Beam-beam correction in vdM scans

Vladik Balagura (LLR – Ecole polytechnique / IN2P3)

LHC Lumi Days, 4-5 Jun 2019

Vladik Balagura

Beam-beam correction in vdM scans

LHC Lumi Days, 4-5 Jun 2019 1/1

Beam-beam force

Two-dim. electrostatic force btw. 2 particles in q_2 rest frame ($\beta_0 \approx 1$ – velocity of q_1):

$$\Delta p_1 = \frac{E_2(x, y)}{\beta_0 c} = \frac{q_1 q_2}{2\pi R \epsilon_0 \beta_0 c} = \frac{2Z_1 Z_2 \alpha \hbar}{R \beta_0}.$$

Kick from Gaussian round bunch:

$$\Delta \vec{p}_{1} = -\frac{2Z_{1}Z_{2}\alpha\hbar N_{2}}{\beta_{0}}\frac{\vec{R}}{R^{2}}(1-e^{-R^{2}/2\sigma_{2}^{2}}),$$

Bassetti-Erskine formula if $\sigma_x \neq \sigma_y$.

Modifies bunch shapes and their overlap integral, requires vdM correction.

Transverse accelerator beam dynamics

Bunch shape is created by transverse oscillations of p around stable orbit. Along full LHC ring: $Q_{x,y} = 62.313, 60.317$ oscillations ("tunes", after 2017). At any point, phase-space trajec. = ellipse in (u, u'), where u = X or Y, u' is corresp. angle wrt. beam. One LHC turn = Q cycles around ellipse.

At IP beams are maximally focused \rightarrow Twiss parameter $\alpha = -\frac{1}{2}\frac{d\beta}{dz} = 0 \rightarrow$ ellipse not inclined.

$$u = \sqrt{\epsilon \beta^*} \cos(\phi), \quad u' = du/dz = -\sqrt{\epsilon/\beta^*} \sin(\phi),$$

 $\beta^* = \beta_{min}, \epsilon$ – particle's emittance (or amplitude). Definition

$$z = u - i\beta^* u' = \sqrt{\epsilon\beta^*} e^{i\phi}$$

converts ellipse to circle, one turn map: $z_{n+1} = z_n e^{2\pi Q i}$. Bunch = double Gaussian in (u, u'). Full phase space is 4-dimensional: (X, X', Y, Y').

Simulation

Per "macro"-particle = Gaussian bunch particles agglomerated at transverse grid points. Weight from two-dimensional Gaussian in (u, u'):

 $w_x^i \propto r_x/\sigma^2 \exp(-r_x^2/2\sigma^2) dr_x,$

same for w_y , full $w^i = w_x^i w_y^i$ is normalized: $\sum_i w^i = 1$. One turn of macro-particle in bunch 1

$$z_{n+1} = (z_n - i\beta^*\Delta u')e^{2\pi iQ},$$

 $\Delta u' = \Delta \vec{p}_1/p$ = angular beam-beam kick, separately in *x* and *y*. Round equal bunch profiles. Beam-beam moves particles by $O(1\mu m) \rightarrow$ neglect perturbation of source bunch, ie. use kick formula of Gaussian bunch.

$$\int ((\rho_1+\delta\rho_1)(\rho_2+\delta\rho_2)-\rho_1\rho_2)\,dxdy\approx\int 2\rho\delta=2\int ((\rho_1+\delta\rho_1)\rho_2-\rho_1\rho_2)\,dxdy.$$

 \rightarrow determine effect in perturbed - pertubed as pert. - unpert. $\times 2$. Integral of perturbed macro-particles *i* with continuous unperturbed Gaussian "field" ρ_2 :

$$\int (\rho_1 + \delta \rho_1) \rho_2 \, dx \, dy = \sum_i w^i \cdot \rho_2(x_i, y_i).$$

Vladik Balagura

Simulation optimisation

Aim: $\leq 0.1\%$ precision for 4D MC in reasonable CPU time.

10 000 macroparticles in uniform X-Y grid with $\sqrt{10000} = 100$ nodes along $\pm 5\sigma$ X and Y sides. All points at $> 5\sigma$ from bunch centers are removed.

How to sample X', Y' angular coordinates? Every point (r_x , r_y) is rotated with random uniformly distrib. phases $\phi_{x,y}^i$:

$$\boldsymbol{z}_{\boldsymbol{x}}^{i} = \boldsymbol{r}_{\boldsymbol{x}}^{i} \boldsymbol{e}^{i \phi_{\boldsymbol{x}}^{i}}, \quad \boldsymbol{z}_{\boldsymbol{y}}^{i} = \boldsymbol{r}_{\boldsymbol{y}}^{i} \boldsymbol{e}^{i \phi_{\boldsymbol{y}}^{i}}.$$

Simulation runs 10 000 accelerator turns \rightarrow every point well samples its perturbed circles X-X' and Y-Y'. 10⁴ particles $\times 10^4$ turns samples full 4D.

