HEP Physics Generators: The Community Roadmap for the Next Decade

Stephen Mrenna
Fermilab, CMS, Pythia Stephen Mrenna

Fermilab, CMS, Pythia

21 November 2019

Why do we need a roadmap?

 \Box 2017 \star fast calo sim used for 75% of the Monte Carlo simulation \blacksquare faster reconstruction seeded by the event generator information event generation $\times\frac{1}{2}$ **solid**: flat funding.

Clarifications/Details

ATLAS extrapolation: Sherpa $W/Z + iets$ MG is 2x faster

(slow) clustering algorithm
(Preliminary) Physics the same
Thus, factor of $\frac{1}{2}$ is (maybe) already there! Difference is the choice of scale: MG uses parton kinematics; Sherpa uses an iterative (slow) clustering algorithm

(Preliminary) Physics the same

Not so fast: we want all the improvement we can get, plus this is not necessarily a universal statement

The Destination Predictions that "looks" like the data:

> Hard process (parton level) at highest possible order (NLO?) and multiplicity (usually # QCD partons)

- 1. construct the amplitudes (functions, recursion)
- 2. evaluate cross section (VEGAS)
- 3. unweight (rejection)

Merged with parton shower-based

- 3. unweight (rejection)
erged with parton shower-based
1. prepare state for showering (factorial # histories)
- 2. accept/reject (Sudakov)

Improvements are needed on all facets of event generation

Case Study: Scientific Discovery Through Advanced Computing

tations on *leadership-class* and *high-end computing* systems at a level of fidelity needed to simulate real-world conditions. 1 *SciDAC projects are collaborative basic research efforts involving teams of physical scientists, mathematicians, computer scientists, and computational scientists working on major software and algorithm development* to conduct complex scientific and engineering *computems at a level of delity needed to simulate real-world conditions.*

Crossover between two SciDAC projects:

- 1. Matrix Element and Event Generation (SH, SM, SP, TC)
- 2. Framework + Optimization (FNAL+ATLAS+ANL+SM)

Work of: Höche, Prestel, Schulz: PhysRevD.100.014024

 $^{\text{1}}$ <https://www.scidac.gov/about.html>

Jet transverse momentum distributions in *W*⁺+jets events. We show a comparison of multi-jet merged simulations where the maximum jet multiplicity, n_{max} , is set to the number of measured jets, *N* (red), to $N + 1$ (green), $N + 2$ (blue) and $N + 3$ (purple).

6 / 17

Novel event generation framework efficient simulation of vector boson plus multi-jet events

- MPI parallelization of parton-level and particle-level event generation Calculated at NERSC (High Performance Computing)
- storage of parton-level event information using
the HDF5 data format
HPC -friendly, table based
leading ander manged Manta Carlo anadiations the HDF5 data format **HPC** -friendly, table based
- **O** leading-order merged Monte-Carlo predictions with up to nine jets in the final state.
- parton-level event samples for $3{\rm ab}^{-1}$ and code to produce particle level

Scaling (CPU hours / 1M-events) parton-level vs particle-level for *W*⁺+jets at the LHC

Complications: Number of trials in the unweighting # Trials to get 1 Unweighted Event

Timing of overall MPI run set by most inefficient rank – If allow variable number of unweighted events, scaling from I/O – if saving weighted events, then inefficient – if fixed $#$ trials, then must handle 0-weight events

Complications: Parton Showers and Merging

- CKKW-L method constructs *all* histories corresponding to a given parton-level final state in the fixed-order calculation.
- \bullet The number of possible histories grows at least factorially: timing and memory usage of the executable therefore increase rapidly with the final-state multiplicity.
- factor 1.5 for each additional final-state jet.
- The computational complexity increases by approximately a factor 1.5 for each additional final-state jet.
Starting with $pp \rightarrow W/Z + 7$ jet final states, the jet clustering
procedure also begins to exhaust the memory of modern ◯ Starting with $pp \rightarrow W/Z + 7$ jet final states, the jet clustering procedure also begins to exhaust the memory of modern computers (at ≈4 GB/core).
- Adopt WinnerTakesAll strategy: accept only largest prob. history.
- Note: use tool DIY for handling parellization of Pythia 8 runs

Handling of parton configurations I/O is not the forte of HPC machines

- LHEF standard is based on XML: a challenge for I/O, in particular the simultaneous read access when processing event information in heavily parallelized workflows.
- \bullet Adopt a new format based on HDF5: designed specifically
- Adopt a new format based on HDF5: designed specification processing large amounts of data on HPC machines.
HDF5 uses a computing model not too dissimilar from
databases. HDF5 uses a computing model not too dissimilar from databases.
- **O** Datasets can be organized in groups in order to create hierarchical structures.
- \bullet Event processing of MG+Pythia is 5 \times faster just from reading HDF5 over XML

Example

Lessons and Generalizations

- \bigcirc I/O operations related to the read-in of information related to the construction of the hard matrix elements and to the parameters of the adaptive integrator can be costly
- \bigcirc Unweighting also costly, due to tails in # trials to unweighted event
- encies tend to be non-uniform across variants tend to be non-uniform across variants of points per rank is too low Cut efficiencies tend to be non-uniform across various ranks when the number of points per rank is too low
- $\mathbf{\cup}$ File size for event storage is determined dynamically. Optimizing the HDF5 output parameters may lead to further improvements

Some other comments

 \bullet Negative weights at NLO reduce significantly statistical precision

> $\sigma^2 = \bar{w^2} - \bar{w}^2 = \frac{1}{4}$ $\frac{1}{4}w^2f(1-f)$, $f =$ fraction $w < 0$

GPUs have not really been exploited

Madgraph LO studies (arXiv:0909.5257, 0908.4403)²
 $u\bar{u} \rightarrow (2-8)\gamma$

5-jet production processes

Roughly 40 - 150 × improvement $u\bar{u} \rightarrow (2-8)\gamma$ 5-jet production processes Roughly 40 - 150 \times improvement

NLO codes too big for GPU memory

Allocations on HPCs will require efficient use of GPUs

²K. Hagiwara, J. Kanzaki, N. Okamura, D. Rainwater, T. Stelzer

Directions for reaching our destination See arXiv:1712.06982

Possibilities for Near-term Collaborations

- 1. new theoretical algorithms
- 2. reweighting event samples
- 3. concurrency in phase space evaluation
- ency in phase space evaluation

ency/thread friendliness in ge 4. concurrency/thread friendliness in general
- 5. framework with parallelism built-in from start
- $6.$ evaluation of inefficiency in filtering/selection
- 7. general profiling of codes and sub-codes

Tuning Utilize High Performance Computing resources for HEP problems

Still need good tunes or perturbative improvements are lost

Developed parallel workflow for parameter scans at HPC facilities

Exploit fastMath/MathScience resources at LBL, ANL

stMath/MathScience resources at LBL,
polynomial approximations for building
for predictions from fixed number of po Rational polynomial approximations for building a surrogate function for predictions from fixed number of points in multiple dimensions

"Smarter" parameter sampling (Latin Hypercube, etc.)

"Better" minimization techniques (reduce variance, etc.)

Example: 20-D scan of Pythia parameters for LEP

Summary

- **O** Theory predictions (event generators) are an important part of the *expt'l* HEP program
- **More accurate, but also more complicated and** expensive
- Improvements require brawn and brains
- ive
ements require brawn and bra
t grid-computing model will be ● Current grid-computing model will be supplemented (replaced?) by HPC facilities
- Near-term projects could have a big impact on long term planning