HIGH PERFORMANT SMART COMPUTATIONS FOR GRAPH ANALYSIS

RICHARD FORSTER

AGENDA

- Community Detection
- Communities with Deep Q-learning
- ForceAtlas
- Barnes-Hut Tree with RNN

COMMUNITY DETECTION

COMMUNITY DETECTION

- Used to reveal groups in real world data
- Louvain method
- Parallel heuristics

LOUVAIN METHOD

- Multi-phase, iterative, greedy algorithm
- Monotonically increasing modularity
- Inherently sequential

RESULTS

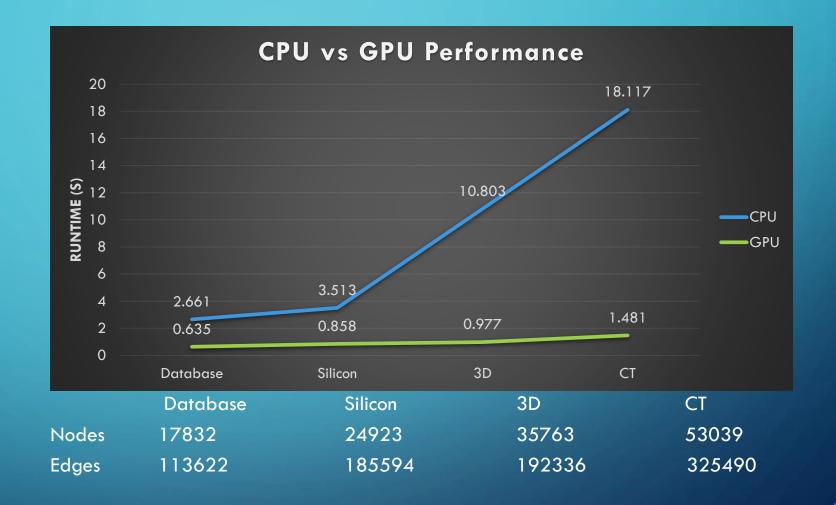
(COMMUNITY DETECTION)