Beam-beam is OFF first 1000 turns \rightarrow verify numeric integration with analytic formula (bias negligible). Next 1000 + 1000 turns – adiabatic switch ON and stabilization. Perturbed integral is accumulated during last 3000–10000 turns.

To increase randomness, tunes $Q_{x,y}$ are made irrational (eg. with 2 digits Q * 100 is integer, after 100 turns particles resample about the same points).

Notes on physical model 1

During beam-beam ($Z \sim O(1 cm)$) ($\Delta X, \Delta Y$) deflection negligible

Only angular kick $(\Delta X', \Delta Y') \neq 0$. $(\Delta X, \Delta Y)$ - at larger scale, eg. one turn. (kick, then turn) or (turn, then kick), ie. $z_{n+1} = (z_n - i\beta^*\Delta u')e^{2\pi i Q}$, or $z_n e^{2\pi i Q} - i\beta^*\Delta u'$: does not matter.

Assumption of Gaussian bunches if beam-beam at IP were OFF.

Whatever affects bunches: injection, beam-beam at other IPs etc, this only modifies (effective) initial Gaussian σ .

Notes on physical model 2

Best experim. sensitivity to beam-beam lumi change:

monitor *L* at IP #1 during vdM scan in IP #2 (nothing changes except beam-beam). Same $z_{n+1} = (z_n e^{2\pi i \Delta Q_{12}} - i \sqrt{\beta_1^* \beta_2^*} \Delta u_2') e^{2\pi i (Q - \Delta Q_{12})}$, except ΔQ_{12} , $Q - \Delta Q_{12}$ instead of *Q* and $\sqrt{\beta_1^* \beta_2^*}$. Only fractional *Q*, ΔQ part matters \rightarrow effect from ΔQ can be of the same order, $\sqrt{\beta_1^* \beta_2^*}$ can give extra enhancement: vdM at LHCb ($\beta_2^* = 24$ m), *L* measurement at ATLAS/CMS ($\beta_1^* = 1.5$ m), $\sqrt{24/1.5} = 4$.

Beam-beam is simple

circular phase space trajectory = energy conserving harmonic oscillator, under influence of kicks - not difficult

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Results

Beam parameters from previous'2012 simulation to compare

 $E_{p} = 3500 \text{ GeV}, Q_{x,y} = 0.31, 0.32, \beta = 1.5 \text{ m}, \epsilon = 4\mu m \cdot rad \rightarrow \sigma = 40\mu \text{m}, N_{p}^{1,2} = 8.5 \cdot 10^{10}.$

Black: new, red: old'2012 – large difference

Vladik Balagura

Cross-section correction

$\sigma = \frac{\int \mu(\Delta x, \Delta y_0) d\Delta x \cdot \int \mu(\Delta x_0, \Delta y) d\Delta y}{\mu(\Delta x_0, \Delta y_0) N_1 N_2}$	$b \to 1 + rac{\delta\sigma}{\sigma}$	$=(1+rac{\delta\int\mu}{\int\mu})^2(1+rac{\delta}{\partial\mu})^2(1+rac{\delta}{\partial\mu}{\partial$	$(1+rac{\delta\mu_{0,0}}{\mu_{0,0}})^{-1}$
Close beams (incl. head-on) - large weight, wide sep exponentially small.			
	Old'2012	new Jan'2019	
$\sigma(bb)/\sigma(no~bb)-1$	-1.2%	-0.3%	

In real vdM analysis: divide each point by $L(bb)/L(no bb) \rightarrow$ eliminate beam-beam effect.

Old simulation'2012

Main approximation: beam-beam kicked bunch remains Gaussian (does not work well)

Two parts:

mean correction (jargon: "orbit shift")

 σ correction (jargon: "dynamic beta correction")

Correction of mean

Average bunch 1 kick = single particle kick with $\sigma_2 \rightarrow \Sigma = \sqrt{\sigma_1^2 + \sigma_2^2}$.

Good approximation even for non-Gaussian bunches: if round-bunch or Bassetti-Erskine formula can be applied to single particle.

Fill free to use this proof in your future textbooks :)

Image: A marked and A marked

Correction of mean

Average bunch 1 kick = single particle kick with $\sigma_2 \rightarrow \Sigma = \sqrt{\sigma_1^2 + \sigma_2^2}$.

Good approximation even for non-Gaussian bunches: if round-bunch or Bassetti-Erskine formula can be applied to single particle.

