QED+QCD NNLO corrections to Drell Yan Production

Daniel de Florian ICAS - UNSAM
Argentina

|st COFIWorkshop on Precision Electroweak July 182019

COLEGIO DE FISICA FUNDAMENTAL E INTERDISCIPLINARIA DE LAS AMERICAS

UNSAM
UNIVERSIDAD
NACIONAL DE
SAN MARTÍN

Drell Yan Production

Vector Boson production measured with great precision
Drell-Yan one of the best understood processes and most precise TH

Standard Candle of particle physics

- Luminosity monitor, detector calibration, PDF constrains

Great test for BSM: new gauge interactions, susy, heavy resonances, etc...

High resolution for SM: W mass, width and mixing angle

QCD corrections can be rather large: NNLO
Transverse momentum resummation

Drell Yan

QCD NLO

'79-Altarelli, Ellis \& Martinelli

QCD NNLO

Inclusive: '91-Haamberg, van Neerven \& Matsuura
'92-van Neerven \& Zijlstra '02 - Haarlander \& Kilgore

Exclusive:
'06-Melnikov \& Petriello
'09-Catani, Cieri, Ferrera, de Florian \& Grazzini
'17-Boughezal, Campbell, Ellis, Focke, Viele, Petriello \& Williams

TH precision

$$
p p \rightarrow \gamma^{*}+X \rightarrow e^{+} e^{-}+X
$$

\Leftrightarrow Bands of of the same size and do not overlap!
\Rightarrow Central value shifts by a few $\%$.
\Rightarrow Needs further study:

- Different scale/PDF choices?
- Missing N3LO PDFs?
- Z-boson contribution?

C. Duhr (EPS2OI9)

[CD, Dulat, Mistlberger (2019, to appear)]

Enhanced • by photon emission kinematical effects, mass-singular log's $\propto \alpha \ln \left(m_{\mu} / Q\right)$ for bare muons, etc.

- at high energies

EW Sudakov log's $\propto\left(\alpha / s_{\mathrm{W}}^{2}\right) \ln ^{2}\left(M_{\mathrm{W}} / Q\right)$
Require perturbative and non-perturbative work

- $\mathcal{O}(\alpha)$ corrections to all PDFs typical impact: $\Delta(\mathrm{PDF}) \lesssim 0.3 \%(1 \%)$ for $x \lesssim 0.1(0.4), \mu_{\mathrm{fact}} \sim M_{\mathrm{W}}$

Big effort to obtain EW/QED perturbative corrections for DY
Full results at NLO QED NLO: Baur, Keller, Sakumoto (1997)
EW NLO: Baur, Brein, Hollik, Schappacher,Wackeroth (200I)
Partial results at NNLO EWxQCD for inclusive cross section
$\alpha \times \alpha_{s}$ mixed needed to reach below 1% accuracy
Real corrections : Bonciani, Buccioni, Mondini,Vicini (2017)
Master integrals for Virtual corrections : Bonciani, Di Vita, Mastrolia, Schubert (2016)

Mixed EWxQCD corrections in the resonance region

Dittmaier, Huss, Schwinn (2014, 2015,2016)

(a) Factorizable initial-initial corrections

(c) Factorizable final-final corrections

(b) Factorizable initial-final corrections

(d) Non-factorizable corrections

Mixed EWxQCD corrections in the resonance region

Dittmaier, Huss, Schwinn (2014, 2015,2016)

(a) Factorizable initial-initial corrections

(c) Factorizable final-final corrections

(b) Factorizable initial-final corrections

Mixed EWxQCD corrections in the resonance region

Dittmaier, Huss, Schwinn (2014, 2015,2016)

(a) Factorizable initial-initial corrections

(c) Factorizable final-final corrections

(b) Factorizable initial-final corrections

negligible (<0.1\%)

Mixed EWxQCD corrections in the resonance region

Dittmaier, Huss, Schwinn (2014, 2015,2016)

(a) Factorizable initial-initial corrections

(c) Factorizable final-final corrections

(b) Factorizable initial-final corrections

negligible (<0.1\%)

Mixed EWxQCD corrections in the resonance region

Dittmaier, Huss, Schwinn (2014, 2015,2016)

(a) Factorizable initial-initial corrections

(c) Factorizable final-final corrections

(b) Factorizable initial-final corrections

negligible (<0.1\%)

Mixed EWxQCD corrections in the resonance region

Dittmaier, Huss, Schwinn (2014, 2015,2016)

(a) Factorizable initial-initial corrections

(c) Factorizable final-final corrections

(b) Factorizable initial-final corrections

negligible (<0.1\%)

Mixed EWxQCD corrections in the resonance region

Dittmaier, Huss, Schwinn (2014, 2015,2016)

main contribution

(a) Factorizable initial-initial corrections

Mixed EWxQCD corrections in the resonance region

Dittmaier, Huss, Schwinn (2014, 2015,2016)

main contribution

(a) Factorizable initial-initial corrections

(c) Factorizable final-final corrections

negligible (<0.1\%)

Mixed EWxQCD corrections in the resonance region

Dittmaier, Huss, Schwinn (2014, 2015,2016)
unknown

(a) Factorizable initial-initial corrections

(c) Factorizable final-final corrections
negligible and known

main contribution

(b) Factorizable initial-final corrections

negligible (<0.1\%)

this talk

- QEDxQCD splitting functions DdeF, Rodrigo, Sborlini (16)
- Full QED+QCD NNLO corrections to DY DdeF, M.Der, I.Fabre (18)

or how to do NNLO without computing a single integral

QED+QCD NNLO corrections to

 Splitting Functions and photon PDFsDGLAP very well known in QCD : quarks and gluons (colored particles)

$$
\begin{gathered}
\frac{d q_{i}}{d t}=\sum_{j=1}^{n_{F}} P_{q_{i} q_{j}} \otimes q_{j}+\sum_{j=1}^{n_{F}} P_{q_{i} \bar{q}_{j}} \otimes \bar{q}_{j}+P_{q_{i} g} \otimes g \\
\frac{d g}{d t}=\sum_{j=1}^{n_{F}} P_{g q_{j}} \otimes q_{j}+\sum_{j=1}^{n_{F}} P_{g \bar{q}_{j}} \otimes \bar{q}_{j}+P_{g g} \otimes g
\end{gathered}
$$