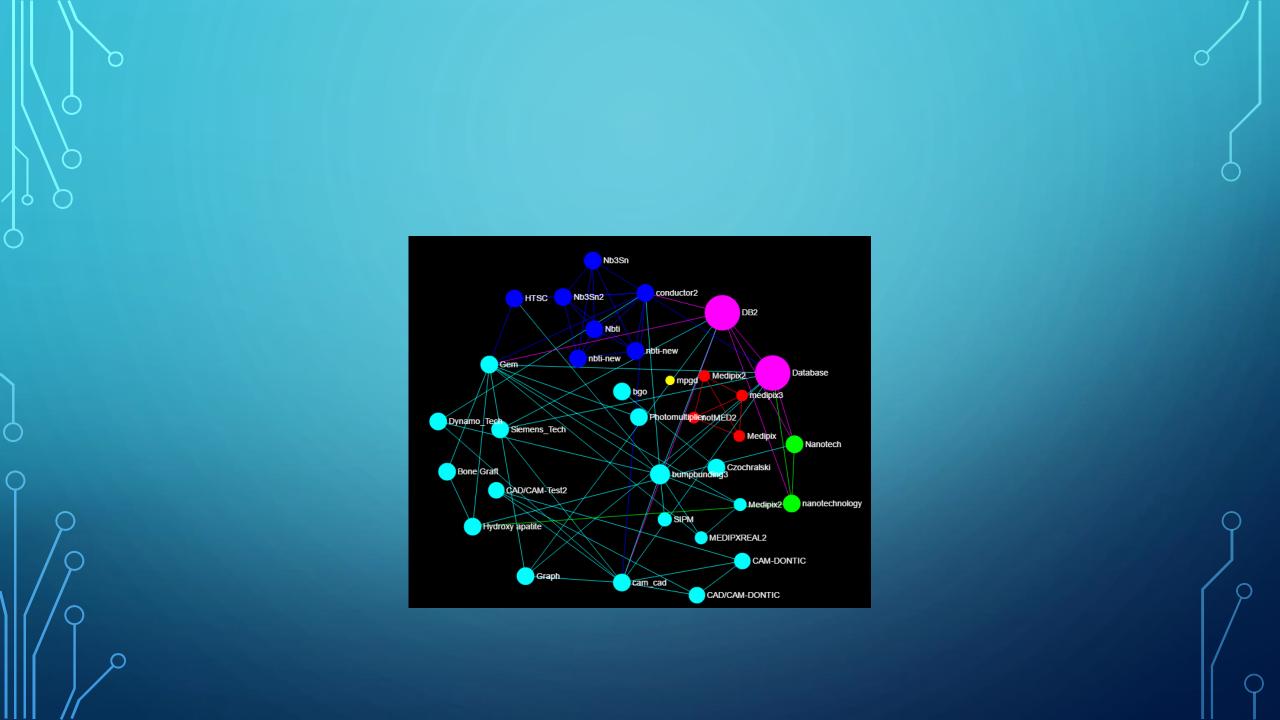
• Database: 4x

• Silicon: 4x

• 3D: 11x

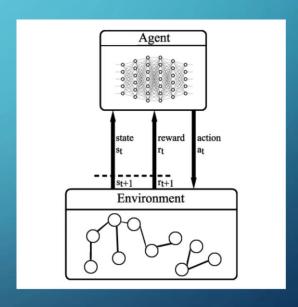
• CT: 12x





Reinforcement learning problem:

- Interactions between the environment and agent
 - Action-reward
- Goal is to maximize the reward, find appropriate π policy
- Finite action space in every timestep



Extensions for deep Q-learning:

- 1. Calculate Q for all possible actions in state st,
- 2. Make prediction for Q in st+1, get action at+1 = maxa a \in A(st+1),
- 3. $Q[a] = r + \gamma Q(st + 1, at + 1)$,
- 4. Update the network

Current limitations:

Maximum 4 neighbors are explored

Processing:

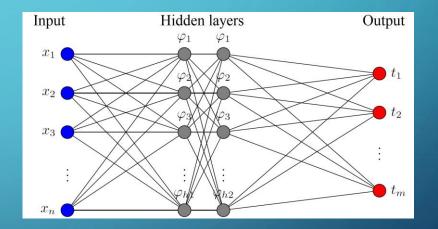
- Training data contains graphs with various size and structure.
- The environment computes the real Louvain modularity to get the next community. Reward for correct prediction 10000, for wrong -1000
- The agent makes a prediction for every node

The agent:

- n: input size
- h1: size of hidden layer 1
- h2: size of hidden layer 2
- m: size of the action space
- Input size is state_size*action_size
- h1 = h2 = 128
- m = 4

To prevent overfitting:

- 50% dropout on both hidden layers
- Multiple independent representation



83% precision with early model after 70 epochs

FORCEATLAS

FORCEATLAS

- Force-directed layout based on n-body simulation
- Repulsion-attraction
- Makes visual interpretation easier
- Result depends on starting state

RESULTS

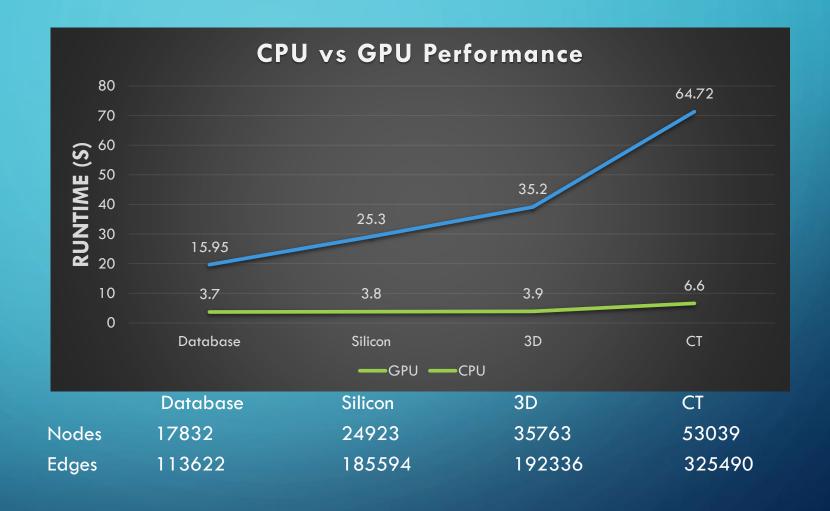
(FORCEATLAS)

