Nonfactorization and the VdM scan method

Methods applied and lessons learnt at the CMS experiment

Joscha Knolle
on behalf of the CMS Collaboration

LHC Lumi Days
June 04-05, 2019

About xy nonfactorization

$\uparrow y$

true luminous region

- VdM method assumes: beam proton densities factorize in x and y
- $x y$ nonfactorization causes bias
- possible features:
- "tilt"
\Rightarrow correlation parameter ϱ
- "stretch"
\Rightarrow double Gaussian

About xy nonfactorization

$\uparrow y$

VdM scan in x

- VdM method assumes: beam proton densities factorize in x and y
- xy nonfactorization causes bias
- possible features:
- "tilt"
\Rightarrow correlation parameter ϱ
- "stretch"
\Rightarrow double Gaussian

About xy nonfactorization

About xy nonfactorization

About xy nonfactorization

$\uparrow y$

reconstructed luminous region true luminous region

- VdM method assumes: beam proton densities factorize in x and y
- $x y$ nonfactorization causes bias
- possible features:
- "tilt"
\Rightarrow correlation parameter ϱ
- "stretch"
\Rightarrow double Gaussian

About xy nonfactorization

$\uparrow y$

reconstructed luminous region true luminous region

- VdM method assumes: beam proton densities factorize in x and y
- xy nonfactorization causes bias
- possible features:
- "tilt"
\Rightarrow correlation parameter ϱ
- "stretch"
\Rightarrow double Gaussian
too small
too large
\boldsymbol{x}

Beam imaging method

Beam imaging analysis

Beam imaging scans \& analysis strategy

- beam 2 fixed at $x=0$, beam 1 moved in $19 \Delta x$ steps
- repeat: beam 1 and 2 , in x and y
- reconstruct primary vertices
- limited by vertex resolution V

Beam imaging analysis

Beam imaging scans \& analysis strategy

Beam imaging analysis

Beam imaging scans \& analysis strategy

- beam 2 fixed at $x=0$, beam 1 moved in $19 \Delta x$ steps
- repeat: beam 1 and 2 , in x and y
- reconstruct primary vertices
- limited by vertex resolution V

beam proton densities $\left[\rho_{1}(x+\Delta x, y) \cdot \rho_{2}(x, y)\right] \otimes V$
 beam separation at each step

Beam imaging analysis

Beam imaging scans \& analysis strategy

Beam imaging analysis

Beam imaging scans \& analysis strategy

Beam imaging analysis

Beam imaging scans \& analysis strategy

- beam 2 fixed at $x=0$, beam 1 moved in $19 \Delta x$ steps
- repeat: beam 1 and 2 , in x and y
- reconstruct primary vertices
- limited by vertex resolution V

beam proton densities $\left[\rho_{1}(x+\Delta x, y) \cdot \rho_{2}(x, y)\right] \otimes V$
 beam separation
 at each step

Beam imaging analysis

Beam imaging scans \& analysis strategy

- beam 2 fixed at $x=0$, beam 1 moved in $19 \Delta x$ steps
- repeat: beam 1 and 2 , in x and y
- reconstruct primary vertices
- limited by vertex resolution V

beam proton densities $\left[\rho_{1}(x+\Delta x, y) \cdot \rho_{2}(x, y)\right] \otimes V$
 beam separation at each step

Beam imaging analysis

Beam imaging scans \& analysis strategy

- beam 2 fixed at $x=0$, beam 1 moved in $19 \Delta x$ steps
- repeat: beam 1 and 2 , in x and y
- reconstruct primary vertices
- limited by vertex resolution V

beam proton densities $\left[\rho_{1}(x+\Delta x, y) \cdot \rho_{2}(x, y)\right] \otimes V$
 beam separation at each step

