

ATLAS full run-2 luminosity combination

Richard Hawkings, on behalf of the ATLAS luminosity WG LHC Lumi Days, 5/6/2019

- Brief overview of the full run-2 13 TeV pp luminosity combination
 - Reminder of uncertainties and combination
 - Combination methodology
 - Details of correlation assumptions
- More details in <u>ATLAS-CONF-2019-021</u>

Uncertainties and combination – from yesterday

- Per-year uncertainty summary
 - Treating 2015+16 as one dataset
 - Absolute vdM calibration subtotal
 - +Contributions to to physics lumi.
 - Total uncertainties for individual years are 2.0-2.4%
 - Largest single uncertainty from calibration transfer
- Combination of years
 - Taking correlations into account
 - */+=fully/partially correlated
- Total run 2 lumi: 139.0±2.4 fb⁻¹
 - Uncertainty 1.7%, dominated by calibration transfer and then longterm stability
 - Significant reduction in error as some sources only partially correlated

Data sample	2015+16	2017	2018	Comb.
Integrated luminosity (fb ⁻¹)	36.2	44.3	58.5	139.0
Total uncertainty (fb ⁻¹)	0.8	1.0	1.2	2.4
Uncertainty contributions (%):				
DCCT calibration [†]	0.2	0.2	0.2	0.1
FBCT bunch-by-bunch fractions	0.1	0.1	0.1	0.1
Ghost-charge correction*	0.0	0.0	0.0	0.0
Satellite correction [†]	0.0	0.0	0.0	0.0
Scan curve fit $model^{\dagger}$	0.5	0.4	0.5	0.4
Background subtraction	0.2	0.2	0.2	0.1
Orbit-drift correction	0.1	0.2	0.1	0.1
Beam position jitter [†]	0.3	0.3	0.2	0.2
Beam-beam effects*	0.3	0.3	0.2	0.3
Emittance growth correction*	0.2	0.2	0.2	0.2
Non-factorization effects*	0.4	0.2	0.5	0.4
Length-scale calibration	0.3	0.3	0.4	0.2
ID length scale*	0.1	0.1	0.1	0.1
Bunch-by-bunch $\sigma_{\rm vis}$ consistency	0.2	0.2	0.4	0.2
Scan-to-scan reproducibility	0.5	1.2	0.6	0.5
Reference specific luminosity	0.2	0.2	0.4	0.2
Subtotal for absolute vdM calibration	1.1	1.5	1.2	-
Calibration transfer [†]	1.6	1.3	1.3	1.3
Afterglow and beam-halo subtraction*	0.1	0.1	0.1	0.1
Long-term stability	0.7	1.3	0.8	0.6
Tracking efficiency time-dependence	0.6	0.0	0.0	0.2
Total uncertainty (%)	2.1	2.4	2.0	1.7

5th June 2019

Richard Hawkings

Combination methodology

- Straightforward error propagation:
 - Total integrated luminosity is sum of all years: $L_{ ext{tot}} = \Sigma_i L_i$
 - Variance of the total depends on covariance matrix V₁ encoding the errors on $\sigma_{L_{\mathrm{tot}}}^2 = \mathbf{G} \mathbf{V_L} \mathbf{\tilde{G}}$ individual years:
 - **G** is vector of derivatives:
- S vector or derivatives: Unit vector as combination is simple sum $\mathbf{G} = \left(\frac{\mathrm{d}L_{\mathrm{tot}}}{\mathrm{d}L_{1}}, \frac{\mathrm{d}L_{\mathrm{tot}}}{\mathrm{d}L_{2}}, \frac{\mathrm{d}L_{\mathrm{tot}}}{\mathrm{d}L_{3}}, \ldots\right) = (1, 1, 1, \ldots)$
- Evaluation of the covariance matrix V_1 :
 - Sum of individual sources with uncertainties σ_i in each year (many separate uncorrelated and correlated sources):

$$V_L = \left(egin{array}{ccc} \sigma_1^2 & 0 & 0 \ 0 & \sigma_2^2 & 0 \ 0 & 0 & \sigma_3^2 \end{array}
ight) + \left(egin{array}{ccc} \sigma_1^2 & \sigma_1\sigma_2 & \sigma_1\sigma_3 \ \sigma_1\sigma_2 & \sigma_2^2 & \sigma_2\sigma_3 \ \sigma_1\sigma_3 & \sigma_2\sigma_3 & \sigma_3^2 \end{array}
ight) + ... \ ext{uncorrelated}$$

- Some sources are not relevant in all years, so have some $\sigma_i=0$
- Sources with both correlated and uncorrelated parts are handled by being broken into two separate contributions to V₁

vdM uncertainty correlations

- Separate vdM scan session in each year
 - 'Random' uncertainties should be uncorrelated
 - 'Systematic' uncertainties should be correlated always have the same bias
- Random/uncorrelated uncertainties
 - Bunch-to-bunch and scan-to-scan σ_{vis} consistency
 - Reference specific luminosity (i.e. comparison of Σ_x , Σ_v from different algorithms)
 - All these fluctuate a lot from year to year, depending on quality/consistency of scan sets
 - Orbit drift corrections (depend on details of what happened in each scan session)
 - Background subtraction (dominated by statistical fluctuations, small, 0.2% / year)
 - Length scale calibration (independent calibration each year, orbit drift unc.)
- Fully or partially correlated uncertainties
 - Non-factorisation not really understood, likely same underlying cause each year
 - Beam-beam effects: common MADX-based calculation
 - Fit model partially correlated
 - Different pairs of fit functions used to set error in 2016 and 2017+2018
 - Beam position jitter correlated 2015-17 (from run-1), new evaluation for 2018

More uncertainty correlations

- Bunch population product
 - DCCT partially correlated (only calibration source and bunch-pattern dependence)
 - FBCT uncorrelated dominated by electronic noise (statistical)
 - Ghost and satellite corrections correlated
 - Common instrumentation and methodology (but small, <0.1%)
- Calibration transfer uncertainties
 - Tile vs. track-counting comparison largely correlated
 - Larger value of 1.6% in 2016 c.f. 1.3% in 2017-18
 - Take correlated uncertainty of 1.3% in all years, plus 0.9% uncorrelated in 2016 only
- Long-term stability
 - Taken to be uncorrelated dominated by different detector comparisons in the different years, no common trends in time
 - Apart from start-of-year effects, which affect only a small fraction of the total luminosity
 - Tracking efficiency time dependence only an issue for 2016

Conclusion

- Common beam energy throughout Run-2
 - Physics analyses usually analysing the full data sample as a single dataset
 - c.f. separate 7 and 8 TeV one-year samples from run-1
- Need to address the uncertainty correlations between years
 - Separate vdM calibration each year implies that uncertainties are not fully correlated
 - But methodology is the same think carefully about what is / is not correlated
- For ATLAS run-2 dataset, preliminary combined uncertainty is 1.7% from 2.0-2.4% in individual years
 - Correct treatment of the correlations is important potentially large gain
 - This will likely become increasingly important in Run-3 and Run-4
 - Beam energy and peak luminosities reach their limits, physics analyses will combine data samples taken over many years