- Parton model content of proton quite more complicated than naive picture

DGLAP very well known in QCD : quarks and gluons (colored particles)

$$
\begin{gathered}
\frac{d q_{i}}{d t}=\sum_{j=1}^{n_{F}} P_{q_{i} q_{j}} \otimes q_{j}+\sum_{j=1}^{n_{F}} P_{q_{i} \bar{q}_{j}} \otimes \bar{q}_{j}+P_{q_{i} g} \otimes g \\
\frac{d g}{d t}=\sum_{j=1}^{n_{F}} P_{g q_{j}} \otimes q_{j}+\sum_{j=1}^{n_{F}} P_{g \bar{q}_{j}} \otimes \bar{q}_{j}+P_{g g} \otimes g
\end{gathered}
$$

- Parton model content of proton quite more complicated than naive picture

Partons could be quarks, gluons but also photons, leptons, Higgs,W,Z.
Content for most of them negligible
Also decoupled from q / g if only QCD considered

DGLAP very well known in QCD : quarks and gluons (colored particles)

$$
\begin{array}{r}
\frac{d q_{i}}{d t}=\sum_{j=1}^{n_{F}} P_{q_{i} q_{j}} \otimes q_{j}+\sum_{j=1}^{n_{F}} P_{q_{i} \bar{q}_{j}} \otimes \bar{q}_{j}+P_{q_{i} g} \otimes g \\
\frac{d g}{d t}=\sum_{j=1}^{n_{F}} P_{g q_{j}} \otimes q_{j}+\sum_{j=1}^{n_{F}} P_{g \bar{q}_{j}} \otimes \bar{q}_{j}+P_{g g} \otimes g
\end{array}
$$

Parton model content of proton quite more complicated than naive picture

Partons could be quarks, gluons but also photons, leptons, Higgs,W,Z.
Content for most of them negligible
Also decoupled from q / g if only QCD considered
But when QED turned on, new distributions appear (and mix) in evolution

$$
\begin{array}{ll}
\text { photon parton distribution function } & \gamma\left(x, Q^{2}\right) \\
\text { lepton parton distribution function } & l\left(x, Q^{2}\right)
\end{array}
$$

neglect heavy particles such as $\mathrm{W}, \mathrm{Z}, \mathrm{H}$

QED+QCD set of DGLAP evolution equations

$$
\begin{aligned}
& \frac{d q_{i}}{d t}=\sum_{f} P_{q_{i} f} \otimes f+\sum_{f} P_{q_{i} \bar{f}} \otimes \bar{f}+P_{q_{i} g} \otimes g+P_{q_{i} \gamma} \otimes \gamma . \\
& \frac{d g}{d t}=\sum_{f} P_{g f} \otimes f+\sum_{f} P_{g \bar{f}} \otimes \bar{f}+P_{g g} \otimes g+P_{g \gamma} \otimes \gamma \\
& \frac{d \gamma}{d t}=\sum_{f} P_{\gamma f} \otimes f+\sum_{f} P_{\gamma \bar{f}} \otimes \bar{f}+P_{\gamma g} \otimes g+P_{\gamma \gamma} \otimes \gamma \\
& \frac{d l_{i}}{d t}=\sum_{f} P_{l_{i} f} \otimes f+\sum_{f} P_{l_{i} \bar{f}} \otimes \bar{f}+P_{l_{i} g} \otimes g+P_{l_{i} \gamma} \otimes \gamma
\end{aligned}
$$

Splitting functions expansion in QCD and QED couplings

$$
a_{\mathrm{S}} \equiv \frac{\alpha_{\mathrm{S}}}{2 \pi}
$$

$$
a \equiv \frac{\alpha}{2 \pi}
$$

$$
P_{i j}=a_{\mathrm{S}} P_{i j}^{(1,0)}+a P_{i j}^{(0,1)}+a_{\mathrm{S}}^{2} P_{i j}^{(2,0)}+\underbrace{a_{\mathrm{S}} a P_{i j}^{(1,1)}+a^{2} P_{i j}^{(0,2)}}_{\substack{\text { NLO mixed } \\ \text { QCD }+ \text { QED } \\ \text { (were) unknown }}}+\ldots
$$

How to get them

- From QCD to QED (abelianization) simple LO example

$$
\begin{array}{ll}
P_{q q}^{(1,0)}(x)=C_{F}\left[\frac{1+x^{2}}{(1-x)_{+}}+\frac{3}{2} \delta(1-x)\right]: & q \rightarrow q(g) \\
\delta(1-x) \text { from } \int_{0}^{1} P_{q q}(x) d x=0 & \text { Curci, Furmanski, Petronzio (1980) }
\end{array}
$$

How to get them

- From QCD to QED (abelianization) simple LO example

$$
q \rightarrow q(g)
$$

$P_{q q}^{(1,0)}(x)=C_{F}\left[\frac{1+x^{2}}{(1-x)_{+}}+\frac{3}{2} \delta(1-x)\right]$
$\delta(1-x)$ from $\quad \int_{0}^{1} P_{q q}(x) d x=0$
Curci, Furmanski, Petronzio (I980)
to QED: change gluon into photon
= change QCD color factor into QED charge!

$$
P_{f f}^{(0,1)}(x)=e_{f}^{2}\left[\frac{1+x^{2}}{(1-x)_{+}}+\frac{3}{2} \delta(1-x)\right]
$$