Beam imaging analysis

Beam imaging scans \& analysis strategy

Beam imaging analysis

Beam imaging scans \& analysis strategy

Beam imaging analysis

Beam imaging scans \& analysis strategy

Beam imaging analysis

Beam imaging scans \& analysis strategy

- beam 2 fixed at $x=0$, beam 1 moved in $19 \Delta x$ steps
- repeat: beam 1 and 2 , in x and y
- reconstruct primary vertices
- limited by vertex resolution V

beam proton densities $\left[\rho_{1}(x+\Delta x, y) \cdot \rho_{2}(x, y)\right] \otimes V$
 beam separation at each step

Beam imaging analysis

Beam imaging scans \& analysis strategy

- beam 2 fixed at $x=0$, beam 1 moved in $19 \Delta x$ steps
- repeat: beam 1 and 2 , in x and y
- reconstruct primary vertices
- limited by vertex resolution V

beam proton densities $\left[\rho_{1}(x+\Delta x, y) \cdot \rho_{2}(x, y)\right] \otimes V$
 beam separation at each step

Beam imaging analysis

Beam imaging scans \& analysis strategy

Beam imaging analysis

Beam imaging scans \& analysis strategy

- beam 2 fixed at $x=0$, beam 1 moved in $19 \Delta x$ steps
- repeat: beam 1 and 2 , in x and y
- reconstruct primary vertices
- limited by vertex resolution V

beam proton densities $\left[\rho_{1}(x+\Delta x, y) \cdot \rho_{2}(x, y)\right] \otimes V$
 beam separation at each step

Beam imaging analysis

Beam imaging scans \& analysis strategy

- beam 2 fixed at $x=0$, beam 1 moved in $19 \Delta x$ steps
- repeat: beam 1 and 2 , in x and y
- reconstruct primary vertices
- limited by vertex resolution V

beam proton densities $\left[\rho_{1}(x+\Delta x, y) \cdot \rho_{2}(x, y)\right] \otimes V$
 beam separation
 at each step

Beam imaging analysis

Beam imaging scans \& analysis strategy

- beam 2 fixed at $x=0$, beam 1 moved in $19 \Delta x$ steps
- repeat: beam 1 and 2 , in x and y
- reconstruct primary vertices
- limited by vertex resolution V

beam proton densities $\left[\rho_{1}(x+\Delta x, y) \cdot \rho_{2}(x, y)\right] \otimes V$
 beam separation at each step

Beam imaging analysis

Beam imaging scans \& analysis strategy

Beam imaging analysis

Beam imaging scans \& analysis strategy

Beam imaging analysis

Beam imaging scans \& analysis strategy

Beam imaging analysis

Beam imaging scans \& analysis strategy

- beam 2 fixed at $x=0$, beam 1 moved in $19 \Delta x$ steps
- repeat: beam 1 and 2 , in x and y
- reconstruct primary vertices
- limited by vertex resolution V
- combine all steps

$$
\begin{aligned}
\sum_{\Delta x} N_{\text {vertices }}(x, y ; \Delta x) & \propto \sum_{\Delta x}\left[\rho_{1}(x+\Delta x, y) \cdot \rho_{2}(x, y)\right] \otimes V \\
\text { valid for small step size } \gamma & \approx \int_{\Delta x}\left[\rho_{1}(x+\Delta x, y) \cdot \rho_{2}(x, y)\right] \otimes V \mathrm{~d} \Delta x
\end{aligned}
$$

Beam imaging analysis

Beam imaging scans \& analysis strategy

- beam 2 fixed at $x=0$, beam 1 moved in $19 \Delta x$ steps
- repeat: beam 1 and 2 , in x and y
- reconstruct primary vertices
- limited by vertex resolution V
- combine all steps to obtain "beam image" of fixed beam
- choose models for proton densities ρ_{1}, ρ_{2} for simultaneous fit of 4 scans

$$
\begin{aligned}
\sum_{\Delta x} N_{\text {vertices }}(x, y ; \Delta x) & \propto \sum_{\Delta x}\left[\rho_{1}(x+\Delta x, y) \cdot \rho_{2}(x, y)\right] \otimes V \\
& \approx\left[\left(\int_{\Delta x} \rho_{1}(x+\Delta x, y) \mathrm{d} \Delta x\right) \cdot \rho_{2}(x, y)\right] \otimes V \\
& =\left[\left(\mathcal{M}_{x} \rho_{1}\right)(y) \cdot \rho_{2}(x, y)\right] \otimes V
\end{aligned}
$$

