Overview of ATLAS Run-2 luminosity determination

Richard Hawkings, on behalf of the ATLAS luminosity WG
LHC Lumi Days, 4/6/2019

- Overview of the ATLAS luminosity calibration and uncertainties
 - Luminosity-sensitive detectors in ATLAS
 - The run-2 dataset
 - Brief reminder of vdM formalism, and dedicated LHC setup
 - vdM scan analysis and uncertainties
 - Calibration transfer to physics regime (high-\(\mu\), bunch trains)
 - (Long-term stability throughout the year – see talk of V. Lang)
 - Final uncertainties and how we might improve

 - Further details in dedicated talks at this workshop from M. Dyndal, W. Kozanecki and V. Lang (and RH again)
ATLAS luminosity detectors: LUCID & BCM

- Primary Run 2 bunch-by-bunch (b-b-b) measurement from LUCID

- Secondary b-b-b measurements from Beam Conditions Monitor (BCM)
 - 4 diamond sensors in inner detector volume (z=±1.8m) each side of IP
 - Do not work well with 25ns bunch trains – in Run 2 mainly used in vdM scans

- Cherenkov light from quartz windows of 2x16 PMTs at z=±17m from IP
 - b-b-b measurements for every bunch crossing, integrated over ‘luminosity blocks’ of typically 60 seconds
 - PMT windows coated with Bismuth calibration source
 - Gain adjusted run-by-run
 - Several ‘algorithms’ to combine PMTs
 - ‘HitOR’ combination of 2x4 PMTs
 - Many channels had problems in 2018
 - … used single best PMT (C12) offline instead of OR of surviving 7 PMTs
Other luminosity measurements

- **Track-counting**
 - Reconstruct tracks in SCT+pixels in randomly-sampled filled bunch-crossings
 - Data read-out in dedicated event-building stream and reconstructed offline
 - Readout rate 200 Hz in physics running, >10 kHz in vdM and other dedicated runs
 - Number of tracks/crossing proportional to \(<\mu>\), intrinsically very linear
 - Several track-selection ‘working points’ used with different sensitivities to pileup
 - Can resolve individual bunches, but statistically limited

- **Calorimeter algorithms (similar to run-1)**
 - LAr calorimeter high-voltage gap currents (EMEC and FCal)
 - Tile calorimeter scintillator PMT currents
 - D5 and D6 cells for long-term monitoring
 - E1-E4 ‘gap’ scintillators sensitive at very low luminosity
 - Calorimeter measurements are ‘slow’, cannot resolve individual bunch-crossings

4th June 2019
Richard Hawkings
ATLAS luminosity calibration in a nutshell

1. van der Meer scan run (once per year)
 - Absolute luminosity calibration (of LUCID) in controlled conditions, low-µ isolated bunches
 - Reference luminosity from beam parameters
 - Need luminous region Σ_x, Σ_y and currents n_1, n_2

 $$L_b = \frac{f_l n_1 n_2}{2\pi \Sigma_x \Sigma_y}$$

2. Calibration transfer (~once per year)
 - Transfer lumi. scale to physics (high-µ, trains)
 - LUCID over-estimates by $O(10\%)$ at $\mu=40$
 - Correct with track-counting – much more linear
 - Cross-check track-counting with Tile calorimeter scintillators E1-E4

3. Run-to-run stability throughout the year
 - Is LUCID stable wrt tracks, EMEC, Tile, FCAL, TPX, Z-counting …?

4th June 2019
Richard Hawkings
Run-2 13 TeV pp datasets

- Total of $L_{\text{int}} \approx 156 \text{ fb}^{-1}$ delivered at Run 2
 - 139 fb$^{-1}$ (89%) recorded by ATLAS with sufficient data quality for physics analysis
 - <3% of L_{int} in 2015, then 3 progressively better production years in 2016-18
 - Instantaneous luminosity improvements from reduction in β^* and beam emittance
 - Resulting in maximum $<\mu>$ above 60 in 2017 (during 8b4e running period)
 - Luminosity levelling used for part of 2017 8b4e dataset
Absolute luminosity calibration – the vdM method

