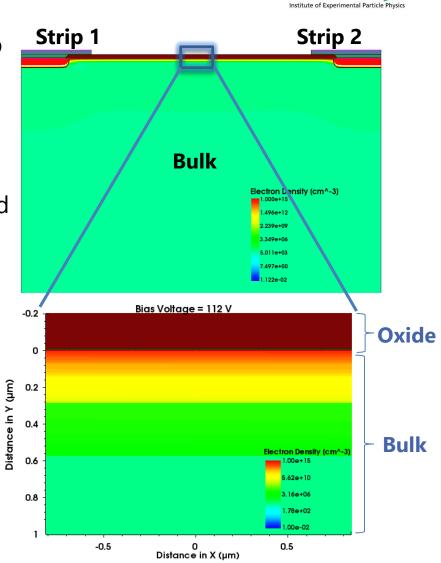


Interstrip Isolation of p-type Strip Sensors

Alexander Dierlamm, Thomas Müller, **Jan-Ole Müller-Gosewisch**, Andreas Nürnberg *TREDI 2020: 15th "Trento" Workshop on Advanced Silicon Radiation Detectors*


Institute of Experimental Particle Physics (ETP)

Introduction

- General understanding regarding the strip isolation of n-in-p sensors:
 - Positive oxide charge in the SiO₂
 surface (brown layer)
 - → Interstrip isolation implant required
 (e.g. p-stop/common or p-spray)
 - Without isolation structure
 → Formation of an electron accumulation layer
 > Cheese size ited strikes
 - → Short-circuited strips
 (decrease of spatial resolution)

Previous Investigations

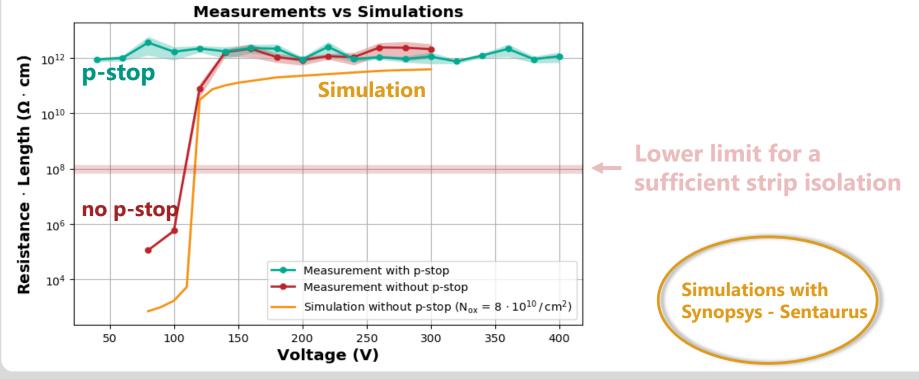
- Proven that sensors with p-stop (or p-spray) structure are functional [1]
 - Before and after irradiation
- Sensors without any specific isolation process
 - Irradiated with 7 x 10¹⁴ n_{eq} cm⁻² protons
 - High interstrip resistance (R_{int}) observed [2]
 - \rightarrow Not explainable with the intuitive understanding
- Attempts to explain and simulate the observation (e.g. [3])
 - Irradiation generates surface-near acceptor states (bulk defects)
 - \rightarrow Build-up of negative charge prevents the electron accumulation
- Further understanding required
 - Interplay of surface and bulk damage \rightarrow New irradiation study

^[1] M. Printz, PhD Thesis, EKP-2016-00009 [2] Y. Unno et al NIMA.2007.05.256 [3] R. Dalal et al. 2014 JINST 9 P04007