• Database: 4,31x

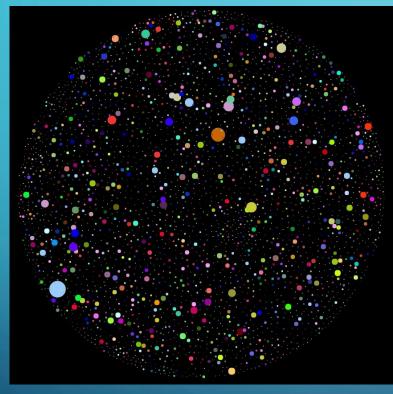
• Silicon: 6,65x

• 3D: 9x

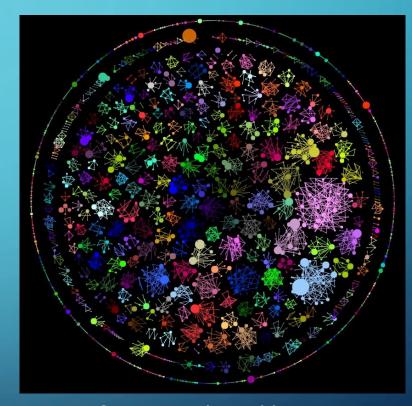
• CT: 9,8x



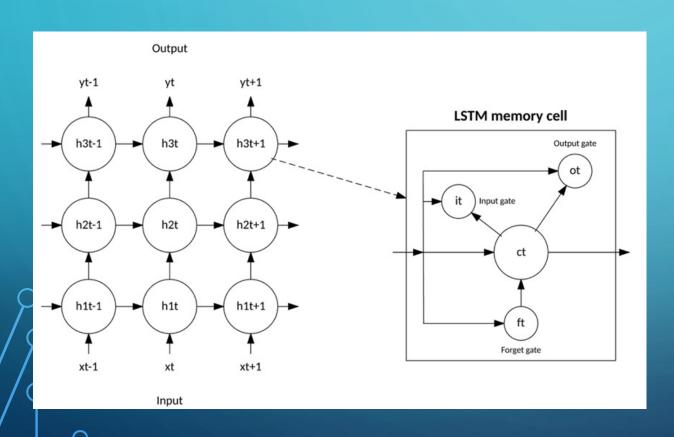
FORCEATLAS LAYOUT TYPES



Original layout

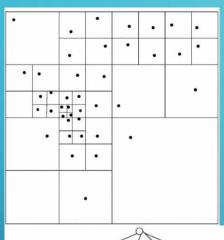


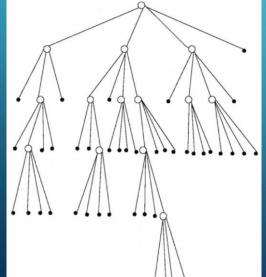
Community based layout



$$h_t = \phi(Wx_t + Uh_{t-1})$$

- h_t: hidden state in timestep t
- x_t: input in timestep t
- h_{t-1}: hidden state in timestep
 t-1
- U: transformation matrix
- Φ: activation function(logistic sigmoid, tanh)



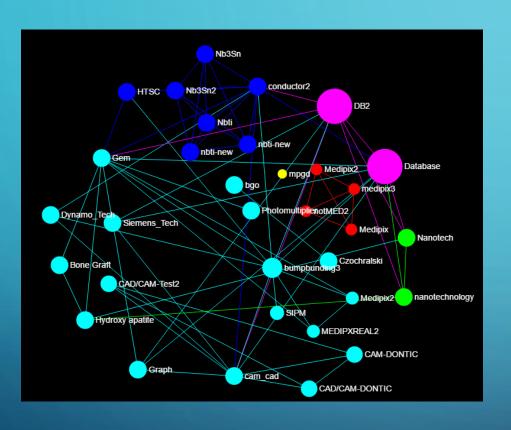


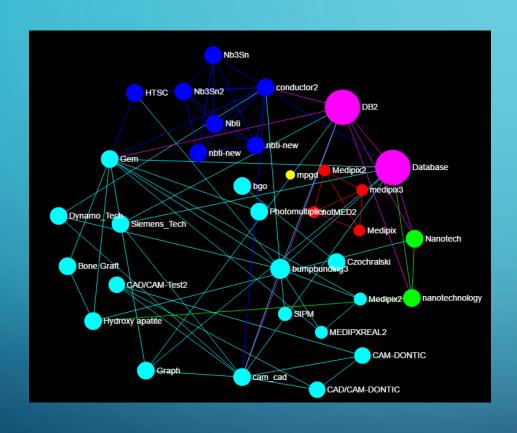
- Generation provides a quadratic tree
- Plane is halved until only 1 node remains in a region.
- For RNN system is provided as a time series

