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Outline

I.Physics at the LHC

II.Collider Data Representation

III.Graph Networks & applications

Based on the following
➢ arXiv:1810.06111Tracking with GNN
➢ arXiv:1902.07987 Learning irregular geometry with Distance-weighted GNN
➢ arXiv:1810.07988 Pile-Up mitigation with GGCNN
➢ ACAT2019 Jet identification with Interaction network

Related/relevant work not covered: MPJet, CloudJet,  arXiv:1807.09088, 

https://arxiv.org/abs/1810.06111
https://arxiv.org/abs/1902.07987
https://arxiv.org/abs/1810.07988
https://indico.cern.ch/event/708041/contributions/3272074/
https://indico.physics.lbl.gov/indico/event/546/contributions/1289/
https://indico.cern.ch/event/745718/contributions/3202526/
https://arxiv.org/abs/1807.09088
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High Energy Physics
Endeavor

In a nutshell
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The Large Hadron Collider
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Colliding Hadrons

Probing fundamental laws of physics as large spectrum of
particles (known and unknown) can be produced 
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Size Of The Challenge

1 event
every

500.000 proton
 collision

Low probability of producing exotic and interesting signals.
Observe rare events from a large amount of data.
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Take home message : 

Measure rare and exotic processes from
orders of magnitude larger backgrounds.

Reconstruct, identify and reject large amount
of event with resource constraints.

The Standard Model predicts with precision
what to expect from many processes.
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High Energy Physics 
Data Representation

With bias on CMS
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CMS Detector

Heterogenous detector, with complex geometry.
 About 100M channels in the read-out.
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What is an Event

Bunch crossing every 25 ns / 40MHz ≡ one event.
Multiple collisions per bunch (pile-up) for increased probability.

200 averaged pileup in the horizon 2025. 
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A Journey Through Matter

Particles leave hints of their passage in sub-detectors.
Specific (but overlapping) pattern for each particle type. 
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From RAW to High Level data
Detector

Data
Detector Data Local

reconstruction
Jet ClusteringParticle

representation
High level
features

The reconstruction of an event goes from the digital
signal of the individual sub-detector to a sequence of

particles, jets, and high-level features  

Event Processing

Dimensionality reduction

Globalization of information
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Image and Sequences

W/QCD
tagger

Jet Imaging
 https://arxiv.org/abs/1511.05190 

B-Jet with Recurrent Neural Networks 
http://cds.cern.ch/record/2255226 

Possible loss of information with image representation.
Choice on ordering with sequence representation.

QCD-Aware Recursive Neural 
Networks for Jet Physics.
https://arxiv.org/abs/1702.00748 

https://arxiv.org/abs/1511.05190
http://cds.cern.ch/record/2255226
https://arxiv.org/abs/1702.00748
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Take home message : 

An event is a complex snapshot of thousands
to tens of thousands of particles.

Particle identification is mostly a pattern
recognition task.

Graph-like data representation seems natural
at many level.
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Graph Network
applications

Further than image and sequences
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Overview

➔Charged particle tracking
Connecting the sparse hits left by particles along
trajectory 

➔Calorimeter reconstruction
Assemble pattern of energy depositions

➔Pile-up mitigation
Reducing the impact of concurrent proton-proton
interactions

➔Jet Identification 
Unveil the origin of collimated spray of particles
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Charged Particle Tracking

Clustering sparsely measured hits into
trajectory of charged particles.

With Steven Farrell, Paolo Calafiura, Mayur Mudigonda, Prabhat, Dustin Anderson, Stephan
Zheng, Josh Bendavid, Maria Spiropulu, Giuseppe Cerati, Lindsey Gray, Jim Kowalkowski,

Panagiotis Spentzouris, Aristeidis Tsaris, Xiangyang Yu
https://arxiv.org/abs/1810.06111 

https://arxiv.org/abs/1810.06111
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Tracker Hit Graph

Graph construction
➢ One tracker hit ≡ one node
➢ Sparse edges constructed from geometrical consideration

➔ Edge classification ≡ reconstructing the trajectory of particles
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Performance

● Restricting the problem due to
computation issues during
training.

● Passed that acceptance cuts,
the graph network performs
very well.