Same approach can be applied at QCD2

- mixed QCD+QED
- QED ${ }^{2}$

- mixed QCD+QED
deF, Rodrigo, Sborlini (2016)
All two-loop splitting functions obtained

$$
\begin{aligned}
& P_{q \gamma}^{(1,1)}=\frac{C_{F} C_{A} e_{q}^{2}}{2}\left\{4-9 x-(1-4 x) \ln (x)-(1-2 x) \ln ^{2}(x)+4 \ln (1-x)\right. \\
&\left.+p_{q g}(x)\left[2 \ln ^{2}\left(\frac{1-x}{x}\right)-4 \ln \left(\frac{1-x}{x}\right)-\frac{2 \pi^{2}}{3}+10\right]\right\}, \\
& P_{g \gamma}^{(1,1)}= C_{F} C_{A}\left(\sum_{j=1}^{n_{F}} e_{q_{j}}^{2}\right)\left\{-16+8 x+\frac{20}{3} x^{2}+\frac{4}{3 x}-(6+10 x) \ln (x)-2(1+x) \ln ^{2}(x)\right\} \\
& P_{\gamma \gamma}^{(1,1)}=-C_{F} C_{A}\left(\sum_{j=1}^{n_{F}} e_{q_{j}}^{2}\right) \delta(1-x), \\
& P_{q g}^{(1,1)}= \frac{T_{R} e_{q}^{2}}{2}\left\{4-9 x-(1-4 x) \ln (x)-(1-2 x) \ln ^{2}(x)+4 \ln (1-x)\right. \\
&+\left.p_{q g}(x)\left[2 \ln ^{2}\left(\frac{1-x}{x}\right)-4 \ln \left(\frac{1-x}{x}\right)-\frac{2 \pi^{2}}{3}+10\right]\right\}, \\
& P_{\gamma g}^{(1,1)}= T_{R}\left(\sum_{j=1}^{n_{F}} e_{q_{j}}^{2}\right)\left\{-16+8 x+\frac{20}{3} x^{2}+\frac{4}{3 x}-(6+10 x) \ln (x)-2(1+x) \ln ^{2}(x)\right\} \\
& P_{g g}^{(1,1)}=-T_{R}\left(\sum_{j=1}^{n_{F}} e_{q_{j}}^{2}\right) \delta(1-x), \\
& P_{q q}^{S(1,1)}= P_{q \bar{q}}^{S(1,1)}=0, \\
& P_{q q}^{V(1,1)}=-2 C_{F} e_{q}^{2}\left[\left(2 \ln (1-x)+\frac{3}{2}\right) \ln (x) p_{q q}(x)+\frac{3+7 x}{2} \ln (x)+\frac{1+x}{2} \ln ^{2}(x)\right. \\
&\left.+5(1-x)+\left(\frac{\pi^{2}}{2}-\frac{3}{8}-6 \zeta_{3}\right) \delta(1-x)\right], \\
& P_{q \bar{q}}^{V(1,1)}= 2 C_{F} e_{q}^{2}\left[4(1-x)+2(1+x) \ln (x)+2 p_{q q}(-x) S_{2}(x)\right] \\
& P_{g q}^{(1,1)}= C_{F} e_{q}^{2}\left[-\left(3 \ln (1-x)+\ln { }^{2}(1-x)\right) p_{g q}(x)+\left(2+\frac{7}{2} x\right) \ln (x)\right. \\
&\left.\quad-\left(1-\frac{x}{2}\right) \ln { }^{2}(x)-2 x \ln (1-x)-\frac{7}{2} x-\frac{5}{2}\right] \\
& P_{\gamma q}^{(1,1)}=P_{g q}^{(1,1)},
\end{aligned}
$$

