Overview of ALICE luminosity-determination methodology in Run 2

M. Gagliardi Università & INFN Torino

for the ALICE Collaboration

LHC Lumi Days

CERN, 04/06/2019

Outline

- ALICE in a nutshell
- The ALICE Luminometers
- vdM scan analysis
 - corrections to the rates
 - corrections to the beam widths
 - non factorisation
 - reproducibility
- Long-term stability and consistency
- Summary of uncertainties
- Run3 prospects

ALICE luminometers (1)

- V0 (pp, p-Pb, Pb-Pb)
 - two **scintillator** arrays on opposite side (A and C) of the IP (**2.8** < η < **5.1** ; -**3.7** < η < -**1.7**)
 - coincidence of A and C side for pp and p-Pb collisions
 - amplitude trigger for Pb-Pb collisions
- T0 (pp, p-Pb)
 - two Cherenkov detector arrays on opposite sides of the IP (4.61 < η < 4.92 ; -3.28 < η < -2.97)
 - coincidence of A and C side with hardware cut on the signal arrival time difference

All luminosity algorithms are based on event-counting

VO-A VO-C, TO-C TO-A

ALICE luminometers (2)

- Neutron Zero Degree Calorimeters ZN (p-Pb, Pb-Pb)
 - two spaghetti calorimeters on opposite sides of the IP, at ±114 m
 - single-arm (remnant side for p-Pb) or OR-trigger

- ALICE Diffractive detector AD (pp)
 - two scintillators on opposite sides of the IP, at +17 and -20 m
 - (4.7 < η < 6.3 ; -7 < η < -4.9)
 - coincidence of A and C side
 - being commissioned as luminometer

All luminosity algorithms are based on **event-counting**

AD

ALICE vdM scans in Run2

Year	Fill	System	Notes	Results
2015	4269	pp 13 TeV		ALICE-PUBLIC-2016-002
2015	4634	pp 5 TeV		ALICE-PUBLIC-2016-005
2015	4690	Pb-Pb 5 TeV		work in progress
2016	4937	pp 13 TeV		work in progress
2016	5533	p-Pb 8 TeV		ALICE-PUBLIC-2018-002
2016	5568	Pb-p 8 TeV		ALICE-PUBLIC-2018-002
2017	6012	pp 13 TeV		work in progress
2017	6380	pp 5 TeV		ALICE-PUBLIC-2018-014
2018	6864	pp 13 TeV		work in progress
2018	7440	Pb-Pb 5 TeV	skew quad. issue @ IP2	
2018	7483	Pb-Pb 5 TeV		work in progress

ALICE standard scan sequence

- Two standard, symmetric scans (X1-Y1, X2-Y2)
 - -6 σ_{beam} -> +6 σ_{beam} in steps of 0.5 σ_{beam} - 30 s/step
- Length-scale calibration
 - 5 steps of ~ σ_{beam} each
 - beams kept at a distance of ~ Σ
- Offset scan
 - typical offset ~ $4\sigma_{\text{beam}}$
 - input to non-factorisation fits
- Bunch intensity measurements:
 - LHC instrumentation
 - ATLAS BPTX
 - LHCb ghost charge (thanks to all!)

From raw to physical rates (1)

Three corrections are applied to the measured trigger rates:

- Background correction
 - estimate fraction of counts from beam-gas, satellites, after-pulsing
 - use timing information to tag events as bkg
 - statistics-limited for Pb-Pb
 - change cuts for systematics
- Pile-up correction

Poissonian distribution of A&C coincidences:

- $R_{A\&C}/f_{LHC}$ = P(A&C > 0; μ_{vis}) + P(A&C=0; μ_{vis})*P(A!C>0; μ_{vis})*P(C!A>0; μ_{vis})
- Equation is solved numerically at each separation step to find μ_{vis}
- Intensity decay correction

JINST 9 (2014) 1100

From raw to physical rates (2)

Three corrections are applied to the measured trigger rates:

Corrections to the separation

• Beam-beam deflection corrections

evaluated with the procedure
established in the LHC Luminosity
Calibration & Measurement WG, based on
the MAD-X code

