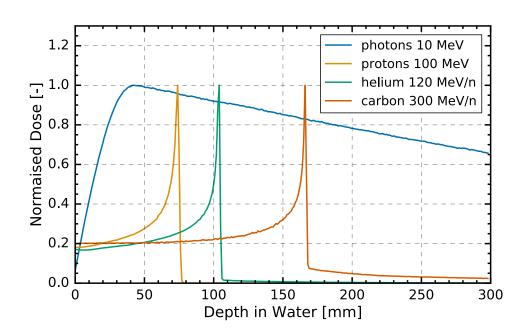


LGAD Performance at Low Energy Proton and Ion Beams for Ion CT

Florian Pitters

On behalf of the protonCT group at HEPHY/TU Wien

florian.pitters@oeaw.ac.at


Austrian Institute of High Energy Physics

TREDI Workshop Vienna 2020 18.02.2020

Ion Therapy in a Nutshell

- Cancer treatment with ion irradiation
 - Cause cellular damage
 - Either via direct ionisation of DNA molecules or indirect via creation of free chemical radicals
- lon beams allow for a strongly localised energy deposition
 - More accurate dose profile compared to photons
 - Allows treatment of tumours close to radiosensitive tissue, e.g. optical nerve
- Two therapies: Protons and heavier ions
 - Protons allow for sharp distal edge
 - Heavier ions have higher biological effectiveness (RBE) but show a tail dose due to fragmentation
 - Different ions used for different tumours

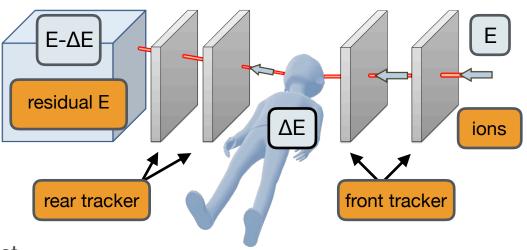


dose deposition in water [GATE simulation]

MedAustron in a Nutshell

- Ion therapy centre for cancer treatment
 - Synchrotron accelerator complex located close to Vienna
 - Four irradiation rooms:
 - IR1: Exclusive to research (up to 800 MeV protons, low flux)
 - IR2, IR3, IR4: Clinical use
 (up to 250 MeV protons, GHz rates)
 - Beam delivery only in one room at a time
- Beam parameters for IR1
 - Protons: 60 MeV to 800 MeV
 - Carbon lons: 120 MeV/n to 400 MeV/n
 - Helium: potential upgrade
 - Particle rates: kHz to GHz
- In operation since end of 2016

MedAustron accelerator complex



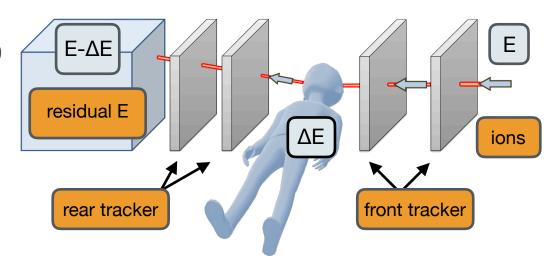
IR1 reserved for research

Imaging with Ion Beams

- Aim: 3D map of stopping power within object
 - Requires ΔE and path estimate
- Particles with energy E
 - Pass front tracker
 - Lose energy ΔE in object
 - Pass rear tracker
 - Deposit energy E-ΔE in calorimeter
- Ion CT
 - Measure ΔE and path estimate
 - Rotate object and reconstruct
 - 3D map of stopping power within object
 - Avoids conversion uncertainties from photon attenuation coefficients (x-ray CT) to stopping power (ion therapy)
 - Same particle species for treatment and imaging