- Basic outline of (factorisable) vdM formalism

\[\mathcal{L}_b = f_r n_1 n_2 \int \hat{\rho}_1(x, y) \hat{\rho}_2(x, y) \, dx \, dy \]

Per-bunch \(L_b \) from revolution frequency \(f_r \), bunch populations \(n_1 \) and \(n_2 \), beam profiles \(\rho_{1,2}(x,y) \) in transverse plane

- Overlap-int. from convolved beam sizes \(\Sigma_x \Sigma_y \)

Measured in vdM scan of one beam vs other

\[\Sigma_x = \frac{1}{\sqrt{2\pi}} \frac{\int R(\Delta x) \, d\Delta x}{R(0)} \]

\[\mathcal{L}_b = \frac{f_r n_1 n_2}{2\pi \Sigma_x \Sigma_y} \]

Calibration constant \(\sigma_{\text{vis}} \):

\[\sigma_{\text{vis}} = \mu_{\text{vis}}^{\text{max}} \frac{2\pi \Sigma_x \Sigma_y}{n_1 n_2} \]

\(\mu_{\text{vis}} \) is visible count rate in at the peak of scan curve

- Need b-b-b analysis: LUCID and BCM only

4th June 2019

Richard Hawkings
LHC setup for vdM scans

- vdM scans in dedicated low-luminosity running with special LHC setup
 - $\beta^*=19.2\text{m}$ (c.f. 0.25-0.8m in physics), larger beam emittances 3-4 $\mu\text{m}\cdot\text{rad}$
 - Resulting in large transverse beam sizes of $\sim 90\,\mu\text{m}$, c.f. $\sim 15\,\mu\text{m}$ in physics
 - Beam profiles are large wrt. primary vertex resolution in ATLAS inner detector
 - 30-140 isolated bunches – avoid long-range encounters, better beam quality
 - Reduced bunch currents of $\sim 0.8\times10^{11}$ p/bunch, minimise beam-beam effects
 - ... All resulting in $\mu\approx0.5$ at peak of scans
- Scans of 2x20 minutes (x+y), several x+y pairs + off-axis scans in a session
 - vdM fills lasting up to 24 hours with alternating ATLAS and CMS scans sets
vdM scan curve fit

- Typical scan curve from 2017
 - Fitted with Gaussian\(^n\) polynomial function after background subtr
 - Backgrounds determined from preceding empty bunch crossings and unpaired collisions
 - Try several fit functions
 - G\(\ast\)P4, double-G, super-G
 - Difference gives systematic
 - Bunch populations of \(n_1\) and \(n_2\):
 - Current per bunch from FBCT, normalised to DCCT
 - Corrections of O(0.1\%) for ghost and satellite charges
 - Determined from LHC LDM and LHCb beam-gas event rates
 - Systematics <= 0.05%
vdM analysis details

- Various corrections must be taken into account (additional systematics)
 - Orbit drifts during scans, measured using LHC arc and triplet (DOROS) BPMs
 - See dedicated discussion in talk of W. Kozanecki
 - Beam position jitter (beam movement within one scan step)
 - BPMs constrain possible movement within a scan step, input to simulated vdM scans
 - Beam-beam effects (scan curve distortion, dynamic β)
 - Depends on beam energy, transverse beam size, bunch currents, actual β^* and tune
 - Calculated using MADX simulation, as in Run 1
 - Significant (positive) corrections of 1.3-1.7% on σ_{vis}
 - Systematics from variation of $\pm 20\%$ on assumed β^*, ± 0.01 on tune ($0.2-0.3\%$ on σ_{vis})
 - Emittance growth (uncertainty carried over from run 1 analysis)
 - Only if horizontal and vertical emittances grow at different rates (which they do)
 - Non-factorisation effects: $\Sigma_x \Sigma_y$ does not fully represent the 2D overlap integral
 - Dedicated studies and off-axis scans – see talk of M. Dyndal
Length scale calibration