- using the Python wrapper kindly provided by the LHC experts (thanks!)
- vary tunes, β^* and Σ for systematics
- up to 2% effect on cross sections
- Orbit drift corrections are evaluated via the BPM data, fitted with a model for the LHC optics (YASP) and extrapolated to IP2
 - full size of the effect taken as systematic uncertainty

Length-scale calibration

- Length-scale calibration
 - 5 steps of ~ σ_{beam} each
 - beams kept at a distance of ~ Σ
- Calibration factor estimated as the slope of the measured vs nominal beam-spot position
- Systematic uncertainty: **inflate stat. uncertainties** until χ^2 /dof = 1 ٠

M. Gagliardi – Overview of ALICE luminosity-determination methodology in Run 2 – LHC Lumi days 2019

8.5/3

Fits to the vdM scan curve

The fitting function:

$$R(\Delta x, 0) = R(0, 0) \exp\left[-(\Delta x - \mu)^2 / 2\sigma^2\right] \left[1 + p_2(\Delta x - \mu)^2 + p_4(\Delta x - \mu)^4 + p_6(\Delta x - \mu)^6\right]$$

M. Gagliardi – Overview of ALICE luminosity-determination methodology in Run 2 – LHC Lumi days 2019

Fits to the vdM scan curve

The fitting function:

$$R(\Delta x, 0) = R(0, 0) \exp\left[-(\Delta x - \mu)^2 / 2\sigma^2\right] \left[1 + p_2(\Delta x - \mu)^2 + p_4(\Delta x - \mu)^4 + p_6(\Delta x - \mu)^6\right]$$

typically yields χ^2 /dof ~ 1

Consistency between the TOand VO-based beam widths is typically good (~0.5% or less)

Non-factorisation correction

Simultaneous fit of μ_{vis} and luminous region parameters vs beam separation, using the method originally proposed by ATLAS (see e.g. CERN-THESIS-2015-054)

The method was able to catch the large non-factorisation correction of the (in-)famous July 2012 scans (see ALICE-PUBLIC-2017-002)

Bunch-by-bunch correction not always possible due to statistics

→ perform **bunch-integrated correction** and use single bunches for checks

Typical effect in Run2 scans: ~1% (or less)

Full size of the correction used as uncertainty

ALICE-PUBLIC-2016-005

More in the talk by M. Dyndal

Reproducibility of results

Bunch-to-bunch:

- compute χ²/dof
 of pol0 fit
- if > 1, rescale stat.
 uncertainties accordingly

Scan-to-scan:

 assign full difference between scans as uncertainty

Long-term stability and consistency (1)

The luminosity is **evaluated for each run from the luminositytrigger counts**, corrected as in the vdM scan

The **stability and consistency** of our two main luminometers is evaluated via the **ratio of T0- to V0-**based luminosities

The **RMS (wrt unity) of the distribution** over runs is quoted as uncertainty, after subtracting the stastistical component and the contribution from the vdM

V0 ageing was an issue during the 2015 pp 13 TeV campaign \rightarrow use only T0, check ratio to muon triggers for stability

Situation looks better in 2016-17-18 thanks to lower HV and μ_{vis}

Long-term stability and consistency (2)

0.45 2 / 0.44 2 0.44 The stability and consistency of our two main ALICE-PUBLIC-2016-005 ALICE-PUBLIC-2018-014 ALICE L_{T0} pp √s = 5 TeV luminometers is evaluated via the ratio of TOto V0-based luminosities 0.43 0.42 a de la sector d The RMS (wrt unity) of the distribution over runs is guoted as uncertainty, after subtracting 0.4 0 96 the stastistical component and the contribution 0.4 ALICE pp $\sqrt{s} = 5$ TeV from the vdM 0.92 0.39 10 15 20 25 0.9 100 Run number Time from vdM scan [h] 01 7 μ_{vis} range for V0 Period Duration Uncertainty ALICE Pb-p $\sqrt{s_{NN}} = 8.16 \text{ TeV}$ °⊢1.02 (spacing) pp 13 TeV 2015 5 months 0.001-0.1 (isolated) 0.6% (isol.) 0.001-0.01 (25 ns & 50 ns) 2.7% (trains) 5 days < 0.05 (isol.) pp 5 TeV 2015 0.4% 0.003-0.005 (25 ns) 0.99 0.007-0.1 (100_200 ns) p-Pb 8 TeV 2016 8 days 1.1% ····· Unc. band from vdM scan 0.98 Pb-p 8 TeV 2016 9 days 0.007-0.1 (100 200 ns) 0.6% 0.97 60 20 40 80 Run number pp 5 TeV 2017 11 days 0.003-0.04 (25 ns) 1.1% ALICE-PUBLIC-2018-002