more combinations of pdfs dependence on electric charge

$$
\begin{aligned}
& P_{q \gamma}^{(0,2)}=\frac{C_{A} e_{q}^{4}}{2}\left\{4-9 x-(1-4 x) \ln (x)-(1-2 x) \ln ^{2}(x)+4 \ln (1-x)\right. \\
& \left.+p_{q g}(x)\left[2 \ln ^{2}\left(\frac{1-x}{x}\right)-4 \ln \left(\frac{1-x}{x}\right)-\frac{2 \pi^{2}}{3}+10\right]\right\}, \\
& P_{\gamma q}^{(0,2)}=e_{q}^{4}\left[-\left(3 \ln (1-x)+\ln ^{2}(1-x)\right) p_{g q}(x)+\left(2+\frac{7}{2} x\right) \ln (x)-\left(1-\frac{x}{2}\right) \ln ^{2}(x\right. \\
& \left.-2 x \ln (1-x)-\frac{7}{2} x-\frac{5}{2}\right]-e_{q}^{2}\left(\sum_{f} e_{f}^{2}\right)\left[\frac{4}{3} x+p_{g q}(x)\left(\frac{20}{9}+\frac{4}{3} \ln (1-x)\right)\right] \\
& P_{q q}^{V(0,2)}=-e_{q}^{4}\left[\left(2 \ln (x) \ln (1-x)+\frac{3}{2} \ln (x)\right) p_{q q}(x)+\frac{3+7 x}{2} \ln (x)\right. \\
& \left.+\frac{1+x}{2} \ln ^{2}(x)+5(1-x)+\left(\frac{\pi^{2}}{2}-\frac{3}{8}-6 \zeta_{3}\right) \delta(1-x)\right] \\
& -e_{q}^{2}\left(\sum_{f} e_{f}^{2}\right)\left[\frac{4}{3}(1-x)+p_{q q}(x)\left(\frac{2}{3} \ln (x)+\frac{10}{9}\right)+\left(\frac{2 \pi^{2}}{9}+\frac{1}{6}\right) \delta(1-x)\right] \\
& P_{q \bar{q}}^{V(0,2)}=e_{q}^{4}\left[4(1-x)+2(1+x) \ln (x)+2 p_{q q}(-x) S_{2}(x)\right] \text {, } \\
& P_{q Q}^{S(0,2)}=P_{q \bar{Q}}^{S(0,2)}=C_{A} e_{q}^{2} e_{Q}^{2} p_{s}(x), \\
& P_{l \gamma}^{(0,2)}=\frac{e_{l}^{4}}{C_{A} e_{q}^{4}} P_{q \gamma}^{(0,2)}, \\
& P_{\gamma l}^{(0,2)}=e_{l}^{4}\left[-\left(3 \ln (1-x)+\ln ^{2}(1-x)\right) p_{g q}(x)+\left(2+\frac{7}{2} x\right) \ln (x)-\left(1-\frac{x}{2}\right) \ln ^{2}(x)\right. \\
& \left.-2 x \ln (1-x)-\frac{7}{2} x-\frac{5}{2}\right]-e_{l}^{2}\left(\sum_{f} e_{f}^{2}\right)\left[\frac{4}{3} x+p_{g q}(x)\left(\frac{20}{9}+\frac{4}{3} \ln (1-x)\right)\right] \\
& P_{l l}^{V(0,2)}=-e_{l}^{4}\left[\left(2 \ln (x) \ln (1-x)+\frac{3}{2} \ln (x)\right) p_{q q}(x)+\frac{3+7 x}{2} \ln (x)\right. \\
& \left.+\frac{1+x}{2} \ln ^{2}(x)+5(1-x)+\left(\frac{\pi^{2}}{2}-\frac{3}{8}-6 \zeta_{3}\right) \delta(1-x)\right] \\
& -e_{l}^{2}\left(\sum_{f} e_{f}^{2}\right)\left[\frac{4}{3}(1-x)+p_{q q}(x)\left(\frac{2}{3} \ln (x)+\frac{10}{9}\right)+\left(\frac{2 \pi^{2}}{9}+\frac{1}{6}\right) \delta(1-x)\right] \\
& P_{l \bar{l}}^{V(0,2)}=\frac{e_{l}^{4}}{e_{q}^{4}} P_{q \bar{q}}^{V(0,2)} \text {, } \\
& P_{l L}^{S(0,2)}=P_{l \bar{L}}^{S(0,2)}=e_{l}^{2} e_{L}^{2} p_{s}(x) . \\
& \text { leptons } \\
& P_{\gamma \gamma}^{(0,2)}=\left(\sum_{f} e_{f}^{4}\right)\left[-16+8 x+\frac{20}{3} x^{2}+\frac{4}{3 x}-(6+10 x) \ln (x)\right. \\
& \left.-2(1+x) \ln ^{2}(x)-\delta(1-x)\right],
\end{aligned}
$$

Several sources of QED+QCD effects in fit of parton distributions

- photon initial state

New distributions
γ, lepton

- share proton

$$
\int_{0}^{1} d x x\left(\Sigma(x, Q)+g(x, Q)+\gamma(x, Q)+\Sigma_{L}(x, Q)\right)=1
$$ momentum

Several sources of QED+QCD effects in fit of parton distributions

New distributions
γ, lepton

- photon initial state
- share proton momentum

$$
\int_{0}^{1} d x x\left(\Sigma(x, Q)+g(x, Q)+\gamma(x, Q)+\Sigma_{L}(x, Q)\right)=1
$$

Photon Momentum Fraction

New splitting functions
mixing and charge separation

$$
\begin{aligned}
\frac{d \Sigma}{d t} & =\frac{P_{u}^{+}+P_{d}^{+}}{2} \otimes \Sigma+\frac{P_{u}^{+}-P_{d}^{+}}{2} \otimes \Delta_{U D}+\frac{n_{u} \bar{P}_{u u}^{S}+n_{d} \bar{P}_{d d}^{S}+\left(n_{u}+n_{d}\right) \bar{P}_{u d}^{S}}{2} \otimes \Sigma \\
& +\frac{n_{u} \bar{P}_{u u}^{S}-n_{d} \bar{P}_{d d}^{S}-\left(n_{u}-n_{d}\right) \bar{P}_{u d}^{S}}{2} \otimes \Delta_{U D}+\left(n_{u} \bar{P}_{u l}^{S}+n_{d} \bar{P}_{d l}^{S}\right) \otimes \Sigma^{l} \\
& +2\left(n_{u} P_{u g}+n_{d} P_{d g}\right) \otimes g+2\left(n_{u} P_{u \gamma}+n_{d} P_{d \gamma}\right) \otimes \gamma,
\end{aligned}
$$

Several sources of QED+QCD effects in fit of parton distributions

- photon initial state

New distributions
γ, lepton

- share proton momentum

$$
\int_{0}^{1} d x x\left(\Sigma(x, Q)+g(x, Q)+\gamma(x, Q)+\Sigma_{L}(x, Q)\right)=1
$$

Photon Momentum Fraction

New splitting functions
mixing and charge separation

$$
\begin{aligned}
\frac{d \Sigma}{d t} & =\frac{P_{u}^{+}+P_{d}^{+}}{2} \otimes \Sigma+\frac{P_{u}^{+}-P_{d}^{+}}{2} \otimes \Delta_{U D}+\frac{n_{u} \bar{P}_{u u}^{S}+n_{d} \bar{P}_{d d}^{S}+\left(n_{u}+n_{d}\right) \bar{P}_{u d}^{S}}{2} \otimes \Sigma \\
& +\frac{n_{u} \bar{P}_{u u}^{S}-n_{d} \bar{P}_{d d}^{S}-\left(n_{u}-n_{d}\right) \bar{P}_{u d}^{S}}{2} \otimes \Delta_{U D}+\left(n_{u} \bar{P}_{u l}^{S}+n_{d} \bar{P}_{d l}^{S}\right) \otimes \Sigma^{l} \\
& +2\left(n_{u} P_{u g}+n_{d} P_{d g}\right) \otimes g+2\left(n_{u} P_{u \gamma}+n_{d} P_{d \gamma}\right) \otimes \gamma
\end{aligned}
$$

