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LGADs
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 LGAD: silicon detector with a thin (<5μm) and highly doped 
(~1016 P++) multiplication (gain) layer
 High electric field in the multiplication layer

 LGADs have intrinsic modest internal gain (10-50)
 G = 𝑄𝑄𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

𝑄𝑄𝑃𝑃𝑃𝑃𝑃𝑃
(collected charge of LGAD vs same size PiN)

 Better signal to noise ratio, sharp rise edge
 Allows thin detectors (50 μm, 35 μm, 20 μm)

 Thinner detectors have shorter rise time and less Landau 
fluctuations

 Time resolution < 30 ps

 Several vendors of thin LGADs under study
 HPK (Japan), FBK (Italy), CNM (Spain), BNL (USA), NDL (China)



HGTD, ATLAS and LHC high luminosity
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 LHC: 14 TeV proton-proton collider at CERN (Geneva)
 ATLAS: one of the four main experiments at the LHC
 General purpose detector for discovery of new physics and 

precise measurements
 LHC will be upgraded in 2026 to High Luminosity LHC (HL-LHC) 

 Instantaneous luminosity higher than present conditions 

 ATLAS detector will be upgraded for HL-LHC
 HGTD: High Granularity Timing Detector

 2 disk of LGAD detectors in the forward region
 Provide timing measurements of tracks
 35 to 70 ps of time resolution on hits (less on tracks)
 Radiation hardness up to 2.5 � 1015Neq
 http://cds.cern.ch/record/2623663

 CMS will also be upgraded with an end-cap timing layer (ETL)
 http://cds.cern.ch/record/2667167

 HGTD and ETL are the first application of LGADs in HEP
HGTD

http://cds.cern.ch/record/2623663
http://cds.cern.ch/record/2667167


Radiation damage

18-Feb-20Dr. Simone M. Mazza - University of California Santa Cruz4



Radiation damage on LGADs

18-Feb-20Dr. Simone M. Mazza - University of California Santa Cruz5

 Most widely accepted radiation damage explanation 
for LGADs is acceptor removal
 M. Ferrero et al. arXiv:1802.01745, G. Kramberger et al. JINST 10 (2015) P07006

 Radiation damage for LGADs can be parameterized
 𝑁𝑁𝐴𝐴(𝜙𝜙) = 𝑔𝑔𝑒𝑒𝑒𝑒𝑒𝑒𝜙𝜙 + 𝑁𝑁𝐴𝐴(𝜙𝜙=0)𝑒𝑒−𝑐𝑐𝑐𝑐

 Acceptor creation: 𝑔𝑔𝑒𝑒𝑒𝑒𝑒𝑒𝜙𝜙
 By creation of deep traps

 Initial acceptor removal mechanism: 𝑁𝑁𝐴𝐴(𝜙𝜙=0)𝑒𝑒−𝑐𝑐𝑐𝑐
 Ionizing radiation produces interstitial Si atoms 
 Interstitials inactivate the doping elements (Boron) via 

kick-out reactions that produce ion-acceptor complexes
 Reduction of doping  reduction of gain
 C factor depending on detector type

Multiplication layer

Bulk

Y. Zhao et al. 10.1016/j.nima.2018.08.040

5E15 Neq/cm2

Pre-rad

Y. Zhao presentation at ULITIMA conference
https://indico.fnal.gov/event/ANLHEP1390/session/8/contribution/68/material/slides/0.pdf

𝑁𝑁𝐴𝐴(𝜙𝜙) = 𝑔𝑔𝑒𝑒𝑒𝑒𝑒𝑒𝜙𝜙 + 𝑁𝑁𝐴𝐴(𝜙𝜙=0)𝑒𝑒−𝑐𝑐𝑐𝑐

https://indico.fnal.gov/event/ANLHEP1390/session/8/contribution/68/material/slides/0.pdf


Mitigation of radiation damage: Carbon
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 FBK (Fondazione Bruno Kessler) sensors
 With (and without) Carbon infusion

 FBK-C and FBK-noC
 Carbon is electrically inactive (no effect pre-

irradiation)
 Slight reduction of gain from the implantation process

 Catch interstitials instead of Boron
  Reduces acceptor removal after irradiation

1.5E15 Neq/cm2

Boron+Carbon sensor
Gain ~10

1.5E15 Neq/cm2

Boron sensor, Gain ~3S.M. Mazza et al. arXiv:1804.05449

M. Ferrero et al. arXiv:1802.01745
Y. Zhao et al. 10.1016/j.nima.2018.08.040



Mitigation of radiation damage on LGADs
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 HPK (Hamamatsu Photonics) sensors
 HPK-3.1 and HPK-3.2

 Thin but highly doped gain layer
 Higher initial doping concentration 
 Takes more time to be inactivated

 Deep gain layer
 High field for larger volume

 Gain layer between 1um to 2um in 
instead of ~0.5-1 um

“Regular” LGAD



Gain layer fraction
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Gain layer and CV
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 Capacitance over voltage (CV)
 Study doping concentration profile and full depletion 

of the sensor 
 Study of the “foot” for LGADs on 1/C2: 

 1/C2 flat until depletion of multiplication layer
 Proportional to gain layer active concentration