● Work in progress by exa.trkx 
https://heptrkx.github.io/ 

Correlating hits information through multiple iterations of (EdgeNet+NodeNet)

https://heptrkx.github.io/
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Calorimeter Reconstruction

Assembling energy depositions by
individual particles

by Shah Rukh Qasim, Jan Kieseler, Yutaro Liyama, Maurizio Pierini
https://arxiv.org/abs/1902.07987 

https://arxiv.org/abs/1902.07987
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Performance

Slide J.Kieseler

Target Prediction

Overlapping showers from two charged pions. 

https://indico.cern.ch/event/783429/contributions/3376680
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Pile-up Mitigation

Identifying/rejecting particles coming from
parasitic proton-proton collisions.

With Jesus Arjona Martinez, Olmo Cerri, Maurizio Pierini, Maria Spiropulu
https://arxiv.org/abs/1810.07988 

https://arxiv.org/abs/1810.07988
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Model Performance

Better rejection of underlying
parasitic collisions.

Improved energy resolution
over state of  the art pile-up

removal methods.
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Jet Identification

Identify the particle at the origin of a
spread of particles.

With Eric A. Moreno, A. Periwal, Olmo Cerri, Javier M. Duarte, Harvey B.
Newman, Thong Q. Nguyen, Maurizio Pierini, Maria Spiropulu
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 Jet-id with Interaction Network

jet

All particles of a jet, and vertex added on an all-to-all message
passing graph network.

Graph-level classification (binary or multi-class)

vertex
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Classification Performance
Out-perform other deep
learning methods for jet 
multi-class categorization
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Summary and Outlooks

➢ Graphs are a very natural data
representation in HEP

➢ Deep learning on graph helps on
several HEP tasks

➢ Multiple ways of doing deep
learning on a graph

➢ Further application of graph
net to HEP data possible

Get in touch !
jvlimant@caltech.edu

mailto:jvlimant@caltech.edu
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Extra Material
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The Standard Model

Well demonstrated effective model 
We can predict most of the observations
We can use a large amount of simulation
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Analysis Pipeline

LHC Computing Grid 
200k cores pledge to
CMS over ~100 sites

CMS Detector
1PB/s

CMS L1 & High-
Level Triggers

50k cores, 1kHz

Large Hadron Collider
40 MHz of collision

CERN Tier-0
 Computing Center
20k cores dedicated

CERN Tier-0/Tier-1
 Tape Storage

200PB total LHC  Grid 
Remote Access 
to 100PB of data

Rare Signal
Measurement
~1 out of 106 
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Node & Edge Representations

Node representation

Tracker hit 
feature

Edge representation

Vector

Edge ScoreVector

Latent Space

Output

Input

Multiple ways to pass the information from nodes to edges
and edges to nodes (attention, message passing, ...)
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Neural Networks
● Input Network

➢ Transforms from hit features (r,φ , z) to the node latent
representation (N for 8 to 128)

 Dense : 3→...→N

● Edge Network
➢ Predicts an edge weight from the node latent

representation at both ends
 Dense : N+N→...→1

● Node Network
➢ Predicts a node latent representation from the current

node representation, weighted sum of node latent
representation from incoming edge, and weighted sum

 Dense :  N+N+N→...→N
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Edge Network

← EdgeNet(   ,   )
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Node Network

← NodeNet(   ,       +       ,       +       +       )

self incoming outgoing
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What is Jet

Quark&gluons hadronize as the propagate.
Any particle decaying in quark/gluons will result in a “jet” of particles in

the direction of the original particle.
Ambiguities on the original particle gets worse in boosted systems.
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Feature Encoding

The calorimeter cell features are transformed into a
locations/distances interpreted in some abstract
space and an internal representation, using a

fully connected network.
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Abstract Space

GravNet

GarNet

GravNet: graph defined
from N nearest neighbours

using S as location in
abstract space.

GarNet: graph defined from
with extra vertices using S
as distrance to attractors in

abstract space.
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Internal Representation

The internal representation are weighted using
a potential of the distances through each edge
(V(d

jk
)), and new representation is calculated

from the mean or the max.
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Feature Extraction

Prediction are extracted per calorimeter cell,
from initial features and gathered internal 

representation, using a fully connected network.
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Graph Construction

Within ΔR<0.3

Graph constructed with one particle per node.
Edges of graph connecting geometrically close particles.

per-particle and global features assigned to nodes.
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Updating Rule

1
n
∑
j=0

n

At hν j
i−1

GRU

hν
i−1

hν
i

GRU (hν
i−1 ,

1
n
∑
j=0

n

At hν j
i−1)→hν

i

Hidden/internal representation of the each node/particle
updated with gated recurrent unit (GRU) models
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Pile-up Classifier

DENSE
hν
i P (PU )

Binary classification computed from the hidden/internal
representation of the each node
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