β^* determination in van der Meer optics - LHC Lumi Days - Hector Garcia-Morales^{1,2}, Michael Hofer², Rogelio Tomas² > ¹ University of Oxford ² CERN > 5th of June 2019 #### Introduction and Motivation #### Goal Stablish a value for β^* that fits preferences from experiments while keeping the measurement reliable and accurate enough. ### Methodology - ► Analysis of the measurements carried out during the MD on vdM optics. - ► Simulations using MADX to extend the study to different optics. ## measurement using k-mod Modulation of the strength of the last quadrupoles (usuallt Q1) the IP induce a change in tune that allows to determine the β -function at the quadrupole¹. The β at the quadrupole is given by: $$\beta_{\mathsf{av}} \approx \pm 4\pi \frac{\Delta Q}{\Delta kL}$$ (1) The value for β^* is calculated from the value of β at the quadrupole: $$eta_{\mathsf{AV}}^{\mathsf{q}\,\mathsf{uad}} o (eta_{\mathsf{w}}, \mathsf{w}) o eta^*$$ $^{^1}$ F. Carlier, R. Tomas, Accuracy and feasibility of the eta^* measurement for LHC and High Luminosity LHC using k-modulation, PRAB 20, 011005. ## K-mod technique limitation in vdM² The uncertainty on β^* is closely related to uncertainty in β at the nearest quadrupole. $$\frac{\sigma_{\beta^*}}{\beta^*} = \frac{\beta^* + \frac{L^{*2}}{\beta^*}}{|\beta^* - \frac{L^{*2}}{\beta^*}|} \frac{\sigma_{\beta}}{\beta} = \Lambda \frac{\sigma_{\beta}}{\beta}$$ (3) - Due to optics properties, when $\beta^* \approx L^*$ (case of vdM optics), a small error in β may drive a huge error in β^* . - ▶ One should avoid $\beta^* \approx L^*$. ²L. van Riesen-Haupt, K-modulation developments via simultaneous beam based alignment in t he LHC, Proceeding IPAC17 ## β^* measurement limitations Uncertainties in observables have a significant impact on the reconstructed value of β^* . #### Uncertainties - Tune jitter - \triangleright β -beating - ► Orbit shift/jitter - ▶ Misalignment - Quadrupole strength - Coupling Table: Tune uncertainties during the MD devoted to vdM optics measurements | | B1 | B2 | |-------------------------|-----|-----| | $\delta Q_{x}[10^{-5}]$ | 3.2 | 2.3 | | $\delta Q_y[10^{-5}]$ | 3.2 | 3.4 | #### 2016 MD on vdM - ► One quadrupole modulation per IP (IP1/IP5/IP8) per side (L/R). - ▶ Two modulations in IP8 with and without orbit feedback. ## 2016 MD on vdM: β^* measurement #### Uncertainties - ► Magnet misalignment of 6 mm rms. - ▶ Magnet strength error: $\Delta K/K = 10^{-3}$. - ▶ Tune uncertainty: $\delta Q = 5.0 \cdot 10^{-5}$. | | Beam 1 | | Beam 2 | | | |-----|-------------------|------------------|----------------------------------|----------------|--| | IP | eta_{x}^* | β_y^* | $eta_{\!\scriptscriptstyle X}^*$ | β_y^* | | | IP1 | 17.4 ± 0.02 | 18.11 ± 0.02 | 17.73 ± 0.02 | 17.20 ± 0.02 | | | IP5 | 33.06 ± 24.17 | 18.00 ± 3.7 | 16.21 ± 0.02 | 18.7 ± 1.4 | | | IP8 | 21.52 ± 0.03 | 19.97 ± 0.03 | 26.35 ± 2 | 22 ± 12 | | - Reasonable for IP1. - ▶ Very bad measurement for β_x^* in IP5 and β_y^* in IP8. ## Can we explain the results? β -beating (B1) ## Can we explain the results? β -beating (B2) ## Can we explain the results? β -beating in IRs Table: β -beating at the location of the BPM of the last quadrupoles on both sides of the IP. | | Beam 1 | | | Beam 2 | | | | | | |-----|----------------------------------|-----|------------------|---|-----|------------------------------|-----|------------------------------|--| | IP | $\Delta \beta_{x}/\beta_{x}$ [%] | | $\Delta \beta_y$ | $\Delta \beta_y/\beta_y$ [%] Δ_y | | $\Delta \beta_x/\beta_x$ [%] | | $\Delta \beta_y/\beta_y$ [%] | | | | L | R | L | R | L | R | L | R | | | IP1 | 6.3 | 5.8 | 1.0 | 0.1 | 8.2 | 7.7 | 7.4 | 4.0 | | | IP5 | 6.8 | 13 | 9.4 | 8.5 | 3.6 | 0.1 | 4.1 | 3.7 | | | IP8 | 8.6 | 7.7 | 1.3 | 0.5 | 7.8 | 9.9 | 5.9 | 4.8 | | ## Can we explain the results? β -beating - Although global β -beating is reasonable, local β -beating at the last quadrupole may have a significant impact on β^* . - ▶ Up to 10% β_x -beating in MQXA.1R5.B1. This could explain the bad result of β_x^* in IP5. - ▶ In general, larger β -beating induces larger errors in β^* . ## Can we explain the results? Waist influence - ▶ Large waists lead to large errors in β^* . - ▶ B1H in IP5 has a large waist. - But small waist does not ensure good measurements. - It may help to try to correct both β and waist beating. ## **Simulations** #### K-mod simulations - Evaluate the impact of uncertainties in a wide range of optics possibilities. - ▶ 10 