pCT setup sketch

An Apparatus for Ion CT

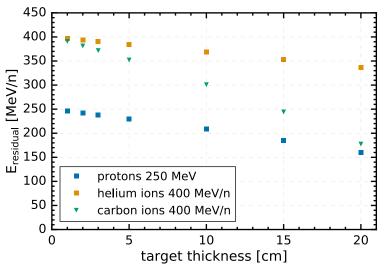


Requirements

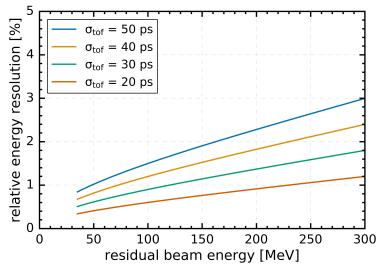
- Spatial resolution of about 1x1x1 mm³
 (typical voxel size) in the object
- Energy resolution of about 1%
- Data acquisition rate of >1 MHz
- Rad hard to ~1e13 protons over 10 years of operation
- Coverage >10x10 cm²

Typical Setup

- Front and rear tracker
 - Scintillating fibres or Si-strip
- Energy measurement
 - Crystal calorimeter: Csl, YAG:Ce
 - Range counter: stack of thin detector layers made of scintillators or CMOS
 - □ Time-of-flight measurement



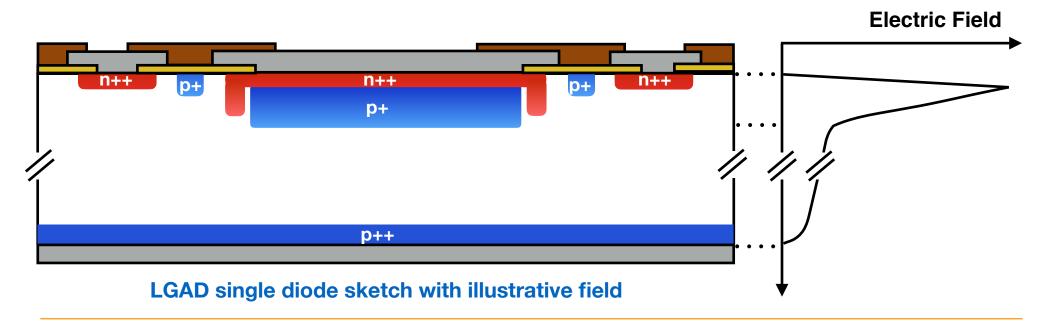
pCT setup sketch


Time-of-Flight for Ion CT

- Typical beam for ion CT is 250 MeV protons
 - Optimal beam energy and species is tradeoff
 between MCS and stopping power contrast
 - Most facilities provide 250 MeV protons as largest available (incident) energy
 - MedAustron also provides carbon and possible helium
- Benchmark case is 20 cm water target
 - Approximate size of adult head
 - Residual proton energies approx. 150 MeV
- Energy measurement via ToF competitive
 - 50 ps via 2 planes á 35 ps (σ_E~1.9% @ 150 MeV)
 - 30 ps via 4 planes á 30 ps (σ_E~1.2% @ 150 MeV)
 - Improves with lower residual energy!

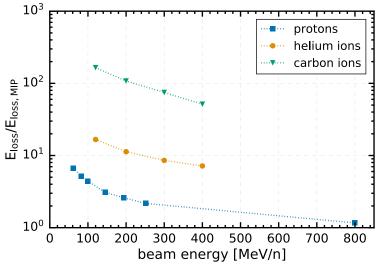
residual energy after passing a water target [GATE simulation]

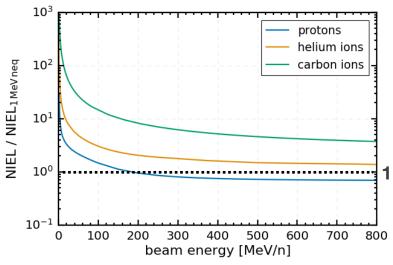
energy resolution with various ToF resolution and 1m flight path [analytical]


LGADs in a Nutshell

- Thin silicon pad detectors with gain of ~10
 - Additional high p-doped gain layer in n-in-p diode to create field in excess of 200 kV/cm
 - Controlled impact multiplication

