Module Development for the ATLAS ITk Pixel Detector

Jörn Lange

On behalf of the ATLAS ITk Pixel Collaboration

II. Physikalisches Institut, Uni Göttingen

TREDI 2020, Vienna 17 February 2020

GEORG-AUGUST-UNIVERSITÄT Göttingen

ATLAS ITk Upgrade

• HL-LHC upgrade 2025-2027:

- 5-7.5x instantaneous luminosity
- 200 collisions per bunch crossing
- Increased particle density
- Higher radiation levels
- 4,000 fb⁻¹ over ~10 years
- ATLAS replaces Inner Detector (ID) with all-Si Inner Tracker (ITk)
 - 4 strips and 5 pixel layers
 - Focus here on pixel part: 13 m² area, 10,000 hybrid modules
 - Higher granularity
 - Faster readout
 - Increased radiation hardness

ITk Pixel Modules

Silicon sensors for signal creation

- Different technologies and geometries
- Pixel size 50x50 µm² and 25x100 µm²
- Parylene coating for HV protection
- ITkPix frontend (FE) chip for readout
 - Developed with RD53 collaboration
 - 400x384 pixels of 50x50 μ m² \rightarrow 20x21 mm²
 - Half-size RD53A prototype available: 400x192 pixels of 50x50 μ m² \rightarrow 20x12 mm²
- Bump-bond interconnection (SnAg or In)
- Flexible PCB ("flex") + wire bonds
- Different module hybrid configurations
 - Common quads (L1-L4)
 - Triplets (L0)
- Serial powering (see talk by Q. Buat)

GÖTTINGEN

Sensors: R&D \rightarrow **Production**

Decade of extensive sensor R&D...

- Many different materials, technologies, geometries, vendors, FEs etc. studied
- Collaboration of ITk institutes, typically driven by individual groups with close contact to vendors
- Activities still on-going: see talks by M. Bomben, N. Wermes, R. Cardella, D.-L. Pohl, M. Samy, M. Povoli

→ successful qualification of radiation-hard sensors for ITk Pixel

... going over to production mode

- Selected baseline technologies + geometry
- Finalised layout
- Selecting vendors now (market survey + tendering)
- ITk-central qualification and production

Final Sensors and Layout

- Different conditions for different radii
- Inner layer radius revised to 3.4 cm
 - Improved vertexing + b-tagging
 - Increased radiation levels
- Exchange 2 inner layers at least once to mitigate radiation levels
 - Exact strategy depends on review of sensor radiation hardness
- Use of optimised sensor technology and geometry

Sensor Type	Thickn. [µm]	Sensor Size [µm²]	Module Type	Replace- ment	Fluence [1e15 n _{eq} /cm²]
3D n-in-p	150 Review	25x100 1E	Triplet	Yes	18 (2 ab ⁻¹)
3D n-in-p	150 W	50x50 1E	Triplet	Yes	18 (2 ab ⁻¹)
Planar n-in-p	100	50x50	Quad	Yes	4 (2 ab ⁻¹)
Planar n-in-p	150	50x50	Quad	No	1-4 (4 ab ⁻¹)
	Sensor Type3D n-in-p3D n-in-pPlanar n-in-pPlanar n-in-p	Sensor TypeThickn. [µm]3D n-in-p150 1503D n-in-p150Planar n-in-p100Planar n-in-p150	Sensor TypeThickn. [µm]Sensor Size [µm²]3D n-in-p150 25x100 1E3D n-in-p150 50x50 1EPlanar n-in-p10050x50Planar n-in-p15050x50	Sensor TypeThickn. [µm]Sensor Size [µm²]Module Type3D n-in-p15025x100 1ETriplet3D n-in-p15050x50 1ETripletPlanar n-in-p10050x50QuadPlanar n-in-p15050x50Quad	Sensor TypeThickn. [µm]Sensor Size [µm2]Module TypeReplace- ment3D n-in-p15025x100 1ETripletYes3D n-in-p15050x50 1ETripletYesPlanar n-in-p10050x50QuadYesPlanar n-in-p15050x50QuadNo

Incl. 1.5x safety factor

GÖTTINGEN

Towards Sensor Procurement

- Different strategies for 3D and planar
- 3D
 - Market survey based on existing prototype runs with proven published performance
 - Passed Final Design Review Nov 2019
 - Pre-production starting Q1/2020
- Planar
 - Market survey based on extensive qualification of newly ordered sensors from N vendors
 - Measurements performed by collaboration of ITk institutes cross-checking each other
 - Metrology, electrical characterisations (CV/IV/It), efficiency in test beam; all before+after irradiation
 - Need to fulfill documented requirements
 - Final Design Review $Q2/2020 \rightarrow$ tender
 - Pre-production starting Q2/2020