- Relation between nominal (i.e. requested) and actual beam displacement at IP
 - Displace both beams in **same** direction
 - Reconstruct luminous centroid position using vertices reconstructed in ATLAS inner detector
 - Perform a mini-scan in beam-2 x-pos around fixed beam-1 x-pos to find peak position
 - Fit linear relation between bump amplitude and luminous centroid to find calibration
 - Typically within ~1-2% of unity
 - Repeat for B1y, B2x, B2y
 - From Nov 2017: use same directions of movement as in vdM scan, to get same hysteresis effect
 - Uncertainties of 0.3-0.4%, dominated by orbit drift corrections (see talk of W. Kozanecki)

- Additional systematics from ID alignment
 - Assessed by considering ‘realistic’ misalignment scenarios, giving ~0.1% uncertainty
vdM scan consistency - I

- Should get same σ_{vis} for different bunch pairs and scan sets

- Spread of values for different bunches within same scan gives bunch-by-bunch consistency uncertainty, after subtracting expected spread from statistical errors
- Maximum difference between extreme scans (for any algorithm) gives scan-to-scan consistency error which is then symmetrised
 - Gives 1.2% in 2017, only half that in other years
vdM scan consistency – II

- Do not expect same σ_{vis} for all the different LUCID and BCM algorithms
 - But should get same $\Sigma_{x,y}$ values
- Quantify this with specific luminosity L_{spec}
 - Compare L_{spec} for different algorithms by plotting ratios for each bunch-pair
 - Largest deviation of mean from unity gives ‘reference specific luminosity’ error
 - Largest (0.4%) in 2018

- Total uncertainty on σ_{vis}: 1.1 - 1.5%
 - Largest in 2017, due to poor scan-to-scan consistency
Calibration transfer correction

- LUCID over-estimates luminosity at high-μ
 - By ~10% compared to tracks, EMEC, TILE
- LUCID calib. from vdM needs corrn at high-μ
 - From linear fit to $L_{\text{track}}/L_{\text{LUCID}}$ ratio vs. μ in a long high-lumi physics fill, giving p_0 (offset) and p_1 (slope) parameters
 \[\mu_{\text{corr}} = p_0 \mu_{\text{uncorr}} + p_1 \mu_{\text{uncorr}}^2 \]
 - Track-counting first normalised to LUCID in head-on period of vdM fill
 - $p_0 \neq 1$: bunch train and crossing angle effects
- Correction determined ~once per year
 - p_0 and p_1 can be determined from any long physics fill – monitor stability throughout year
 - In 2017, two corrections were needed
 - Origin of the LUCID non-linearity not fully understood
 - But varies according to the bunch train pattern

4th June 2019
Richard Hawkings
LUCID response in bunch trains

- Special LHC fill 6194 in 2017 with 2x25ns and 2x8b4e trains in same fill
 - μ-scan allows track-counting / LUCID ratio to be studied vs. μ in a controlled way
 - Fit the p_0 and p_1 parameters for each bunch in the train separately

- Slope becomes larger (i.e. p_1 more negative) for bunches deeper into the train
 - For long 25ns trains, saturates after \sim10 bunches, partial ‘recovery’ in 8b4e gaps
 - Standard correction procedure uses an average correction applied to all bunches

\[
R = p_0 + p_1 \mu
\]

4th June 2019
Richard Hawkings
Systematics on calibration transfer - I

- LUCID μ-correction implicitly assumes track-counting has no μ-dependence going from the vdM regime ($\mu=0.5$) up to $\mu\approx50$ – need to verify this
 - Only other detector with sensitivity in both ranges is Tile gap scintillators (E-cells)
- Compare Tile/track ratios in vdM fill and closely-following physics fill
 - Ratio normalised to 1 in vdM, deviations in physics fill imply relative non-linearity

