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State Space Representation of ODEs

Lumped models coming from different domains (physics, chemistry,

engineering, economics, population dynamics, etc.) are usually
represented as sets of ODEs of the form:

ẋ1(t) = f1(x1(t), · · · , xn(t), t)

ẋ2(t) = f2(x1(t), · · · , xn(t), t)

...

ẋn(t) = fn(x1(t), · · · , xn(t), t)

(1)

where t represents the time, xi(t) are the state variables, and ẋi(t)
are the state derivatives with respect to the time.
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State Space Representation of ODEs

These type of ODEs can be also the result of the spatial discretization

of partial differential equations (PDEs).

ẋ1(t) = f1(x1(t), · · · , xn(t), t)

ẋ2(t) = f2(x1(t), · · · , xn(t), t)

...

ẋn(t) = fn(x1(t), · · · , xn(t), t)

(1)

where t represents the time, xi(t) are the state variables, and ẋi(t)
are the state derivatives with respect to the time.
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State Space Representation of ODEs

The ODE system of Eq.(1) can be alternatively written using compact
vector notation as:

ẋ(t) = f(x(t), t) (2)

where

x(t) , [x1(t) x2(t), · · · , xn(t)]
T

is the state vector, for which we generally know an initial state:

x(t0) = x0 (3)
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Continuous System Simulation

In order to simulate a system represented by Eq.(2), the ODE must

be solved from the initial state x0 obtaining the solution x(t) in some
interval t ∈ [t0, tf ].

ODEs cannot (in general) be solved by analytical means.

For this reason, Numerical Integration Methods for ODEs are used in
order to obtain approximate solutions.
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Classic Numerical Integration Algorithms

Given a system

ẋ(t) = f(x(t), t)

with the known initial state x(t0) = x0, the goal of numerical

integration methods is to obtain an approximate solution in some

instant of time: t1, t2, · · · , tN in the interval [t0, tf ].

x̃1 ≈ x(t1), x̃2 ≈ x(t2), · · · , x̃N ≈ x(tN),

The time interval hk , tk+1 − tk is called step size, which can be

either constant or variable. In the second case, it is automatically
adjusted by step size control algorithms.
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Classic Numerical Integration Algorithms

One-Step Methods

These are methods that compute xk+1 using only information on xk .

(Runge–Kutta algorithms).

Example: Forward Euler (first order)

xk+1 = xk + h · f(xk , tk )

Multi-step Methods

These are methods that compute xk+1 using information on xk and
from some previous steps (xk−1, etc).

Example: 3rd order Adams-Bashford (AB3)

xk+1 = xk +
h

12
(23 · fk − 16 · fk−1 + 5 · fk−2)
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Classic Numerical Integration Algorithms

Implicit Methods

One-Step or Multi-step implicit methods use formulas involving future
state information, what leads to implicit equations.

Example: Trapezoid Rule (2nd order)

xk+1 = xk + 0.5 · h · [f(xk+1, tk+1) + f(xk , tk )]

Third Order Backward Difference Formulae (BDF3):

xk+1 =
18

11
xk −

9

11
xk−1 +

2

11
xk−2 +

6

11
h · fk+1

Stability

Implicit algorithm usually preserve numerical stability irrespectively of
the step size.
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Stiff Systems

These are systems containing simultaneous fast and slow dynamics.

Stiff systems require the use of implicit and variable step algorithms
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Discontinuous Systems

This is a simple bouncing ball model:

ẏ(t) = v(t)

v̇(t) =

{

−g if y(t) > 0

−g − k
m
· y(t)− b

m
· v(t) if y(t) ≤ 0

Notice that the ODE is discontinuous at y = 0.

Numerical methods usually produce

unacceptable errors when a step crosses a

discontinuity. Thus, the discontinuity events must
be detected and the simulation must be

restarted from that point.

y(t)
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Large Scale Discontinuous Models

Suppose now that we want to simulate a system of N bouncing balls:

The cost of computing function f(x, t) growths linearly with N.

The occurrence of discontinuities (bounces) also growths linearly
with N.

The time between successive discontinuities then diminishes
with N, and so does the step size.

The computational costs are then at least quadratic with N.

The problem of simulating particles crossing through different
volumes has similar features.
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Basic Idea

All classic numerical algorithms try to answer the following question:

Given that the state at time tk is x(tk ), what would be the state value

at time tk + h?.

Quantized State Systems (QSS) algorithms are based on inverting

the question:

Given that the state at time tk is x(tk ), when it is going to deviate from

its current value by a quantity ∆Q?.