QED (+QCD) corrections effect on observables

Large uncertainty on
(QED dominant) photon distribution

- Until LUXqed

Manohar, Nason, Salam, Zanderighi $(2016,20 I 7)$
photon PDF can be expressed in terms of the structure functions F_{2} and F_{L} by means of an exact QED calculation

$$
\begin{aligned}
& x \gamma(x, \mu)=\frac{1}{2 \pi \alpha(\mu)} \int_{x}^{1} \frac{d z}{z}\left\{\int _ { Q _ { \operatorname { m i n } } ^ { 2 } } ^ { \mu ^ { 2 } / (1 - z) } \frac { d Q ^ { 2 } } { Q ^ { 2 } } \alpha ^ { 2 } (Q ^ { 2 }) \left[-z^{2} F_{L}\left(x / z, Q^{2}\right)\right.\right. \\
& \left.\left.+\left(z P_{\gamma q}(z)+\frac{2 x^{2} m_{p}^{2}}{Q^{2}}\right) F_{2}\left(x / z, Q^{2}\right)\right]-\alpha^{2}(\mu) z^{2} F_{2}\left(x / z, \mu^{2}\right)\right\}+\mathcal{O}\left(\alpha \alpha_{s}, \alpha^{2}\right)
\end{aligned}
$$

involve low Q^{2}
elastic/resonance region

Large uncertainty on
(QED dominant) photon distribution

- Until LUXqed

Manohar, Nason, Salam, Zanderighi $(2016,20 I 7)$
photon PDF can be expressed in terms of the structure functions F_{2} and F_{L} by means of an exact QED calculation

$$
\begin{aligned}
& x \gamma(x, \mu)=\frac{1}{2 \pi \alpha(\mu)} \int_{x}^{1} \frac{d z}{z}\left\{\int _ { Q _ { \operatorname { m i n } } ^ { 2 } } ^ { \mu ^ { 2 } / (1 - z) } \frac { d Q ^ { 2 } } { Q ^ { 2 } } \alpha ^ { 2 } (Q ^ { 2 }) \left[-z^{2} F_{L}\left(x / z, Q^{2}\right)\right.\right. \\
& \left.\left.+\left(z P_{\gamma q}(z)+\frac{2 x^{2} m_{p}^{2}}{Q^{2}}\right) F_{2}\left(x / z, Q^{2}\right)\right]-\alpha^{2}(\mu) z^{2} F_{2}\left(x / z, \mu^{2}\right)\right\}+\mathcal{O}\left(\alpha \alpha_{s}, \alpha^{2}\right)
\end{aligned}
$$

involve low Q^{2}
elastic/resonance region
"iterative" extraction of QED modified pdfs

LUXqed17 plus PDF4LHC15

$\mathrm{QCD}+\alpha_{s} \alpha+\alpha^{2}$ splitting functions plus α corrections to DIS

NNPDF global analysis with photon pdf based on LUXqed

- QED+QCD effects in photon distribution ($\gamma \gamma$ Luminosity)

$$
\alpha_{s} \alpha \sim 10 \% \quad \alpha^{2} \sim 1 \%
$$

~I\% level in DIS SF
$\gamma \gamma$ Luminosity at $\sqrt{\mathrm{s}}=13 \mathrm{TeV}$

Neutral current structure functions in the FONLL-C scheme $(Q=100 \mathrm{GeV})$

One example of photon initiated processes : Drell-Yan
NNPDF collaboration Bertone, Carraza, Hartland, Rojo (2018)

Photon Initiated effects very small at Z, but larger away from peak
3% at $M_{\|}=60 \mathrm{GeV}$
larger than pdf DY uncertainty

- Impact of QED in quark and gluon pdfs

small for the quark singlet below I\%

NNLO, $Q^{2}=10^{4} \mathrm{GeV}^{2}$

larger for the gluon (within band)
-1% around $x=0.01$
$+5 \%$ at $x=0.5$

- Effect explained by photon PDF carrying $\sim 0.5 \%$ of proton momentum Mostly for gluon since quark singlet more constrained by DIS

Very recent $\$ MMHT global analysis
Full fit including QED+QCD corrections with photon pdf based on LUXqed $\mathrm{QCD}+\alpha_{s} \alpha+\alpha^{2}$ splitting functions plus α corrections to DIS

QED introduces isospin breaking (proton \longrightarrow neutron)
$u_{v}^{(p)} \neq d_{v}^{(n)}$
$d_{v}^{(p)} \neq u_{v}^{(n)}$

$$
\Delta u_{V,(n)}\left(x, Q_{0}^{2}\right)=\epsilon\left(1-\frac{e_{u}^{2}}{e_{d}^{2}}\right)_{V,(\varphi)}^{(Q E D)}\left(x, Q_{0}^{2}\right)
$$

Change in α_{s}
Leading QED effect $\alpha_{S} \rightarrow \alpha^{\prime}=\left(\alpha_{S}+\frac{e_{q}^{2} \alpha}{C_{F}}\right)$ expect per mil reduction in α_{s}

- but gluon momentum loss by photon requires larger α_{s} and compensate central value almost unchanged $0.1181 \square 0.1180$
- Again, gluon (and s) most affected distribution in MMHT QED

- In summary, some QED effects from PDFs might exceed the I\% level

QED+QCD NNLO corrections to Drell Yan Production

- Mixed EWxQCD corrections in the resonance region (pole approx.)