Comprehensive Irradiation Study

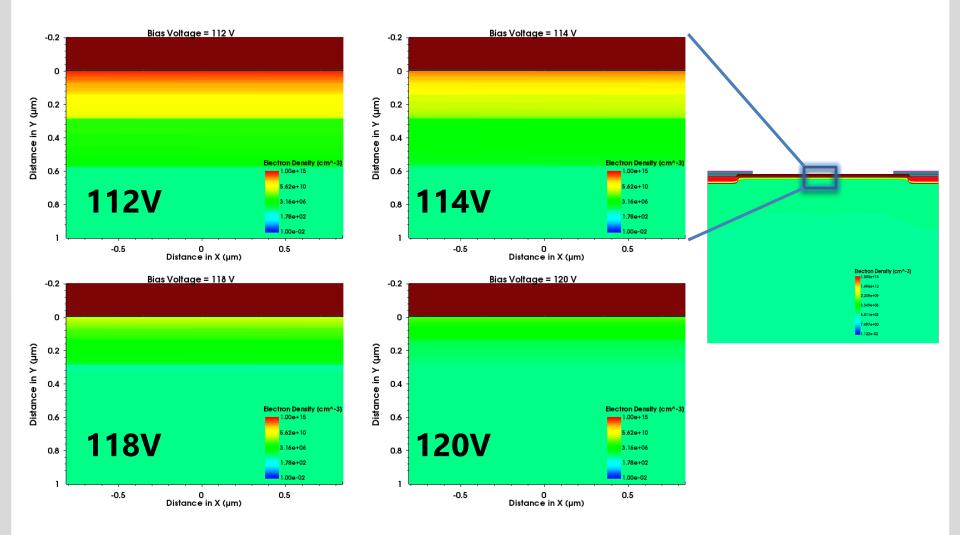
- Study with sensors without any isolation implant (small test-sensor placed on CMS Tracker prototype wafers from HPK)
- Comprehensive irradiations with x-rays, protons and neutrons
 - Emulate pure surface damage with x-rays
 - Interplay of surface and bulk damage with protons and neutrons
 - Interstrip resistance measurements to qualify the isolation
- Reproduce and understand the results with the help of simulations!

	X-Rays	Protons	Neutrons
Facility	X-ray tube (KIT)	ZAG (KIT)	Reactor (JSI, Ljubljana)
Energy	$U_{tube} = 60 kV$	≈ 23 MeV Hardness factor ≈ 2	Continuous spectrum [http://www-f9.ijs.si/~mandic/ReacSetup.html]
Radiation Damage	Surface damage	Bulk and surface damage (150 kGy per 1 x $10^{14}\ n_{eq} cm^{-2}$)	Bulk and surface damage (1 kGy per 1 x $10^{14} n_{eq}$ cm ⁻²)



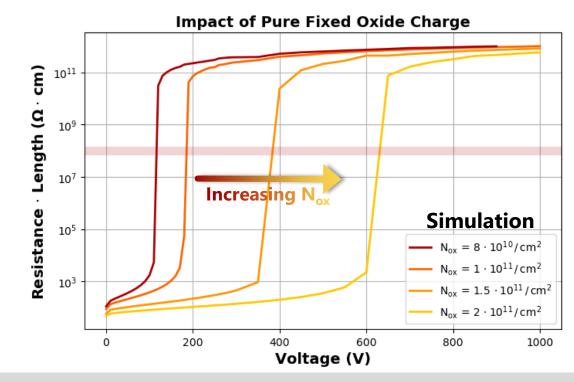
Interstrip Resistance before Irradiation

Voltage Dependence of Interstrip Resistance


- Interstrip resistance measured with a small interstrip bias and current measurement
- Sensor without interstrip implant shows a rise of six orders of magnitude of the interstrip resistance above roughly 100 V to a sufficient level (approximation)
- Simulated behaviour fits with fixed oxide charge $N_{ox} = 8 \times 10^{10} \text{ cm}^{-2}$
- Comparison: P-stop ($N_{dop} \approx 4-5 \times 10^{15}$ /cm³) beneficial for low bias voltages ($V_{fd} \approx 300$ V)