Fill free to use this proof in your future textbooks :)

average angular kick \rightarrow average *X*, *Y*-shift, textbook formula

$$<\Delta ec{r}_{x,y}>=rac{<\Delta ec{
ho}_{x,y}>}{
ho}rac{eta_{x,y}^*}{2\tan(\pi Q_{x,y})}$$

Old: σ correction (jargon: "dynamic beta correction")

Bunch remains Gaussian if $\Delta x' \propto x$, $\Delta y' \propto y$ (= quadrupole magnet). Beam-beam kick

$$\Delta ec{p}_1 \propto rac{\dot{R}}{R^2}(1-e^{-R^2/2\sigma_2^2}),$$

was approximated as

$$\Delta p_{1x} = p_{1x}^0 + \frac{\partial \Delta p_{1x}}{\partial x} x,$$

derivative was taken at bunch 2 center where x = 0. Same for y.

Cross-derivatives $\partial \Delta p_{1x} / \partial y = \partial \Delta p_{1y} / \partial x = 0$ except in offset scans where this approximation is not applicable.

 p_{1x}^0 at bunch 2 center does not reproduce known "orbit shift" since kick model is not correct. Patch: p_{1x}^0 was substituted (ad hoc) to obtain correct mean. Quadrupole magnet $(\frac{\partial \Delta p_{1x}}{\partial x})x$ changes only σ or β^* (jargon: "beta-beat") by:

$$\frac{\Delta\beta_{x,y}^*}{\beta_{x,y}^*} = \frac{\partial\Delta p_{1\ x,y}}{\partial x,y} \frac{\beta_{x,y}^*}{2\tan(2\pi Q_{x,y})}.$$

Old simulation'2012: résumé

Beam-beam modeled as dipole + quadrupole:

MAD-X sim.'2012 (LHC soft, w/ non-linearities) \approx linear "beta-beat" formula (< 0.1% difference in x-section).

Vladik Balagura

Old simulation: drawbacks

Precision \lesssim 10% is sufficient for accelerator, no tools for L-integrals at \leq 1%. \rightarrow Gaussian approximation, limited to quadrupole (linear) kick

$$\Delta p_{1x} = p_{1x}^0 + \frac{\partial \Delta p_{1x}}{\partial x} x$$

instead of non-linear

$$\propto (1-e^{-R^2/2\sigma_2^2})/R$$

(or Bassetti-Erskine).

Eg. $\frac{\partial \Delta p_{1x}}{\partial x} = 0$ at beam separation = 1.5852 σ , approximating quadrupole is absent, but slope at IP – 60% of maximal \rightarrow impossible to approximate kick linearly everywhere.

Orbit shift formula describes center-of-mass of even perturbed non-Gaussian. But: in luminosity correction it was used as a Gaussian center – not correct.

Beam-beam induces X - Y coupling absent in old model.

3

ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Cross-checks of new simulation, center

Bunch center-of-mass agrees with analytic formula (dashed == solid)

Vladik Balagura

Cross-checks of new simulation, convergence

First 1000 turns – beam-beam OFF, next 1000 – adiabatic switch ON, 1000 – wait, last 7000 – final averaging.

100 turn averages. Perturbed - unpert. integral $\rightarrow \times 2$ for pertub. - perturb.

Cross-checks of new simulation, average const kick

New simulation with precise kick substituted by constant (change of \sim 5 lines of code): $\Delta p_{1x} = p_{1x}^0 =$ old dipole \rightarrow reproduces analytic formula

Cross-checks of new simulation, old quadrupole model

New simulation with same quadrupole as in MAD-X'2012 \rightarrow reproduces analytic formula. Non-linear effects in MAD-X gave <0.1% in x-section.

Cross-checks of new simulation, old di- + quadrupole

It does not matter whether dipole is included in kick or orbit shift is corrected analytically. Here: kick = dipole + quadrupole \rightarrow old model up to MAD-X non-linearities.

Cross-checks, beam-beam switch ON

Adiabatic or abrupt? \rightarrow it does not matter:

Adiabatic: gradually transforms circle points to \approx same perturbed phase trajectory. Abrupt: point = circle \cap some perturbed trajectory. In one step it switches from one to another \rightarrow points are transported to different perturbed trajectories intersecting initial circle. Abrupt gives spread around adiabatic trajectory, but \ll circle's $R \rightarrow$ negligible in overlap integral.

Conclusions

New simulation in GitHub

- https://github.com/balagura/ beam-beam-simulation-for-vdM-scans-at-LHC
- Main code in C++ without dependencies
- One vdM step takes a few seconds on my laptop
- Initially written in Jan'19 with x-checks added in Feb-Mar, 800 C++ lines

Best sensitivity to detect beam-beam or set upper limits

observe L changes at CMS/ATLAS during vdM scan in LHCb (with large β^*)

All LHC cross-sections using old beam-beam corrections (from 2012 on) are affected

- New simulation predicts much smaller corrections
- Disagreement of order 1%