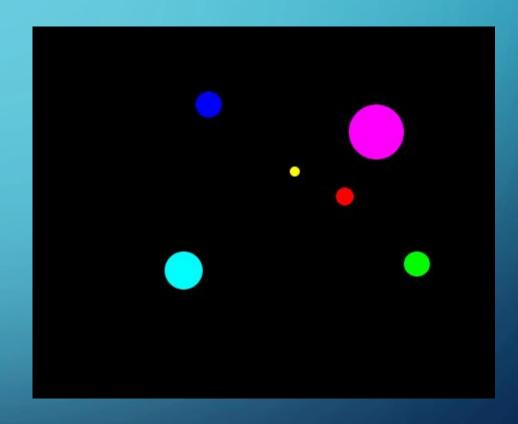
t, x, y, old_n_1, old_n_2, old_n_3, ..., old_n_N, new_n_1, new_n_2, ..., new_n_N

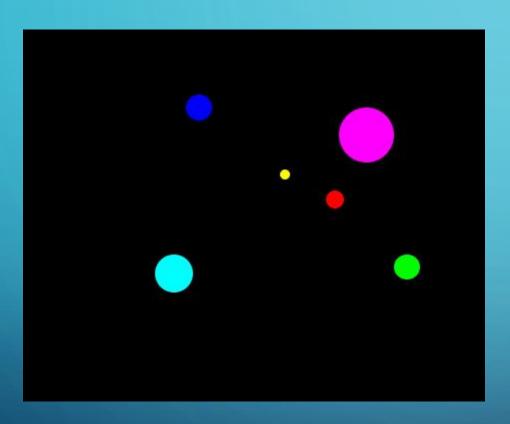
- t: timestep
- x, y: coordinates of node in timestep t
- old_n_N: state generated in timestep t-1 (initially -1)
- new_n_N: state generated in timestep t (no -1 at the end)
- N: number of nodes
- Model trained for graphs with 1000 nodes: 94% accuracy.

How to use this approach to increase the visual experience?