6

Destruction of Electron Accumulation Layer

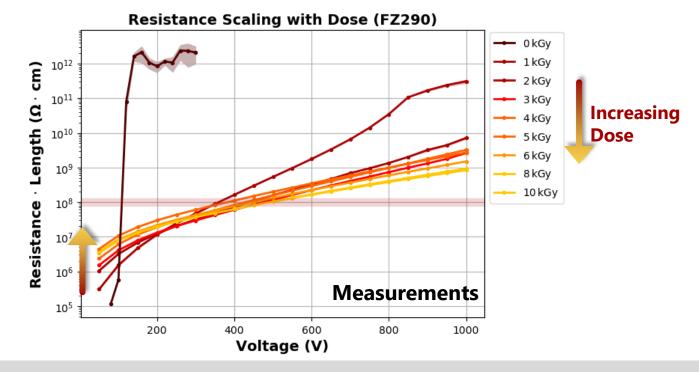


Interstrip Resistance after Irradiation

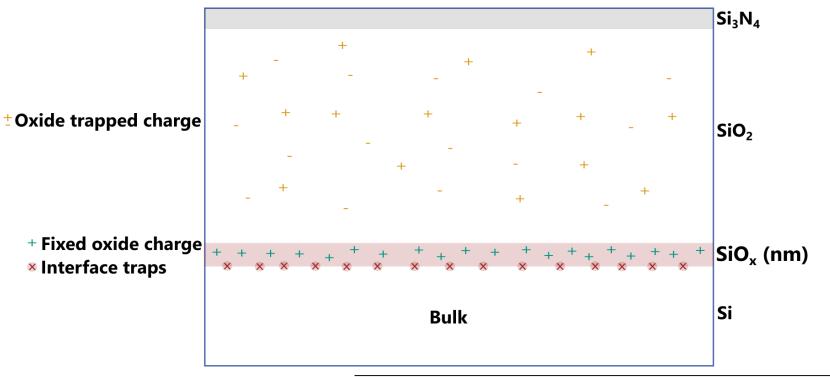
Start with pure surface damage – x-ray irradiation

Expectation for X-Ray Irradiation

- Intuitive understanding
 - X-ray irradiation ionises the surface
 - \rightarrow Increased oxide charge concentration
 - Expectation: Interstrip resistance decreases
- Simulations: Shift of the curve to higher bias voltages for Increasing N_{ox}

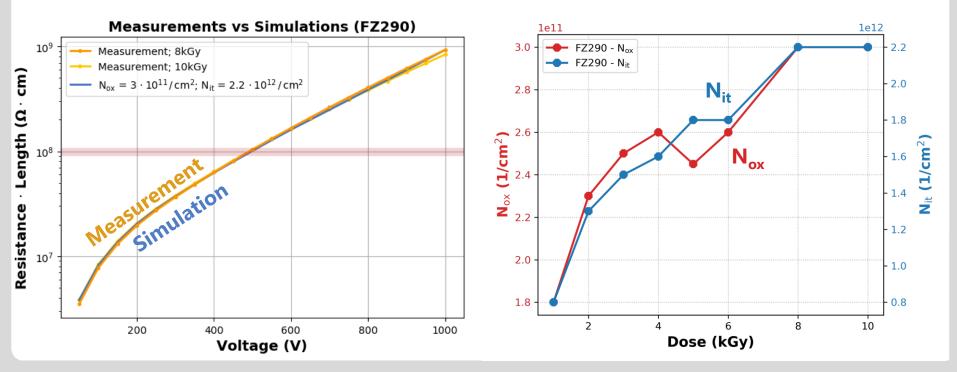


Irradiation with X-Rays


- Sensor without isolation implant successively irradiated with X-rays
- Outcome: Decrease of R_{int} with increasing dose (more surface damage)
 - Shape changed \rightarrow fixed oxide charge model not sufficient anymore
- But also: R_{int} increases with increasing dose for low bias voltages
- Saturation of the effects reached at 10 kGy