 Bulk doping concentration proportional to the 
slope in 1/C2

 After radiation damage the “foot” changes 
proportionally to the gain layer doping

“foot” changes with
radiation damage



Gain layer vs. Fluence: The Effect of Carbon
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HPK 3.2
FBK Carbon  Acceptor removal constant (C) is different for 

different types of sensors
 The FBK Carbon sensors has smaller range for 

“foot” voltage
 The HPK 3.2 shows a much larger declination and 

broader range of “foot” voltages
 Carbon seems to give significant improvement 

where C is about factor 3 smaller for FBK
 However HPK has a much higher initial foot 

due to the buried gain layer
18-Feb-20Dr. Simone M. Mazza - University of California Santa Cruz

G
ai

n 
la

ye
r f

ra
ct

io
n



LGAD charge collection performance
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Sensor testing – Sr90 telescope
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 Dynamic laboratory testing
 Using MiP electrons Sr90 β-source (β-telescope)

 Signal shape, noise, collected charge, gain, time resolution

 Sensors mounted on analog readout board designed at 
UCSC (Ned Spencer, Max Wilder, Zach Galloway) with fast amplifier 
(22 ohm input impedance, bandwidth > 1GHz)
 Readout by fast oscilloscope

 Trigger sensor (fast timing trigger) on the back
 DUT (Device Under Test) is read in coincidence

 Setup in climate chamber to run cold and dry
 20C/-20C/-30C

LGAD



LGAD performance after irradiation
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 Performance of HPK-3.2 and FBK-C is good up to 3E15Neq (sensors irradiated at JSI with neutrons)
 Gain of ~8 (~4fC of collected charge) and 50ps time resolution
 Independent effect of Carbon (FBK) and deep gain layer (HPK)
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Deep (HPK-3.2) vs non deep (HPK-3.1)
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With (FBK-C) and without (FBK-noC) Carbon



LGAD performance
 Time resolution vs gain has a behavior that is 

mostly independent from radiation damage
 Collected charge of ~8 needed to achieve ~50ps 

of time resolution

 Both sensor show reasonable performance up 
to 3E15 Neq
 Fulfilling requirements for HL-LHC timing layers
 After 3E15 Neq still a challenge
 Combination of Deep gain layer and Carbon?

 Other LGAD manufacturers under study: 
 CNM (Spain), NDL (China), BNL (US)
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Gain 8

50 ps



Fluence uncertainty
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Variation of performance after irradiation
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 HPK sensors irradiated with 
neutrons at JSI (Lubjiana)

 Variation of performance of the 
order of 10%
 In the voltage to obtain X fC of charge 

(or gain X)
 Pre-rad difference in performance 

instead is <1%
 Where is the variation coming from?

 Plot on the right: HPK Type 3.2 
sensors all irradiated at 1.5E15 Neq

HPK-3.2, 1.5E15n, -30C



Correlation of foot and gain layer
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 Gain layer can be probed by 
 Measuring the gain (beta-scope)
 Measuring the foot (CV)

 Gain shows a 10% variation after irradiation
 Measured foot also shows a 10% variation
 Plot together foot voltage and voltage to 

achieve 4fC (Gain ~8)
 Linear correlation (a few outliers)
 Performance variation is real

 JSI quoted fluence uncertainty is ~10%
 Most probably is the cause of performance 

uncertainty



Conclusions
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 Options available to increase the radiation 
hardness of LGADs
 Carbon
 Thin and deep gain layer

 LGADs from several vendors show reasonable 
performance up to 3E15Neq
 Good gain (8-10) and time resolution (50-60ps)

 Making the mark for the first applications at timing 
layers of ATLAS/CMS at HL-LHC

 New productions from HPK, FBK, CNM and NDL are 
coming in 2020

 Including the combination of deep gain layer and 
carbon: FBK-UFSD-3.2
 Stay tuned!
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Backup
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Irradiation campaigns on LGADs
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 Irradiation campaign on LGADs
 Sensors were irradiated at 

 JSI (Lubiana) with ~1 MeV neutrons
 PS-IRRAD (CERN) with 23 GeV protons
 Los Alamos (US) with 800 MeV protons
 CYRIC (KEK, Japan) with 70 MeV protons
 X-rays at IHEP (China)

 Fluence: 1E13 Neq/cm2 1E16 Neq/cm2

 Ionizing dose up to 4MGy

 Waiting for the FNAL facility!



Future prospect – deep gain layer + Carbon
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 Combine Carbon (FBK-UFSD-3) with deep implantation (HPK-3.2)
 Preliminary simulation with Weightfield2 predict a collected charge of 5 fC at 6E15 Neq!

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LArHGTDPublicPlots#2018_2019_Sensor_Performance_TDR

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LArHGTDPublicPlots#2018_2019_Sensor_Performance_TDR


LGADs timing resolution
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Sensor time resolution main terms

 Time walk: 
 Minimized by using for time reference the % CFD 

(constant fraction discriminator) instead of  time 
over threshold

 In HGTD electronics TOA (Time of Arrival) of the 
signal is corrected with TOT (Time over threshold)

 Landau term: 
 Reduced for thinner sensors (50,35 μm)

 Jitter:
 Proportional to �1 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
 Reduced by increasing S/N ratio with gain
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