Dittmaier, Huss, Schwinn (2014, 2015,2016)

Inclusive Drell-Yan

(a) Factorizable initial-initial corrections

(c) Factorizable final-final corrections
main contribution

(b) Factorizable initial-final corrections

negligible (<0.|\%)

QED corrections to inclusive Drell-Yan (on-shell Z production)

Distinguish "pure" QED corrections from "EW" ones

discard self-energy insertions in Z propagator

Renormalization of EW couplings

QED corrections to inclusive Drell-Yan (on-shell Z production)

Distinguish "pure" QED corrections from "EW" ones

discard self-energy insertions in Z propagator

Renormalization of EW couplings

QCD NNLO for (inclusive) DY has been available for quite some time

A COMPLETE CALCULATION OF THE ORDER α_{s}^{2} CORRECTION TO
THE DRELL-YAN K-FACTOR
R. HAMBERG and W.L. van NEERVEN*

Instituut-Lorentz, University of Leiden, P.O.B. 9506, 2300 RA Leiden, The Netherlands

T. MATSUURA**

II. Institut für Theoretische Physik, Unicersität Hamburg, D-2000 Hamburg 50, Germany
small corrections by Harlander, Kilgore (2002)

- It is possible to use the NNLO QCD result to obtain the QEDxQCD mixed terms and the QED ${ }^{2}$

$$
\begin{aligned}
& \text { general expansion in both couplings } \quad d \sigma=\sum_{i, j} \alpha_{s}^{i} \alpha^{j} d \sigma^{(i, j)} \\
& \text { "Full NNLO" means } i+j=2 \begin{array}{l}
(2,0) \\
\text { QCD }
\end{array}
\end{aligned}
$$

Abelianization procedure
QCD QED

Same kinematical structure - change of color factors for Abelian contributions

example: qqbar channel

- Identify Topologies and compute Color factors

Replace one gluon by a photon $\quad \alpha_{s} \alpha$

Replace one gluon by a photon $\quad \alpha_{s} \alpha$

Replace one gluon by a photon $\quad \alpha_{s} \alpha$

$\left|(a)^{(1,1)}\right|^{2} \sim\left[(a)^{(1,1)}\left(a^{* *}\right)^{(1,1)}\right] \sim \frac{e_{q}^{2}}{N_{c}^{2}} \operatorname{Tr}\left[T^{a} T^{a}\right]=\frac{e_{q}^{2}}{N_{c}} C_{F}$

$$
-\frac{1}{2 N_{c}} C_{F} \frac{C_{A}}{2} \rightarrow 0
$$

Replace one gluon by a photon $\quad \alpha_{s} \alpha$

$$
C_{F}^{2} \rightarrow 2 e_{q}^{2} C_{F}
$$

$$
C_{A} \rightarrow 0 \quad T_{R} \rightarrow 0
$$

- Replace two gluon by photons
α^{2}

$C_{F}^{2} \longrightarrow e_{q}^{4}$

$$
\begin{aligned}
n_{F} C_{F} T_{R} & \longrightarrow e_{q}^{2}\left[N_{C} \sum_{k \in Q} e_{k}^{2}+\sum_{k \in L} e_{k}^{2}\right] \\
\beta_{0}^{\mathrm{QCD}} & =\frac{11 C_{A}-4 T_{R} n_{f}}{3} \rightarrow \beta_{0}^{\mathrm{QED}}
\end{aligned}
$$

Replace two gluon by photons $\quad \alpha^{2}$

α_{s}^{2}
$\alpha_{s} \alpha$

0

$$
e_{q}^{2}\left[N_{C} \sum_{k \in Q} e_{k}^{2}+\sum_{k \in L} e_{k}^{2}\right]
$$

Interferences

$$
C_{F}^{2}-\frac{C_{F} C_{A}}{2} \quad 2 e_{q}^{2} C_{F}
$$

QED+QCD corrections to DY: phenomenology

$$
\sigma=\tau \sigma_{Z}\left(M_{Z}^{2}\right) W_{Z}\left(\tau, M_{Z}^{2}\right)
$$

$$
\begin{aligned}
w_{Z}^{(1,1)} & =\sum_{i \in Q, \bar{Q}} q_{i}\left(x_{1}\right) \bar{q}_{i}\left(x_{2}\right) c_{i} 2 e_{i}^{2} C_{F} \Delta_{q \bar{q}}^{(2) C_{F}}(x)+\sum_{i \in Q, \bar{Q}} q_{i}\left(x_{1}\right) q_{i}\left(x_{2}\right) c_{i} 2 e_{i}^{2} C_{F} \Delta_{q q}^{(2) \mathrm{id}}(x) \\
& +\sum_{i \in Q, \bar{Q}}\left[2 C_{A} C_{F}\left(q_{i}\left(x_{1}\right) \gamma\left(x_{2}\right)+\gamma\left(x_{1}\right) q_{i}\left(x_{2}\right)\right)+\left(q_{i}\left(x_{1}\right) g\left(x_{2}\right)+g\left(x_{1}\right) q_{i}\left(x_{2}\right)\right)\right] \times c_{i} e_{i}^{2} \Delta_{q g}^{(2) C_{F}}(x) \\
& +\left(g\left(x_{1}\right) \gamma\left(x_{2}\right)+\gamma\left(x_{1}\right) g\left(x_{2}\right)\right) 2 C_{A}\left(\sum_{k \in Q} c_{k} e_{k}^{2}\right) \Delta_{g g}^{(2)}(x)
\end{aligned}
$$

Parameters set up
$M_{Z}=91.187 \mathrm{GeV} \quad \sin ^{2} \theta_{W}=0.23$
Default scales choice $\mu_{R}=\mu_{F}=M_{Z}$
Running couplings $\alpha\left(M_{Z}\right) \sim \frac{1}{128}$

$$
\begin{aligned}
& K_{Q E D}^{N L O}=\frac{\sigma^{(0,0)}+\alpha \sigma^{(0,1)}}{\sigma^{(0,0)}} \\
& K_{Q C D}^{N N L O}=\frac{\sigma^{(0,0)}+\alpha_{s} \sigma^{(1,0)}+\alpha_{s}^{2} \sigma^{(2,0)}}{\sigma^{(0,0)}+\alpha_{s} \sigma^{(1,0)}} \\
& K_{Q E D}^{N N L O}=\frac{\sigma^{(0,0)}+\alpha \sigma^{(0,1)}+\alpha^{2} \sigma^{(0,2)}}{\sigma^{(0,0)}+\alpha \sigma^{(0,1)}} \\
& K_{Q C D \times Q E D}^{N N L D}=\frac{\sigma^{(0,0)}+\alpha \sigma^{(0,1)}+\alpha_{s} \sigma^{(1,0)}+\alpha \alpha_{s} \sigma^{(1,1)}}{\sigma^{(0,0)}+\alpha \sigma^{(0,1)}+\alpha_{s} \sigma^{(1,0)}}
\end{aligned}
$$