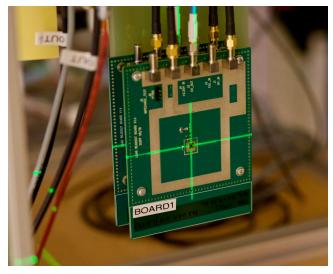
 $\sigma_t^2 \approx \left(\frac{a_{\rm jitter}}{S/N}\right)^2 + c_{\rm floor}^2$


- Gain boosts S/N & trise and improves time resolution
 - Jitter term dominated by trise and S/N
 - Constant term dominated by Landau noise, synchronisation between channels and TDC

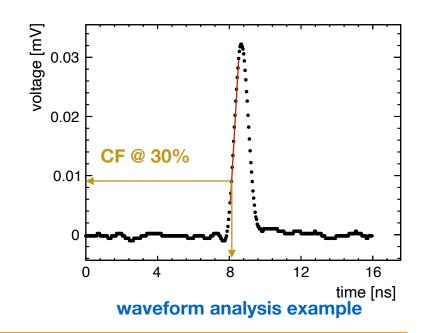

LGADs for Ion CT

- Excellent time resolution
 - Time resolutions of 30 ps envisaged for CMS/ ATLAS timing layer for single MIPs
 - Energy deposition in relevant beam range is several MIPs
 - Energy deposition of heavy ions is less 'Landaulike' and could allow for a reduced Landau noise
- Good radiation hardness
 - Radiation hardness shown to above 1e15 [1]
- Could render rear tracker unnecessary
 - Required precision driven by MCS limit and varies with object length
 - Spatial resolution of below 1 mm achievable with current LGAD designs
 - Significant efforts for further improvements

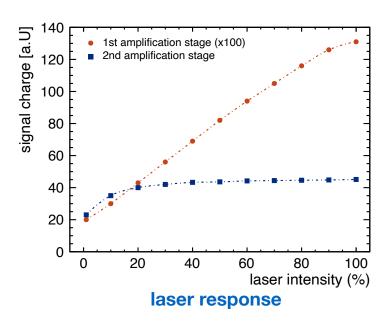
energy loss relative to MIPs in 50 μm Si [Allpix² simulation]

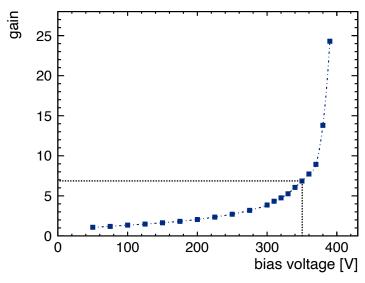


displacement damage cross section relative to 1 MeV neutrons [2]


Test Beam Setup

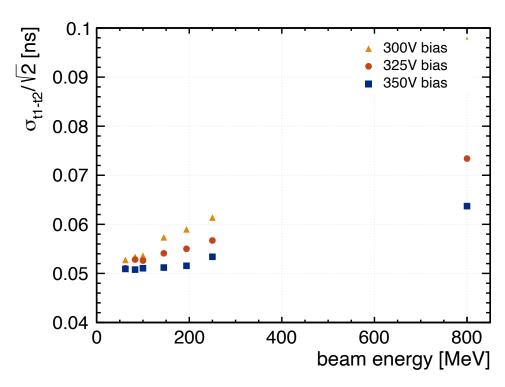
- Sensors: Single diodes
 - FBK UFSD2 production
 - Sensitive area 1x1 mm²
- Frontend: UCSB single LGAD board
 - 1st amplification stage: Infineon BFR840 SiGe
 - 2nd amplification stage: Not needed!
 - Two boards back to back with 2.5 cm spacing
- Backend: Tektronix Oscilloscope 25GS/s and 8 GHz BW
 - Diodes have intrinsic rise time of ca. 500 ps
 - Operation at 1 GHz has shown best S/N values
- Offline: Waveform analysis
 - Rising edge fit to extract timestamp at CF=30%
 - RMS of the time difference between two planes


test beam setup



Laser Characterisation

- Initial characterisation in typical TCT setup
 - 1064 nm PILAS IR laser
- Saturation of Front End Components
 - UCSB board typically used for MIP detection with 2 amplification stages
 - 2nd amplification stage saturates quickly but is not needed for our application
 - 1st amplification stage more or less linear
- Gain of ~7 at 350V
 - Highest gain used in test beam
 [Keep in mind that we are not detecting MIPs]