Complications
- Low S/B for Tile in vdM fill
 - Delicate pedestal subtraction
 - Residual activation ($\tau\sim1$ day) from any high-lumi running just before vdM fill can swamp signal
- E-cells age rapidly at high lumi.
 - Visible drop in response through physics fill 6024
- Inconsistency between E3 and E4
 - 1.3% systematic assigned in 2017
 - Assume non-linearity is in tracks

4th June 2019
Richard Hawkings
Systematics on calibration transfer - II

- Another example, from 2016 – two vdM fills each followed by high-lumi

- Complications visible:
 - E-cells ageing also affects Tile/tracks ratio in 1st vs 2nd vdM fills
 - Imperfect pedestal subtraction in 2nd vdM fill (residual activation)
 - 1.6% systematic assigned in 2016
 - Average of high-lumi/vdM shifts for the two fill pairs, using both E4 and E3 cells

- In 2018, LSC+vdM fills done directly after intensity ramp-up (CMS request)
 - Strong activation effects in vdM fill
 - Instead, had a 140b ‘vdM-like’ fill with $\mu=0.5$ in ATLAS at start of intensity ramp-up, followed by 600, 1200, 2400b fills: should allow us to study Tile/Tracks evolution
 - We are still analysing this data; use 1.3% from 2017 for preliminary 2018 uncertainty

4th June 2019

Richard Hawkings
Long-term stability throughout the year

- Compare per-fill LUCID integrated-lumi with other detectors throughout year
 - After normalising them all to agree in a reference run (red arrow)

- Long-term stability uncertainty from ‘stability band’ enclosing bulk of points
 - Assigned ±1.0%, ±0.7%, ±1.3% and ±0.8% for the four years 2015-18
 - More details in talk of V. Lang – also including Z-counting and emittance scans
Uncertainties and combination

- Per-year uncertainty summary
 - Treating 2015+16 as one dataset
 - Absolute vdM calibration subtotal
 - Contributions to physics lumi.
 - Total uncertainties for individual years are 2.0-2.4%
 - Largest single uncertainty from calibration transfer

- Combination of years
 - Taking correlations into account
 - */+=fully/partially correlated
 - See talk of R. Hawkings tomorrow

- Total run 2 lumi: 139.0±2.4 fb⁻¹
 - Uncertainty 1.7%, dominated by calibration transfer and then long-term stability

Data sample

<table>
<thead>
<tr>
<th></th>
<th>2015+16</th>
<th>2017</th>
<th>2018</th>
<th>Comb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated lumi (fb⁻¹)</td>
<td>36.2</td>
<td>44.3</td>
<td>58.5</td>
<td>139.0</td>
</tr>
<tr>
<td>Total uncertainty (fb⁻¹)</td>
<td>0.8</td>
<td>1.0</td>
<td>1.2</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Uncertainty contributions (%):

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DCCT calibration†</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>FBCT bunch-by-bunch fractions</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Ghost-charge correction*</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Satellite correction†</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Scan curve fit model†</td>
<td>0.5</td>
<td>0.4</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>Background subtraction</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Orbit-drift correction</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Beam position jitter†</td>
<td>0.3</td>
<td>0.3</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Beam-beam effects*</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Emittance growth correction*</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Non-factorization effects*</td>
<td>0.4</td>
<td>0.2</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>Length-scale calibration</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>ID length scale*</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Bunch-by-bunch σ_{vis} consistency</td>
<td>0.2</td>
<td>0.2</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>Scan-to-scan reproducibility</td>
<td>0.5</td>
<td>1.2</td>
<td>0.6</td>
<td>0.5</td>
</tr>
<tr>
<td>Reference specific luminosity</td>
<td>0.2</td>
<td>0.2</td>
<td>0.4</td>
<td>0.2</td>
</tr>
</tbody>
</table>

- Subtotal for absolute vdM calibration | 1.1 | 1.5 | 1.2 | - |
- Calibration transfer† | 1.6 | 1.3 | 1.3 | 1.3 |
- Afterglow and beam-halo subtraction* | 0.1 | 0.1 | 0.1 | 0.1 |
- Long-term stability | 0.7 | 1.3 | 0.8 | 0.6 |
- Tracking efficiency time-dependence | 0.6 | 0.0 | 0.0 | 0.2 |

Total uncertainty (%) | 2.1 | 2.4 | 2.0 | 1.7 |
Speculation – where can we improve further?

