EMERGING FACILITIES AROUND THE WORLD FOR STRONG INTERACTION PHYSICS

- **Introduction:**
 - What is the QCD phase structure?
 - No guidance from Lattice for high μ_B
 - $2 < \sqrt{s_{NN}} < 8$ GeV → Large discovery potential (1st order transition? QCD critical point? Equation of State of dense matter (relevance for NS merger)?)

- **Overview of high μ_B facilities worldwide**
 - Key parameters, anticipated start time
 - Interaction rate capabilities

- **Details on**
 - FAIR facility + HADES/CBM
 - NICA facility + BM@N and MPD
 - SPS NA60+
 - SPS NA61/SHINE+

- **Anticipated physics performance (selected cases: dileptons, e-b-e fluctuations, multi-strange, hyper nuclei)**
MATERIAL

- 93. Nuclotron-based Ion Collider Facility at JINR (NICA Complex)
- 13. Proposal from the NA61/SHINE Collaboration for the update of the European Strategy for Particle Physics
- 90. Study of hard and electromagnetic processes at CERN-SPS energies: an investigation of the high-µB region of the QCD phase diagram
- 116. IN2P3 contribution for the update of European Strategy for Particle Physics
- 80. Input of Joint Institute for Nuclear Research
- 21. Initial contribution of the INFN Hadron Physics Community
SEARCHING FOR LANDMARKS OF THE QCD MATTER PHASE DIAGRAM

- **Vanishing μ_B, high T (lattice QCD)**
 - Crossover, universality
 - no CP indicated by lattice QCD at $\mu_B < 400$ MeV, $T > 140$ MeV

- **Large μ_B moderate T (IQCD inspired models)**
 - Thermal equilibrium?
 - 1st order transition?
 - QCD critical point?
 - Equation of state of dense matter?

A. Andronic et al., Nature 561 (2018) no 7723
F. Becattini et al., PLB 764 (2017) 241
HADES preliminary, Quark Matter 2018
<table>
<thead>
<tr>
<th>Facility</th>
<th>SIS18</th>
<th>HIAF</th>
<th>Nuclotron</th>
<th>J-PARC-HI</th>
<th>SIS100</th>
<th>NICA</th>
<th>RHIC</th>
<th>SPS</th>
<th>SPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment</td>
<td>HADES</td>
<td>CEE</td>
<td>BM@N</td>
<td>DHS, D2S</td>
<td>CBM /</td>
<td>MPD</td>
<td>STAR</td>
<td>NA61</td>
<td>NA60+</td>
</tr>
<tr>
<td></td>
<td>/miniCBM</td>
<td></td>
<td></td>
<td></td>
<td>HADES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sqrt{s_{NN}}$, GeV</td>
<td>2.4 – 2.6</td>
<td>1.8 – 2.7</td>
<td>2 – 3.5</td>
<td>2 – 6.2</td>
<td>2.7 – 5</td>
<td>2.7 - 11</td>
<td>3 – 19.6</td>
<td>4.9 – 17.3</td>
<td>4.9 – 17.3</td>
</tr>
<tr>
<td>Hadrons</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>(+)</td>
</tr>
<tr>
<td>Dileptons</td>
<td>+</td>
<td>(+)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Charm</td>
<td>(+)</td>
<td>(+)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
Program needs high precision data

- High intensity beams
- Multipurpose detectors:
 - Large acceptance, high efficiency
 - Trigger-less, free streaming read-out electronics with high bandwidth online event selection
- Substantial progress in detector technologies (mainly driven by ALICE upgrade, CBM and sPHENIX)
- High-performance / scientific computing