Beam imaging analysis

Transverse proton density models and fit results

- analytical convolution $\otimes V$ requires Gaussian-based fit models
- simplest case: single 1D Gaussians

$$
g(x) \cdot g(y)=\exp \left[-\frac{1}{2}\left(\frac{x^{2}}{\sigma_{x}^{2}}+\frac{y^{2}}{\sigma_{y}^{2}}\right)\right]
$$

\Rightarrow large angular and radial dependency of residuals

DESY. | Nonfactorization at CMS | Joscha Knolle, 04 Jun 2019

Beam imaging analysis

Transverse proton density models and fit results

- analytical convolution $\otimes V$ requires Gaussian-based fit models
- single Gaussian with correlations
$g(x, y)=\exp \left[-\frac{1}{2\left(1-\varrho^{2}\right)}\left(\frac{x^{2}}{\sigma_{x}^{2}}+\frac{y^{2}}{\sigma_{y}^{2}}-\frac{2 \varrho x y}{\sigma_{x} \sigma_{y}}\right)\right]$
\Rightarrow good angular description, but still clear radial structure

DESY. | Nonfactorization at CMS | Joscha Knolle, 04 Jun 2019

Beam imaging analysis

Transverse proton density models and fit results

- normalized sums of Gaussians
- add wider Gaussian g_{2}
\Rightarrow wider tails
- subtract narrow Gaussian g_{3}
\Rightarrow flattened centre
\Rightarrow best-fit model: $g_{1}+g_{2}-g_{3}$
for pp at 13 TeV in 2015, 2016 \& 2017,
but no sufficient description in 2018

Beam imaging analysis
 \section*{Determination of VdM bias}

Bias from VdM simulations

- unbiased overlap from direct integration of product of fitted proton densities
- biased overlap from repeated MC simulations of VdM scan pairs using fitted proton densities
- VdM results corrected for difference

Beam imaging analysis

Determination of VdM bias

Bias from VdM simulations

- unbiased overlap from direct integration of product of fitted proton densities
- biased overlap from repeated MC simulations of VdM scan pairs using fitted proton densities
- VdM results corrected for difference

Closure test with toy models

- randomly generate toy models, simulate set of beam imaging scans, and apply same fit procedure as for data
- select toys with similar fit properties as data fits, evaluate VdM bias
- reconstruction of VdM bias from good fits with precision $\lesssim 0.5 \%$ possible

Beam imaging analysis

Effects impacting beam position

Beam-beam deflection

- electric repulsion of proton beams, depending on transverse separation
- causes movement of fixed beam

Orbit drift

- beams drift away from nominal orbit
- changes beam position within step, and step size among different steps

Length scale doesn't affect fixed beam, doesn't introduce step size variations

Recently implemented methods \& developing ideas

Offset scan analysis

Offset scans and general considerations

Fill 6868, (2018, 13 TeV)

- normal VdM scans
- offset scans with beams at constant separation in non-scanning direction
\Rightarrow differently affected by nonfactorization
- reconstruct luminous region profile (= product of beam proton densities) from fit to rate vs 2D beam separation
- sensitive to beam separation effects: length scale, beam-beam, orbit drift
- four separation configurations shared between two scans
\Rightarrow consistency check
- tails limited by low statistics
- can use any luminometer \Rightarrow not limited by central DAQ
- offset scans only done in 2017 \& 2018 VdM programmes