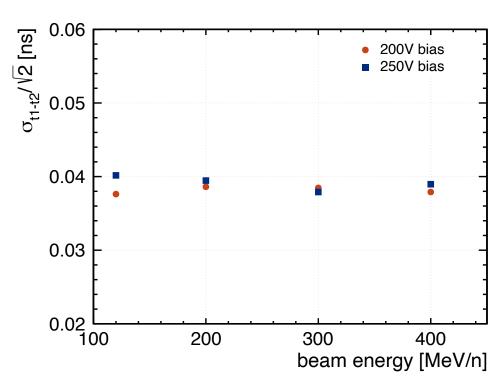


gain extracted from laser measurements

Results for Protons

- Resolutions around 50 ps achieved for beam energies below 200 MeV
 - Not quite the expected 30 ps
 - Higher beam energies could clearly profit from more gain

 $\sigma_{t1\text{-}t2}/\sqrt{2}~\text{[ns]}$ 0.1 * 83 MeV 100 MeV 0.09 145 MeV 194 MeV 250 MeV 0.08 800 MeV 0.07 0.06 0.05 0.04 200 250 300 350 bias voltage [V]

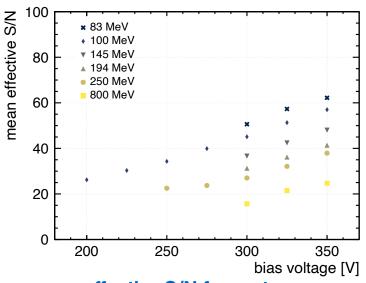

time resolution vs beam energy

time resolution vs bias

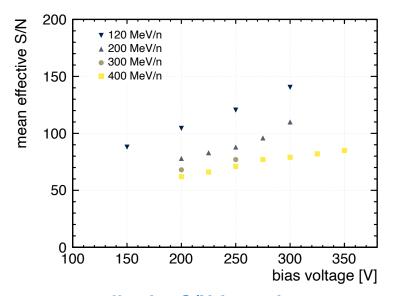
Results for Carbon lons

- Resolution below 40 ps achieved for all beam energies
 - Better resolution at lower bias voltage hints to shielding effects
 - Gain not really required for carbon imaging
 - Constant term (= Landau noise?) appears to be smaller for carbon ions

0.06 $\sigma_{t1\text{-}t2}/\text{V2 [ns]}$ 120 MeV/n 200 MeV/n 300 MeV/n 0.05 400 MeV/n 0.04 0.03 0.02 <u></u> 150 200 250 300 350 bias voltage [V]

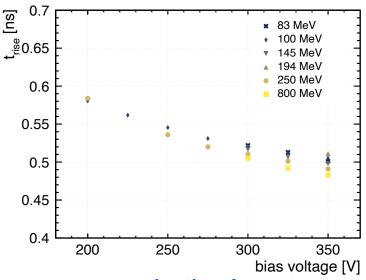

time resolution vs beam energy

time resolution vs bias

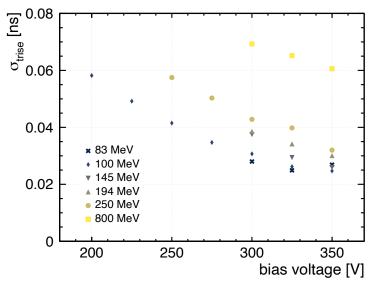

Discussion I

- Jitter contribution
 - Mean system rise time ~ 500 ps
 - Effective values of S/N ~ 20 should allow for ~ 30 ps jitter contributions
 - At same S/N, carbon ions yield better resolution than protons
- Synchronisation
 - Synchronisation uncertainty between oscilloscope channels ~17 ps
- Gain not high enough?
 - Certainly 250 & 800 MeV protons could profit from higher S/N
 - But also the rise time seems to benefit
 - We will have another 8 hours of beam time this weekend with higher bias