- Leading uncertainty is from calibration transfer, correlated between years
 - 1.3-1.6%, based on delicate Tile vs tracks comparisons
 - Inconsistencies in these comparisons assigned as a systematic on track-counting, but possibly telling us more about Tile response 😐?
 - More to learn from 2018 post-TS1 intensity ramp-up, μ-scans in 2017+2018, and ‘internal’ studies of track-counting systematics (e.g. varying track selections)

- Can the vdM calibration uncertainties be improved?
 - Total uncertainty on vdM is 1.1-1.5% for individual years, partially correlated
 - Largest effects coming from non-factorisation, and scan-to-scan & bunch-to-bunch consistency tests
 - Some element of ‘chance’ – some scan sessions are better than others – why?
 - We are also evaluating these uncertainties rather conservatively – ‘maximum deviation seen’ makes less sense when you have lots of bunches/ scans / algorithms
 - Fit model uncertainties are also significant – better choice of fit functions?
 - 1.7% now, could we get to 1.5% for the final run-2 uncertainty?
Conclusion

- Described the luminosity calibration for complete run 2 13 TeV high-μ dataset
 - Absolute calibration of LUCID (and BCM) from vdM scans in each year
 - Extrapolated to physics regime using complementary measurements from other detectors
- Preliminary calibration has uncertainties of 2.0-2.4% per year, and 1.7% for the combined run 2 dataset
 - A great success – thanks to everyone involved!
 - Largest uncertainty from calibration transfer from vdM to physics regime

- Calibration applicable to full run 2 high-μ dataset (or subsets)
 - Not applicable to special runs with low pileup recorded for W/Z physics ($\mu=2$) or in high β^* very low-μ running for ALFA
 - These require special treatment – mainly for calibration transfer to low-μ bunch train running

4th June 2019

Richard Hawkings
Additional slides
ATLAS luminosity detectors
LHC parameters in physics running

- Values typical of LHC peak performance in the different years
 - Both 25ns long-train and 8b4e values given for 2017 running

<table>
<thead>
<tr>
<th>Parameter</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum number of colliding bunch pairs ((n_b))</td>
<td>2232</td>
<td>2208</td>
<td>2544/1909</td>
<td>2544</td>
</tr>
<tr>
<td>Bunch spacing (ns)</td>
<td>25</td>
<td>25</td>
<td>25/8b4e</td>
<td>25</td>
</tr>
<tr>
<td>Typical bunch population ((10^{11}) protons)</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1/1.2</td>
<td>1.1</td>
</tr>
<tr>
<td>(\beta^*) (m)</td>
<td>0.8</td>
<td>0.4</td>
<td>0.3</td>
<td>0.3–0.25</td>
</tr>
<tr>
<td>Peak luminosity (\mathcal{L}_{\text{peak}}) ((10^{33} \text{ cm}^{-2} \text{s}^{-1}))</td>
<td>5</td>
<td>13</td>
<td>16</td>
<td>19</td>
</tr>
<tr>
<td>Peak number of inelastic interactions/crossing (\langle \mu \rangle)</td>
<td>~16</td>
<td>~41</td>
<td>~45/60</td>
<td>~55</td>
</tr>
<tr>
<td>Luminosity-weighted mean inelastic interactions/crossing</td>
<td>13</td>
<td>25</td>
<td>38</td>
<td>36</td>
</tr>
<tr>
<td>Total delivered integrated luminosity ((\text{fb}^{-1}))</td>
<td>4.0</td>
<td>38.5</td>
<td>50.2</td>
<td>63.4</td>
</tr>
</tbody>
</table>