> $\alpha_{s}^{2} \sim \alpha$ QED NLO \sim QCD NNLO (opposite sign) around 5 per-mille
Mixed QEDxQCD below the per-mille level (max. $\sim 2 \mathrm{TeV}$)
At 14 TeV QCD NNLO ~ 3.5 mixed QEDxQCD
${ }^{-} \mathrm{QED}^{2} \sim \mathcal{O}\left(10^{-5}\right)$

Previous work based on "factorization" of mixed effects $K \approx\left[K_{Q E D} \times K_{Q C D}\right]$

$$
\kappa_{\mathrm{fact}}=\left[K_{Q E D}^{N L O} \times K_{Q C D}^{N L O}\right]_{\mathcal{O}\left(\alpha \alpha_{s}\right)}=\alpha \alpha_{s} \frac{\sigma^{(0,1)} \sigma^{(1,0)}}{\sigma^{(0,0)} \sigma^{(0,0)}}
$$

$$
\kappa_{\text {mixed }}=\alpha \alpha_{s} \frac{\sigma^{(1,1)}}{\sigma^{(0,0)}}
$$

$$
R=\frac{\kappa_{\text {mixed }}}{\kappa_{\text {fact }}}=\frac{\sigma^{(0,0)} \sigma^{(1,1)}}{\sigma^{(0,1)} \sigma^{(1,0)}}
$$

- Factorization approach fails by more than a factor of 2

Effect in cross section small (because QED small)

- Might be worse for some distributions
- Mixed QEDxQCD contribution from different channels

- Tiny photon initiated contribution
> Dominated by qq and qg
qg and qq with different sign : 50\% cancellation
qg contribution might be suppressed in exclusive distributions (cuts)

Scale dependence

$\mathrm{LO}\left(\sigma^{(0,0)}\right)$
$\mathrm{NLO}\left(\sigma^{(0,0)}+\alpha \sigma^{(0,1)}+\alpha_{s} \sigma^{(1,0)}\right)$
$\mathrm{NNLO}\left(\sigma^{(0,0)}+\alpha \sigma^{(0,1)}+\alpha_{s} \sigma^{(1,0)}+\alpha \alpha_{s} \sigma^{(1,1)}+\alpha^{2} \sigma^{(0,2)}+\alpha_{s}^{2} \sigma^{(2,0)}\right)$

Clear improvement in stabilization at higher orders Mostly QCD dominated but small QED effect

Conclusions

QED+QCD NNLO DGLAP kernels

- Full QED+QCD NNLO corrections to DY (on-shell Z production)

QED NLO ~ QCD NNLO (opposite sign) around 5 per-mille

- Mixed QEDxQCD below the per-mille level

Cancellation between qq and qg channels

- At 14 TeV QCD NNLO ~ 3.5 mixed QEDxQCD (QCD cancellation)
- Factorization approach for mixed QEDxQCD fails by factor of 2
- Very stable under scale variations at NNLO

Future

-Fully differential NNLO QCD+QED DY calculation
pinal state (photon) radiation from leptonic decays

QED+QCD corrections to transverse momentum resummation

L.Cieri, G.Ferrera, G.Sborlini (2018)

Two scales: q_{T}, M_{Z} appear as

$$
\mathcal{A}^{(i)} \sim \log ^{2 i} \frac{q_{T}^{2}}{M_{Z}^{2}}
$$

- If transverse momentum large $\mathcal{O}\left(M_{Z}\right)$ expansion is safe

But for very small transverse momentum convergence is spoiled

The recoiling gluon is forced to be either soft or collinear to one of the incoming partons

Two scales: q_{T}, M_{Z} appear as

$$
\mathcal{A}^{(i)} \sim \log ^{2 i} \frac{q_{T}^{2}}{M_{Z}^{2}}
$$

- If transverse momentum large $\mathcal{O}\left(M_{Z}\right)$ expansion is safe

But for very small transverse momentum convergence is spoiled

The recoiling gluon is forced to be either soft or collinear to one of the incoming partons

- No matter how small the coupling constant, perturbative expansion fails in the kinematical region where the bulk of the data appears! Resummation needed
partonic cross-section decomposed as

$$
\frac{d \widehat{\sigma}_{a b}}{d q_{T}^{2}}=\frac{d \hat{\sigma}_{a b}^{(\text {res. })}}{d q_{T}^{2}}+\frac{d \hat{\sigma}_{a b}^{\text {(fin.) }}}{d q_{T}^{2}}
$$

with $\quad \frac{d \hat{\sigma}_{a b}^{\text {fin.) }}}{d q_{T}^{2}}=\left[\frac{d \hat{\sigma}_{a b}}{d q_{T}^{2}}\right]_{\text {f.o. }}-\left[\frac{d \hat{\sigma}_{a b}^{(\text {res.) }}}{d q_{T}^{2}}\right]_{\text {f.o. }}$
fix. order contr. exp. of res. component
presummation achieved after Fourier transform

$$
\frac{d \hat{\sigma}_{a_{1} a_{2} \rightarrow F}^{\text {(res.) }}}{d q_{T}^{2}}\left(q_{T}, M, \hat{s} ; \mu_{F}\right)=\frac{M^{2}}{\hat{s}} \int_{0}^{\infty} d b \frac{b}{2} J_{0}\left(b q_{T}\right) \mathcal{W}_{a_{1} a_{2}}^{F}\left(b, M, \hat{s} ; \mu_{F}\right)
$$