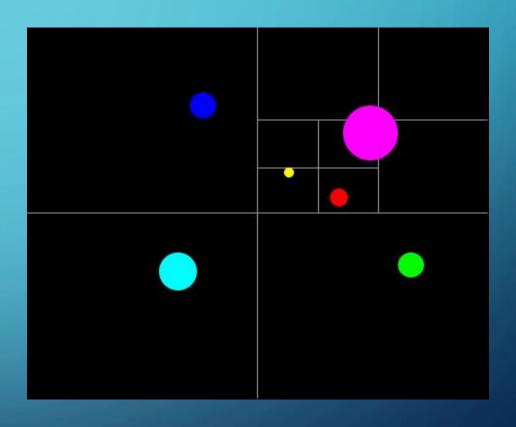




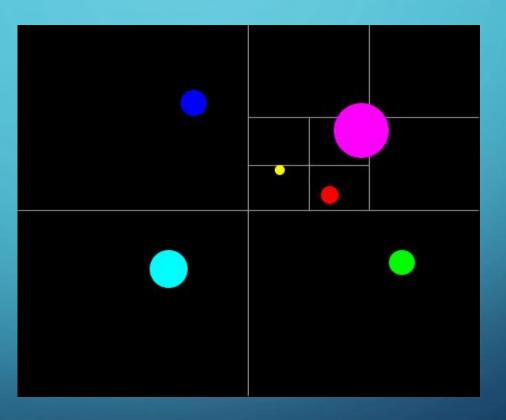




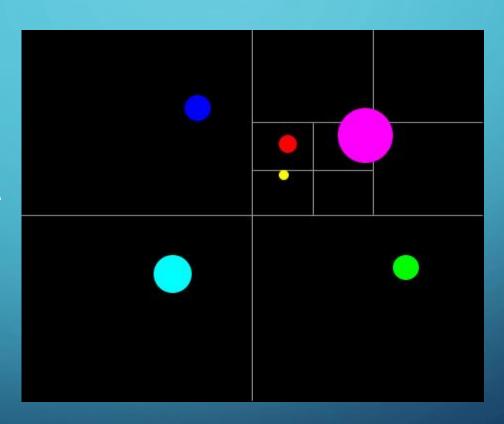




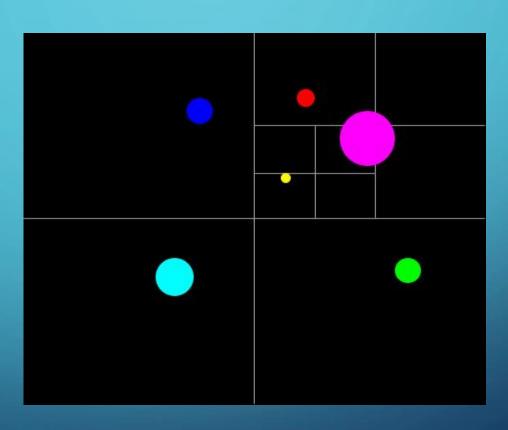
- We would like to analyse Medipix (red node)
- This time the top right corner is the hot zone



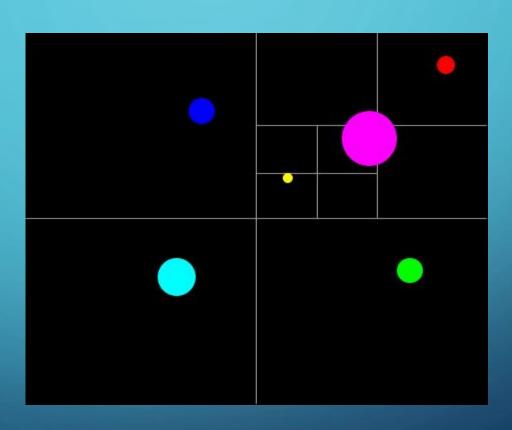
We move the red node, recompute the tree and store the state for future training



Red node advancing

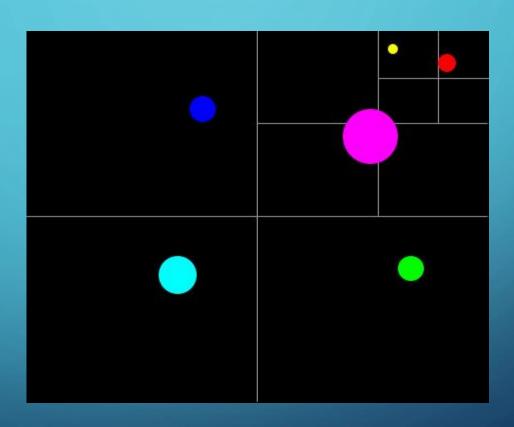


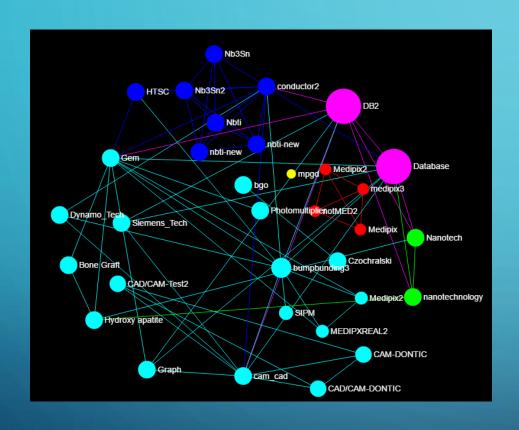
Red node advancing to final position

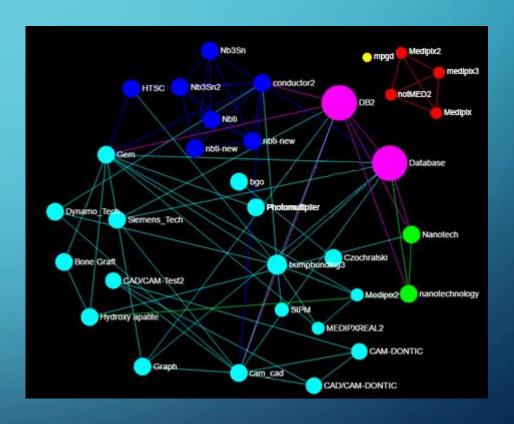


- States stored for one node (Medipix)
- Train a model for Medipix
- The model will move the node through the regions

Graph preprocessed based on Medipix (red) and mpgd (yellow)







THANK YOU