This question has a different answer for each state variable xi and
consequently, QSS algorithms are asynchronous.
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QSS1 Method

Hysteretic Quantization Function

xi

qi

t

∆Qi

State xi(t), Quantized State qi(t), and quantum ∆Qi in QSS1 method.
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QSS1 Method

Definition

Given a system
ẋ(t) = f(x(t), t)

its QSS1 approximation is given by

ẋ(t) = f(q(t), t)

where q(t) and x(t) are component-wise related by hysteretic

quantization functions

q(t) is the quantized state vector.

Each hysteretic quantization function is defined by a parameter

∆Qi called Quantum.
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QSS1 Features

QSS1 offers some advantages over classic algorithms is certain

cases:

It only performs computations when a state experiences a
significant change (intrinsic step–size control).

The computations only involve the state that changes and those
whose derivatives are affected by that change. (sparsity and

local activity exploitation).

Zero Crossing Function can be straightforwardly detected

(efficient discontinuity detection).

After the occurrence of a discontinuity, QSS1 only recomputes
the state derivatives affected by that discontinuity (efficient

discontinuity handling).
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QSS1 Properties

QSS1 has strong theoretical properties:

Convergence: The simulation error goes to zero as ∆Q → 0.

Practical Stability: Provided that the original system is stable, the

QSS1 solutions finish around the equilibrium point.

Computable Global Error Bound!: In linear systems, the global

error bound can be computed as a linear function of the
quantization.
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QSS – Features

Main advantages

Simulation of systems with local activity.

Simulation of discontinuous systems.

Main disadvantages

Spurious oscillations in stiff systems.

The number of steps growths linearly with the quantum and the

accuracy.
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QSS2 Method

First order quantization

Same advantages of

QSS1.

Second order accurate

method.

The number of steps

growths with square

root of the accuracy.
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QSS3 method

Second order quantization

Same advantages of

QSS1.

Third order accurate

method.

The number of steps

growths with the cubic

root of the accuracy.
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QSS – Features

Main advantages

Simulation of systems with local activity.

Simulation of discontinuous systems.

Main disadvantages

Spurious oscillations in stiff systems.

The number of steps growths linearly with the quantum and the

accuracy.
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Linearly Implicit QSS Methods

There are LIQSS methods of order 1, 2 and 3.

These methods can efficiently integrate certain clases of stiff
systems.

LIQSS algorithms are very efficient for simulating power
electronics systems and Advection-Diffusion-Reaction models.

In spite of the word implicit, LIQSS can be explicitly implemented.
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QSS Methods Implementation

There are two alternatives for QSS implementation:

1 Using DEVS simulation tools, which is simple but inefficient

(most DEVS simulation tools have QSS libraries, with

PowerDEVS being the most complete).

2 Using a direct approach, that is more involved as it requires

structural information. The Stand–Alone QSS solver follows this
idea and it automatically computes all the structural information

that is necessary.

Parallelization

The Stand–Alone QSS Solver also includes a parallel implementation

of the algorithms that is very efficient for multi-core simulation of large

scale models.
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Applications

Some applications where QSS methods have advantages over
classic algorithms are the following ones:

Systems involving Power Electronic Circuits.

Large populations of heating / cooling systems (Energy Plus,

Modelica).

Some biological models, including Spiking Neural Networks.

Advection–Diffusion–Reaction equations.

High Energy Particle Physics? – Recent experiments with
Geant4.
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A Model of Several Particles

We consider a system of N particles moving in a 1D domain following
Newton’s laws:

ẋi(t) = vi(t)

mi · v̇i(t) = F (t) − bi(t) · vi(t)
(4)

where

xi(t) and vi(t) are the position and velocity of the i–th particle at
time t.

bi(t) models the (variable) friction experienced by the i–th

particle, while mi represents its mass.

F (t) is a constant force impulsing by all particles.

The domain is partitioned into M sections and the friction bi(t) of a
particle traveling through certain region is proportional to the number

of particles in that section.
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Some Results

We simulated the system with an increasing number of particles,
from N = 10 until N = 100, 000.

We used DOPRI and LIQSS2 algorithms in the Stand Alone QSS

Solver with the same accuracy settings.

All the simulation where performed in a PC Intel i3 under Linux

OS.

Particles DOPRI (sec.) LIQSS2 (sec.)

10 0.0009 0.0007

100 0.074 0.008

1,000 4.773 0.080

10,000 611.4 1.530

100,000 – 23.2
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Conclusions

QSS are alternative algorithms for ODE numerical integration.

They can avoid the quadratic costs associated to the simulation
of large scale discontinuous systems.

Their use in HEP (for particle tracking simulation) is currently
under study by Rodrigo Castro’s group in collaboration with the

Detector Simulation Group in Fermilab.

We expect that this collaboration can be extended to other
groups.

We believe that specialized QSS algorithms (including
specialized parallelization strategies) for particle tracking

simulation can noticeably improve the existing results. However,

their development requires an interdisciplinary approach.
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