Uncertainty	pp 13 TeV 2015	pp 5 TeV 2015	p-Pb 8 TeV 2016	Pb-p 8 TeV 2016	pp 5 TeV 2017	Other periods
Non-factorisation	0.9%	1%	0.6%	0.9%	0.1%	
Orbit drift	0.8%	<0.1%	0.7%	0.3%	0.1%	
Beam-beam deflection	0.8%	0.4%	<0.1%	0.4%	0.5%	
Dynamic β^*	0.3%	0.2%	<0.1%	<0.1%	0.2%	
Background	0.1% (T0), 0.7% (V0)	0.3% (T0), 1.1% (V0)	<0.1% (T0), 0.5% (V0)	0.3% (T0), 0.6% (V0)	0.2% (T0), 1.1% (V0)	
Pile-up	0.7%	0.7%	included in *	included in *	0.5%	
Length-scale calibration	0.5%	1%	0.5%	0.8%	0.2%	
Fit model	0.6%	0.7%	0.5% (T0) <i>,</i> 0.4% (V0)	0.6% (T0), <mark>0.9% (V0)</mark>	0.5%	
Σ consistency (T0 vs V0)	0.6%	0.2%	0.2%	0.4%	<0.1%	
Intensity decay	0.4%	0.7%	0.6%	0.7%	0.9%	
Bunch-to-bunch consist.	<0.1%	<0.1%	<0.1%	<0.1%	<0.1%	
Scan-to-scan consist.	<0.1%	0.5%	0.6%	0.1%	0.5% (T0), 0.4% (V0)	
Beam centreing	<0.1%	0.1%	0.1%	0.1%	0.2%	
Bunch intensity	0.6%	0.4%	0.3%	0.3%	0.4%	
Long-term stability & consist.	0.6% (isol.) <mark>2.7%</mark> (trains)	0.4%	1.1%*	0.6%*	1.1%	
Total	3.4% (TO)	2.1% (T0), 2.3% (V0)	1.8% (T0), 1.9% (V0)	1.8% (T0), 2.0% (V0)	1.8% (T0), 2.1% (V0)	5% (prel.)

Run 3 prospects

Fast Interaction Trigger replaces 3 detectors in ALICE: T0, V0, and FMD

https://cds.cern.ch/record/781854/files/lhcc-2004-025.pdf

https://cds.cern.ch/record/1603472/files/ALICE-TDR-015.pdf

FIT will consist of two arrays of Cherenkov radiators with MCP-PMT sensors (T0+) and of a single, large-size scintillator ring (V0+)

(FIT = TO+ and VO+ for ALICE after LS2)

(+ ZDC and AD, which will stay)

Summary

- The ALICE luminosity uncertainty is in the 2-3% range for pp and p-Pb
 - \rightarrow generally adequate
 - \rightarrow for some measurements (e.g. J/ ψ cross section), the lumi unc. Is non-negligible wrt stat. and other syst.
- Dominant contribution from long-term consistency (especially for long periods)
 → background subtraction and pile-up correction in physics runs not fully understood
- Occasionally, non-factorisation yields large (~1%) uncertainties
- Now working hard to get a solid result for Pb-Pb, with similar precision, and to finalise all pp results
- Run 3:
 - ightarrow similar (or slightly harsher) running conditions as Run2 for pp and p-Pb
 - \rightarrow significant increase of luminosity for Pb-Pb...
 - \rightarrow ... but better hardware