where the large Log becomes $L \equiv \log \left(M^{2} b^{2}\right)$

Hard factor
 Sudakov form factor

$\mathcal{W}_{N}^{F}\left(b, M ; \mu_{F}\right)=\hat{\sigma}_{F}^{(0)}(M) \mathcal{H}_{N}^{F}\left(\alpha_{S} ; M^{2} / \mu_{R}^{2}, M^{2} / \mu_{F}^{2}, M^{2} / Q^{2}\right) \times \exp \left\{\mathcal{G}_{N}\left(\alpha_{S}, L ; M^{2} / \mu_{R}^{2}, M^{2} / Q^{2}\right)\right\}$

$$
\begin{gathered}
\mathcal{G}_{N}\left(\alpha_{S}, L\right)=L g^{(1)}\left(\alpha_{S} L\right)+g_{N}^{(2)}\left(\alpha_{S} L\right)+\frac{\alpha_{S}}{\pi} g_{N}^{(3)}\left(\alpha_{S} L\right)+\sum_{n=4}^{\infty}\left(\frac{\alpha_{S}}{\pi}\right)^{n-2} g_{N}^{(n)}\left(\alpha_{S} L\right) \\
\text { LL NLL NNLL N...NLL } \\
\mathcal{H}_{N}^{F}\left(\alpha_{S}\right)=1+\frac{\alpha_{S}}{\pi} \mathcal{H}_{N}^{F(1)}+\left(\frac{\alpha_{S}}{\pi}\right)^{2} \mathcal{H}_{N}^{F(2)}+\sum_{n=3}^{\infty}\left(\frac{\alpha_{S}}{\pi}\right)^{n} \mathcal{H}_{N}^{F(n)}
\end{gathered}
$$

NNLO+NNLL QCD

 implementedDYqT DYRes
S. Catani, D.deF, G.Ferrera, M.Grazzini G. Bozzi

DYTurbo

(+) S. Camarda, J.Cuth, M.Schott, M.Greta Vincter, A. Glazov, M.Boonekamps

D0 data for the $Z q_{T}$ spectrum compared with perturbative results.

QED corrections

- include QED corrections in Sudakov form factor

$$
\begin{gathered}
\text { LL QED NLL QED } \\
\begin{array}{c}
\mathcal{G}_{N}^{\prime}\left(\alpha_{S}, \alpha, L\right)= \\
+\mathcal{G}_{N}\left(\alpha_{S}, L\right)+\underbrace{L g^{\prime(1)}(\alpha L)}+\underbrace{g_{N}^{(2)}(\alpha L)}+\sum_{n=3}^{\infty}\left(\frac{\alpha}{\pi}\right)^{n-2} g_{N}^{(n)}(\alpha L) \\
\\
\text { NLL mixed }
\end{array} g_{\substack{\left.(1,1) \\
g_{S} L, \alpha L\right)}}^{\sum_{\substack{n, m=1 \\
n+m \neq 2}}^{\infty}\left(\frac{\alpha_{S}}{\pi}\right)^{n-1}\left(\frac{\alpha}{\pi}\right)^{m-1} g_{N}^{(n, m)}\left(\alpha_{S} L, \alpha L\right)}
\end{gathered}
$$

- include QED corrections in Hard factor

$$
\begin{aligned}
\mathcal{H}_{N}^{I F}\left(\alpha_{S}, \alpha\right)=\mathcal{H}_{N}^{F}\left(\alpha_{S}\right)+\underbrace{\frac{\alpha}{\pi} \mathcal{H}_{N}^{\prime F(1)}}_{\text {NLL QED }}+\sum_{n=2}^{\infty}\left(\frac{\alpha}{\pi}\right)^{n} \mathcal{H}_{N}^{\prime F(n)}+\sum_{n, m=1}^{\infty}\left(\frac{\alpha_{S}}{\pi}\right)^{n}\left(\frac{\alpha}{\pi}\right)^{m} \mathcal{H}_{N}^{\prime F(n, m)} \\
\text { mixed (not included) }
\end{aligned}
$$

' g ' and H^{\prime} also obtained by abelianization of QCD results
involve

$$
\frac{d \ln \alpha_{S}\left(\mu^{2}\right)}{d \ln \mu^{2}}=\beta\left(\alpha_{S}\left(\mu^{2}\right), \alpha\left(\mu^{2}\right)\right)=-\sum_{n=0}^{\infty} \beta_{n}\left(\frac{\alpha_{S}}{\pi}\right)^{n+1}-\sum_{n, m+1=0}^{\infty} \beta_{n, m}\left(\frac{\alpha_{S}}{\pi}\right)^{n+1}\left(\frac{\alpha}{\pi}\right)^{m}
$$

beta functions

$$
\frac{d \ln \alpha\left(\mu^{2}\right)}{d \ln \mu^{2}}=\beta^{\prime}\left(\alpha\left(\mu^{2}\right), \alpha_{S}\left(\mu^{2}\right)\right)=-\sum_{n=0}^{\infty} \beta_{n}^{\prime}\left(\frac{\alpha}{\pi}\right)^{n+1}-\sum_{n, m+1=0}^{\infty} \beta_{n, m}^{\prime}\left(\frac{\alpha}{\pi}\right)^{n+1}\left(\frac{\alpha_{S}}{\pi}\right)^{m}
$$

LHC @ $13 \mathrm{TeV} \quad \mu_{R}=\mu_{F}=2 Q=m_{z}$

$1 / 2<\left\{\mu_{R}^{\prime} / M_{Z}, Q^{\prime} / M_{Z}, Q^{\prime} / \mu_{R}^{\prime}\right\}<2$
LL QED effects uncertainty 2-3\% reduced by \sim factor of $1.5 / 2$ by NLL QED

NLL+NLO QED effects not negligible and around $+1 \%$ (rather flat)

Combined QED and QCD $q_{\text {т }}$ resummation for W production at

 the LHC (preliminary)[S.Rota (degree thesis '18)]

W $q T$ spectrum at the LHC. NNLL QCD results combined with the NLL QED effects.