Sensor Market Survey - Examples

Planar hit efficiency, unirradiated, V_{dep}+50 V

- 3D efficiency >97% at 1e16 n_{eq}/cm²
 - Campaigns to 2e16 n_{eq}/cm² ongoing
- Planar IV after irradiation below limits
- Planar hit efficiency
 - Before irradiation
 - >97% overall
 - >99% outside punch-through dots
 - After irradiation: Test beam in March

Readout Chip and Hybridisation

- ITkPix frontend (FE) chip for readout
 - Half-size RD53A prototype extensively studied by ATLAS and CMS
 - 3 FEs tested \rightarrow selected differential FE (low noise) for ITk
 - Passed Final Design Review Sep 2019
 - Submission of full-size ITkPix v1 soon
- Bump bonding
 - Demonstration of fine-pitch bump-bonding on RD53A successful
 - Market survey of vendors for different process steps: chip bumping, UBM, flip-chip
 - Important aspect: bump connection strength and thermal stress
- Flex hybrid
 - Designs for common flex hybrids finished (RD53A)/ongoing (ITkPix)
 - Reduced Cu content to 2 layers of 25 µm to mitigate CTE mismatch with Si \rightarrow expect less stress on bumps

ÖTTINGEN

Towards Module Production

Several module prototype stages:

- 1) General module design explored on FEI4 prototypes
 - FEI4 demonstrator → module and system aspects (see talk by Q. Buat)
- 2) Now next phase with RD53A module prototypes
 - About 250 RD53A modules to be built in next months
 - Planar + 3D
 - 100 + 150 μm sensors
 - 150 + 400 μm FE chip
 - Quads + triplets
 - Extensive studies: thermal cycling, serial powering, new demonstrator to explore system aspects, ...
 - \rightarrow Thorough design validation phase
- 3) ITkPix_v1 modules in second half of 2020
- 4) Module pre-production starting 2021

Functional FEI4 Quad

RD53A Quad Dummy

RD53A Triplet Flex

Module Building

- Developed common method for flex-to-bare-module attachment
 - In total ~20 module building institutes
- Based on tool with jigs incl. vacuum suction and dowel pin alignment
 - Edge of bare module
 - Holes in flex frame or body
 - \rightarrow 50 µm alignment precision
- Glue height (40±15 µm) adjusted with spacers and precision adjustment screws
- Glue dispensing with stencil (Araldite2011)
- Wire bonding
- Storage and shipment in module carrier

Module Testing

- 2 different testing categories
 - Design validation (DV) during prototyping and pre-production

 → very detailed testing beyond design specifications
 - Quality control (QC) on each module built during production
 → assure installation of good modules
- Metrology/visual inspection
- Electrical connectivity testing
- Tuning of chip parameters
 - E.g. threshold, ToT, ...
- Radioactive source scans
- Burn-in/operation at low temperatures
- Thermal cycling
- \rightarrow Goal: parallelisation of ~4-8 modules

Test Box with Cooling Unit

Source Scan on FEI4 Quad

Thermal Cycling and Bump Stress

- Thermal cycling causes bump stress, in particular in case of large CTE mismatch between flex (Cu) and Si
- Consider different T ranges
 - Operational T range -45°C to +40°C
 → About 100 cycles during lifetime
 - Failure T range -55°C to +60°C
 → About 1 cycle during lifetime

- Disconnection in inter-chip region seen on ~20 FEI4 quads
 - Measured from noise difference: sensor biased vs. not biased
 - With flex (2x35 µm Cu), no carbon cell, no parylene
 - Improves with parylene coating
- Launched extensive campaign on daisy chains and RD53A prototypes
 - Different flex material and Cu content (2x 18-36 µm); with and w/o parylene; on Carbon cell structures

Cycling on FEI4 Quad

Conclusions and Outlook

Flex Hybrid, with SMDs

older/Indium Bump Local Support

50x50 µm², 100 µm (L1) and 150 µm (L2-L4)

- ITk pixel module development in transition to production phase
- Sensors
 - 3D for inner layer: 25x100 and 50x50 μm², 150 μm
 - Planar for outer layers:
 - In procurement process
- FE chip
 - RD53A prototype tested \rightarrow differential FE selected
 - ITkPix v1 to be submitted soon
- Module building and testing
 - FEI4 prototype phase completed
 - Extensive RD53A module phase starting
 - Design validation of module and system aspects
- Module pre-production starting in 2021

Encapsulated wire bonds

FE chips

ÖTTINGEN

Backup

