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Introduction and Motivation

Goal

Stablish a value for 5* that fits preferences from experiments while keeping the
measurement reliable and accurate enough.

Methodology

» Analysis of the measurements carried out during the MD on vdM optics.
» Simulations using MADX to extend the study to different optics.
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[£* measurement using k-mod

Modulation of the strength of the last quadrupoles (usuallt Q1) the IP induce a change
in tune that allows to determine the S-function at the quadrupole!.
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YF. Carlier, R. Tomas, Accuracy and feasibility of the 5* measurement for LHC and High

Luminosity LHC using k-modulation, PRAB 20, 011005.
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K-mod technique limitation in vdM?

» The uncertainty on 5* is closely related to
uncertainty in 8 at the nearest quadrupole.
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» Due to optics properties, when 3* ~ L* (case 101
of vdM optics), a small error in 8 may drive a
huge error in B*.
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» One should avoid 5* ~ L*. 5 20 %5 30
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2L, van Riesen-Haupt, K-modulation developments via simultaneous beam based alignment in t he
LHC, Proceeding IPAC17
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[£* measurement limitations

Uncertainties in observables have a
significant impact on the reconstructed
value of 3*.

Uncertainties

» Tune jitter
[-beating
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Table: Tune uncertainties during the MD
devoted to vdM optics measurements
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2016 MD on vdM

» One quadrupole modulation per IP (IP1/IP5/IP8) per side (L/R).
» Two modulations in IP8 with and without orbit feedback.
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2016 MD on vdM: * measurement

Uncertainties
» Magnet misalignment of 6 mm rms.
> Magnet strength error: AK/K = 1073,
» Tune uncertainty: 6Q = 5.0-107°,

Beam 1 Beam 2
IP Bx By Bx By
IP1  174+£0.02 18.11+0.02 17.73+£0.02 17.20+£0.02
IP5 33.06 +24.17 16.21 +0.02
IP8 21.52+0.03 19.97 +0.03 22 +12

» Reasonable for IP1.

> Very bad measurement for 3¢ in IP5 and 37 in IP8.
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Can we explain the results? [3-beating (B1)
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Can we explain the results? [-beating (B2)
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Can we explain the results? [-beating in IRs

Table: 8-beating at the location of the BPM of the last quadrupoles on both sides of the IP.

Beam 1 Beam 2
P | AB./Bx [%] | AB, /By [%] | BB/Bx [%] | BBy /By [%]
L R L R L R L R
IP1 | 6.3 5.8 1.0 0.1 8.2 1.7 7.4 4.0
IP5 | 6.8 13 0.4 8.5 3.6 0.1 4.1 3.7
IP8 | 8.6 7.7 1.3 0.5 7.8 9.9 5.9 4.8
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Can we explain the results? (-beating

I
» Although global 8-beating is 501 B3,
reasonable, local 5-beating at the last
quadrupole may have a significant ?40'
impact on 3*. = ’
o = 307
» Up to 10% fx-beating in b
MQXA.1R5.B1. This could explain the 920 1 .
bad result of 3% in IP5. . ° ¢
» In general, larger S-beating induces 101
larger errors in 3*. 2.5 5.0 75 10.0

< AB/B > %)
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Can

v

we explain the results? Waist influence

Large waists lead to large errors in [3*.

B1H in IP5 has a large waist.

But small waist does not ensure good
measurements.

It may help to try to correct both 8
and waist beating.
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Simulations
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K-mod simulations
°*  §*=19cm, 6/2 = Oprad
8% = 19cm, 6/2 = 50prad
*  [§*=25cm, 6/2 = Opurad
) s 3" =25cm, 6/2 = 50prad
» 10 different optics configurations have 5" = 30cm, 0/2 — Ourad
been tested 5*(/P1/IP5) ~ « 5" =30cm, 0/2 = 50prad
(12,14,16,19,22, 25,30, 33,40,50) m.
» Crossing angle (6/2 = 50 purad) effect
iS neg|lg|b|e 0.005 1
» Uncertainties in @, K and

» Evaluate the impact of uncertainties in
a wide range of optics possibilities.

0.010+1

misalignments. S 0.0004
» |deal machine for the rest.
—0.005
» As in measurements, modulations are
simulated varying the tune by —0.0107
AQ ~ £0.01. 0.00775  0.00800 0.00825 0.00830

AK
14 /20



Simulations: ASB*/8* vs 6Q (IP1)

B1H IP1

— A | —— " =126m
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» Increase of uncertainty in 8* with tune

] —e— *=30m
uncertainty.
> As seen previously, for % ~ L*, the 02 04 06 08 10
. . < —4
error in 3* diverges. QpoT
. BLV IP1
» Current expected tune uncertainty: 10! e B —126m
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—— 3*=167Tm
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» For HL-LHC, it is required a smaller
tune uncertainty (~ 2.5 -107°).
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Simulations: AS*/B* vs. *

» Close to ideal case.

» Final value on AB*/5* will be affected
by many factors not considered here.

» Error for 5* < L* decreases faster than
for B* > L*.

» [(3* uncertainty below 0.5% for
£* <19 m.

§Q =75.0-107°
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—
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Conclusions

> Experimentally, 5* = 19 m seems not to be a good choice.
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» Exlude region: 8* = L* £+ 20%.
> 3% < 17 m seems to be a reasonable choice.
» Uncertainty below 0.5% for near to ideal case.
» Larger 5* is also possible (40 m?) but not for HL.
» Further analysis required to better estimate 5* uncertainty.
» MC-like simulations including (-beating and waist beating.
» The uncertainty on 5* might be further reduced if some time is devoted to vdM
optics correction (i.e. reduce waist, $-beating...).

Thank you!
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Back up



Simulations: AS*/5* vs §Q (IP5)

B1H IP5
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» Same behaviour as that of IP1. BLV IPS

—— *=126m
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Can

we explain the results? Phase influence

Analyzed phase phase advance
between Q1 left and right via
AC-dipole and and compared to
reconstructed from kmod.

Expected phase advance ~ 45 degrees.

Fully confirms that the 5
measurement in IP5 is bad.

Errors in phase beyond 10% make
measurement less reliable.

[=3
b
Q%
By

5 10
d(AC) — ¢(kmod) [degree]
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