effective S/N for proton runs



effective S/N for carbon runs


Discussion II

- Jitter contribution
 - Mean system rise time ~ 500 ps
 - Effective values of S/N ~ 20 should allow for ~ 30 ps jitter contributions
 - At same S/N, carbon ions yield better resolution than protons
- Synchronisation
 - Synchronisation uncertainty between oscilloscope channels ~17 ps
- Gain not high enough?
 - Certainly 250 & 800 MeV protons could profit from higher S/N
 - But also the rise time seems to benefit
 - We will have another 8 hours of beam time this weekend with higher bias

mean rise time for protons

RMS of rise time for protons

Summary and Next Steps

- ToF measurements present a viable option for ion CT
 - Many advantages (at least on paper) compared to traditional approaches
 - LGADs are a natural detector candidate that would give the required rad. hardness & rates
 - Utilise the current boost in activity from HEP community
- On LGADs the results are inconclusive
 - 50 ps for protons and 40 ps for carbon ions were reached
 - Encouraging enough to move forward
 - It appears that Landau noise is indeed reduced for carbon ions but more evidence is needed
- The next step needs to include a path towards a larger system
 - Identify the best suited ASIC for a small demonstrator setup
 - SiGe BiCMOS could be an interesting possibility
 - We are open for suggestions!

Acknowledgements

Thank you for your attention!

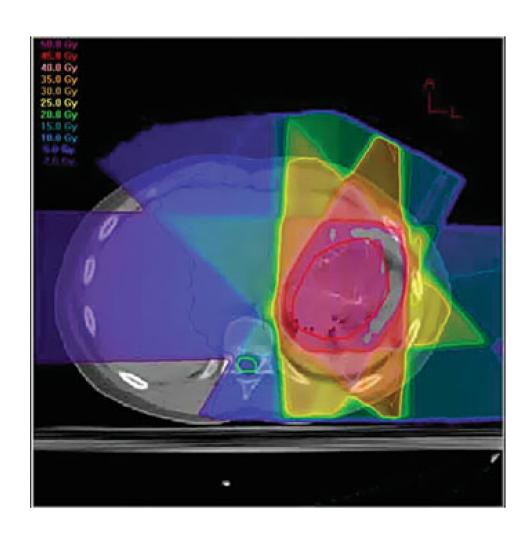
Contributors:

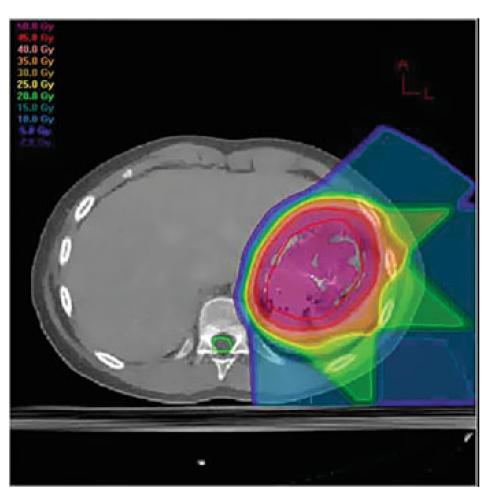
- Felix Ulrich-Pur
- Thomas Bergauer
- Alexander Burker
- Albert Hirtl
- Collaborators:
- EBG MedAustron

- Christian Irmler
- Stefanie Kaser
- Manuel Ruckerbauer
- Vera Teufelhart

Merci beaucoup also to N. Cartiglia and H. Sadrozinski for providing us with LGAD samples and the readout board design!

References


- [1] M. Ferrero et al. (2019) NIM A 919 p16–26
- [2] http://www.sr-niel.org/index.php/sr-niel-web-calculators/niel-calculator-for-electrons-protons-and-ions/protons-ions-niel-calculator
- [3] Linz U. (2016) Ion Beam Therapy: Fundamentals, Technology, Clinical Applications.



Backup

Proton vs Photon Therapy

Dose comparison for photon (left) and proton (right) treatment plans [3]