different optics configurations have been tested $\beta^*(IP1/IP5) \approx (12, 14, 16, 19, 22, 25, 30, 33, 40, 50)$ m. - Crossing angle ($\theta/2 = 50 \mu rad$) effect is negligible. - Uncertainties in Q, K and misalignments. - Ideal machine for the rest. - As in measurements, modulations are simulated varying the tune by $\Delta Q \sim \pm 0.01$. ## Simulations: $\Delta \beta^*/\beta^*$ vs δQ (IP1) - Increase of uncertainty in β^* with tune uncertainty. - As seen previously, for $\beta^* \approx L^*$, the error in β^* diverges. - Current expected tune uncertainty: $3.0 5.0 \cdot 10^{-5}$. - For HL-LHC, it is required a smaller tune uncertainty ($\sim 2.5 \cdot 10^{-5}$). ## Simulations: $\Delta \beta^*/\beta^*$ vs. β^* - ► Close to ideal case. - Final value on $\Delta \beta^*/\beta^*$ will be affected by many factors not considered here. - ▶ Error for $\beta^* < L^*$ decreases faster than for $\beta^* > L^*$. - ho β^* uncertainty below 0.5% for $\beta^* < 19$ m. ightharpoonup Experimentally, $eta^*=19$ m seems not to be a good choice. - ightharpoonup Experimentally, $eta^*=19$ m seems not to be a good choice. - ▶ The smaller β^* the better (from the machine perspective). - Experimentally, $\beta^* = 19$ m seems not to be a good choice. - ▶ The smaller β^* the better (from the machine perspective). - \triangleright Safety margin accounting for β -beating. - Exlude region: $\beta^* = L^* \pm 20\%$. - Experimentally, $\beta^* = 19$ m seems not to be a good choice. - ▶ The smaller β^* the better (from the machine perspective). - ▶ Safety margin accounting for β -beating. - Exlude region: $\beta^* = L^* \pm 20\%$. - \triangleright $\beta^* \le 17$ m seems to be a reasonable choice. - ► Uncertainty below 0.5% for near to ideal case. - lacktriangle Experimentally, $eta^*=19$ m seems not to be a good choice. - ▶ The smaller β^* the better (from the machine perspective). - ▶ Safety margin accounting for β -beating. - Exlude region: $\beta^* = L^* \pm 20\%$. - \triangleright $\beta^* \le 17$ m seems to be a reasonable choice. - ► Uncertainty below 0.5% for near to ideal case. - ▶ Larger β^* is also possible (40 m?) but not for HL. - Experimentally, $\beta^* = 19$ m seems not to be a good choice. - ▶ The smaller β^* the better (from the machine perspective). - ▶ Safety margin accounting for β -beating. - Exlude region: $\beta^* = L^* \pm 20\%$. - $ightharpoonup eta^* \le 17$ m seems to be a reasonable choice. - Uncertainty below 0.5% for near to ideal case. - ▶ Larger β^* is also possible (40 m?) but not for HL. - ▶ Further analysis required to better estimate β^* uncertainty. - lacktriangle MC-like simulations including eta-beating and waist beating. - Experimentally, $\beta^* = 19$ m seems not to be a good choice. - ▶ The smaller β^* the better (from the machine perspective). - ▶ Safety margin accounting for β -beating. - Exlude region: $\beta^* = L^* \pm 20\%$. - $ightharpoonup eta^* \le 17$ m seems to be a reasonable choice. - ► Uncertainty below 0.5% for near to ideal case. - ▶ Larger β^* is also possible (40 m?) but not for HL. - ▶ Further analysis required to better estimate β^* uncertainty. - ightharpoonup MC-like simulations including β -beating and waist beating. - The uncertainty on β^* might be further reduced if some time is devoted to vdM optics correction (i.e. reduce waist, β -beating...). - Experimentally, $\beta^* = 19$ m seems not to be a good choice. - ▶ The smaller β^* the better (from the machine perspective). - ▶ Safety margin accounting for β -beating. - Exlude region: $\beta^* = L^* \pm 20\%$. - $ightharpoonup eta^* \le 17$ m seems to be a reasonable choice. - Uncertainty below 0.5% for near to ideal case. - ▶ Larger β^* is also possible (40 m?) but not for HL. - ▶ Further analysis required to better estimate β^* uncertainty. - \blacktriangleright MC-like simulations including β -beating and waist beating. - The uncertainty on β^* might be further reduced if some time is devoted to vdM optics correction (i.e. reduce waist, β -beating...). ## Thank you! # Back up ## Simulations: $\Delta \beta^*/\beta^*$ vs δQ (IP5) ► Same behaviour as that of IP1. ## Can we explain the results? Phase influence - Analyzed phase phase advance between Q1 left and right via AC-dipole and and compared to reconstructed from kmod. - ightharpoonup Expected phase advance \sim 45 degrees. - Fully confirms that the β_x^* measurement in IP5 is bad. - ► Errors in phase beyond 10% make measurement less reliable.