Offset scan analysis

Luminous region modelling and fit results

- ad-hoc position correction to reach rate agreement at coinciding steps
\Rightarrow thus correcting for beam position effects
- no limitation on luminous region models
- found good description with single and double Gaussians
\Rightarrow main result: ϱ of main Gaussian component

Offset scan analysis

Results on time evolution of nonfactorization
Fill 6868 (2018, 13 TeV)

- in Fill 6868: two offset scan pairs taken ~ 12 hours apart
- separately analysed \Rightarrow test of time evolution of nonfactorization
\Rightarrow correlation parameter ϱ of luminous region profile increases with time
\Rightarrow consistently observed in beam imaging method

Beamspot evolution analysis

- at each scan step, fit 3D ellipsoid to vertex distribution, including vertex resolution
- extract observables: mean, width, tilt
- analytically compute predictions from models for observables
- fit predictions to rate \& beamspot data
- plots: fit results with $g_{1} \pm g_{2} \pm g_{3}$ for Scan \#1X, Fill 4954 (2016, 13 TeV)

Diagonal scan analysis

- VdM scans in $\mathrm{X}, \mathrm{Y}, \mathrm{X}+\mathrm{Y}, \mathrm{X}-\mathrm{Y}$, analysed with standard method \Rightarrow obtain four widths
- fit ellipse to obtain 1σ contour line of luminous region profile \Rightarrow can extract correlation parameter ϱ
- diagonal scans only done in 2018 PbPb VdM programme

Fill 7442, (2018, 5.02 TeV PbPb)

Summary

Summary

- In Run 2, beam imaging is the main method of evaluating nonfactorization.
- Complementary methods are being developed:
- offset scans,
- beamspot evolution,
- diagonal scans.
- Improved nonfactorization results are underway.
- Essential next steps:
- direct comparison of results from different methods,
- toy simulations including all methods and effects.

References

CMS luminosity measurements

- CMS-PAS-LUM-15-001 (pp 13 TeV 2015)
- CMS-PAS-LUM-16-001 (pp 5.02 TeV 2015)
- CMS-PAS-LUM-17-001 (pp 13 TeV 2016)
- CMS-PAS-LUM-17-002 (Pbp/pPb 8.16 TeV 2016)
- CMS-PAS-LUM-17-004 (pp 13 TeV 2017)
- CMS-PAS-LUM-18-002 (pp 13 TeV 2018)

Method descriptions

- Klute, Medlock, and Salfeld-Nebgen, JINST 12 (2017) P03018 (beam imaging method)
- Chatrchyan et al. (CMS Collaboration), JINST 9 (2014) P10009 (vertex splitting)
- Aaboud et al. (ATLAS Collaboration), Eur. Phys J. C 76 (2016) 653 (offset scan \& beamspot evolution analysis)
- CMS Collaboration, CMS-DP-2016-051 (beamspot fits)
- Webb, CERN-THESIS-2015-054 (beamspot evolution analysis)

Backup

Beam imaging analysis

Reconstructed bias for different bunch crossings

BCIDs for which vertex data was recorded:

- Fill 4266: 51, 771, 1631, 2211, 2674
- Fill 4634: 644, 1215, 2269, 2389, 2589
- Fill 4937: 81, 875, 1610, 1690, 1730
- Fill 4954: 41, 281, 872, 1783, 2063
- Fill 5527: 177, 1420, 2311, 3015
- Fill 5563: 958, 1486, 2032, 2576
- Fill 6016: 41, 281, 872, 1783, 2063
- Fill 6380: 41, 644, 1215, 2269, 2589
- Fill 6868: 265, 865, 1780, 2192, 3380
\Rightarrow we use average of bias from five BCIDs as correction for all BCIDs

Beam imaging analysis
 Vertex resolution

- measured with vertex splitting method
- need resolution smaller than beam size \Rightarrow problematic for heavy-ion runs
- 2016 pPb/Pbp: only single Gaussian fit at tightest vertex selection possible

