example here with iterative Cholesky decomposition to solve
TR subproblem (a la Nocedal and Wright algo 4.3)

Substantial reduction of overhead relative to bare
likelihood+gradient call

Relative remaining overhead much larger on GPU

n.b, this fit converges in about 500 iterations with the
TrustSR1Exact algorithm, about 25s/fit with GPU

Using gradient descent methods available in Tensorflow
requires O(10k) iterations
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Updated Performance Tests

(Newer TensorFlow, further optimized, but larger model)
Likelihood L+Grad Hessian MaxRSS

TF, TR1950X 1 Thread (pfor) 26ms 73ms 7.9s 3000MB
TF, TR1950X 32 Thread (pfor) 39ms 83ms 1.1s 3900MB

TF, GTX1080 (+TR1950X) (loop) 64ms 69ms 3.0s 2900MB
TF, GTX1080 (+TR1950X) (pfor) 64ms 69ms 0.8s 2900MB

(1824 bins, 101 processes, 96 POI’s, 257 nuisance parameters)

Size of raw arrays is 760MB

non-pfor hessian calculation failed with “Already exists: Resource” errors

without “ on CPU
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Updated Performance Tests: Large/Sparse Model

Likelihood L+Grad Hessian MaxRSS

Sparse TF, TR1950X 1 Thread 24ms 40ms 52s 980MB
Sparse TF, TR1950X 32 Thread 40ms 70ms 3.7s 1200MB

Dense TF, TR1950X 1 Thread 245ms 540ms - 6800MB
Dense TF, TR1950X 32 Thread 237ms 534ms - 7000MB

(1296 bins, 655 processes, 648 POI’s, 444 nuisance parameters)

GPU not available with standard build (SparseTensorDenseMatMul)

Size of raw arrays in dense mode is 6GB

pfor for Hessian not available in Sparse case (SparseTensorDenseMatMul
not supported)

Hessian computation in dense mode caused OOM with pfor, and
“Already exists: Resource” errors without

Dense model too big for my GPU
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Optimizing Memory Consumption

This type of model has a peculiar feature of very large
constants (3-tensor representing systematic variations on
templates can be several GB especially in dense mode with
larger numbers of processes and systematic variations)

To optimize memory consumption for graphs with large
constants:

Don’t include large constants in the graph definition (there is
also a hardcoded 2GB limit in doing so)
Don’t read large numpy arrays from disk (unless using
memmapping, but then can’t use compression)
Don’t store large constants in tf Variables (because it’s
apparently impossible to initialize them without having at least
a second copy of the contents in memory)
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Optimizing Memory

Adopted solution

HDF5 arrays with chunked storage and compression
Numpy arrays are stored as flattened HDF5 arrays to allow
reading chunk by chunk while preserving the order of the array
and maintaining flexibility in choice of chunk size
Read chunk by chunk using tf data API with tf py func to
interface with h5py
Use batching to reassemble full array into a single tensor, then
use the in-memory cache so the read only happens once
(reshaping and possible truncation of the overflow from the
last batch have near-zero cpu or memory footprint)
Text+root histogram conversion has been adapted to write
hdf5 arrays instead of a tf graph with in-built constants

(Avoiding a second copy in memory took some patience and
was not obvious how to achieve)
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Covariance Matrices

Irrespective of minimization algorithm, often want to compute
covariance matrix at the end for interpreting uncertainties →
compute Hessian and invert it

New vectorized pfor construction gives large speedups for this
(so much that full second-order minimization methods are
even feasible in some cases)
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Other Optimization Opportunities

Detailed study of scaling of minimization
overhead/performance with number of free parameters is
needed

Most likely there is further room for improvement with better
algorithms/ones more suited for GPU’s

Efficiency of specific matrix factorization steps to be carefully
checked/profiled

Batch evaluation of likelihood feasible/useful? (parallel
minimization algorithm? Multiple toys in parallel?)

Implement simpler χ2/Gaussian approximation to likelihood
for high statistics cases
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Implementation

Code lives here: https://github.com/bendavid/

HiggsAnalysis-CombinedLimit/tree/tensorflowfit (not very
streamlined for the moment, since the priority has been on a particular set
of physics analyses in progress with it, and currently somewhat
intertwined with existing CMS fitting tools)

Two scripts:

scripts/text2hdf5.py: Create tensorflow graph from
datacards/ROOT histograms (outputs hdf5 file containing
flattened arrays for large constant tensors)
scripts/combinetf.py: Construct graph, load constant arrays
into tensors, run fits/toys/scans with graph

Some interesting bits related to reading hdf5 arrays, some sparse tensor
operations, and minimization in python area

Second order minimizers will be interesting to contribute upstream (and

some work already on L-SR1 algorithms for more conventional deep

learning applications, e.g arXiv:1807.00251)
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Tensorflow Maximum Likelihood Fitting: Other Related
Work

Some related efforts by others in parallel (some more focus on
general frameworks, less on large-scale performance
optimization so far):

pyhf: https://github.com/diana-hep/pyhf

ZFit: https://github.com/zfit/zfit

Small working group formed amongst interested people
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Conclusions

Many existing measurements targeting constraints on PDFs in
or near relevant phase space for precision electroweak
measurements at LHC

Existing measurements of sin2 θW and MW already exploit
in-situ constraints on PDFs to varying degrees

Phenomenological studies and projections from experiments
indicate further potential in this direction

Ultimate precision in this direction may also require technical
improvements in statistical interpretation

Interesting new measurements are expected in the coming
months and years
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