Surface Defect Model

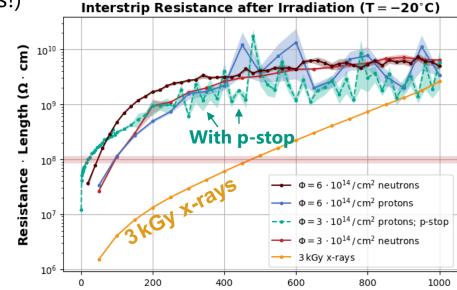
- Fixed charge in Si/SiO₂ interface ~ N_{ox}
 - Oxide trapped charge incorporated within N_{ox} for the simulations
- Perugia [4] model: Interface traps ~ N_{it}
 - Gaussian distribution of energy levels of donor and acceptor traps



[4] F. Moscatelli et al., IEEE Transactions on Nuclear Science, 2017, Vol. 64, Issue: 8, 2259 - 2267

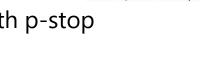
Defect Fitting after X-Ray Irradiation

- Defect concentrations N_{ox} and N_{it} have been adjusted so that the measured behaviour is reproduced (for every irradiation step)
- Example of a decent fit for the saturation dose at 8-10 kGy (left plot)
- Summary of the resulting defect concentrations (right plot)
 - Saturation concentrations: $N_{ox} \approx 3 \times 10^{11} \text{ cm}^{-2}$ and $N_{it} \approx 2.2 \times 10^{12} \text{ cm}^{-2}$


Interstrip Resistance after Irradiation

Including bulk defects

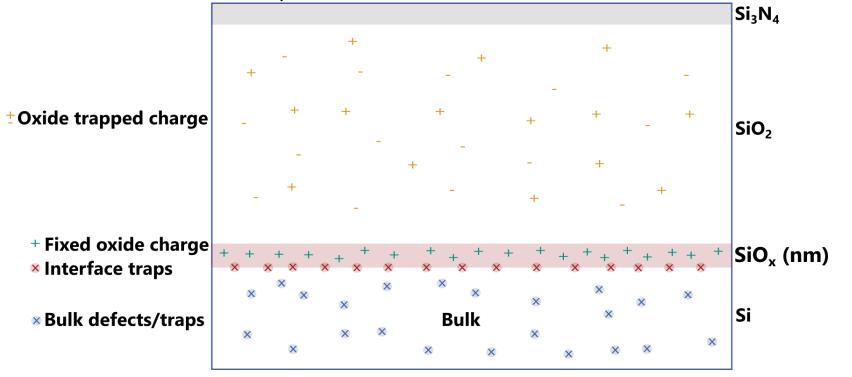
Irradiation with Protons and Neutrons


- Three samples without isolation implant and one sample with p-stop
- Similar R_{int} after proton and neutron irradiation (dose in different orders of magnitudes!)
- Comparable R_{int} of sensors with and without p-stop implant! (Fluctuations due to insufficient interstrip low voltage ramp)
- Higher R_{int} than for 3 kGy x-rays!
 → Bulk defects keep R_{int} high

14

Voltage (V)

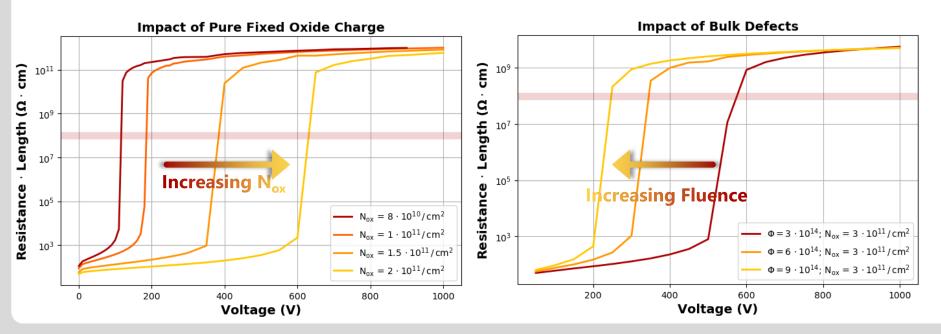
Isolation Type	None	None	None	P-stop
Fluence	6 x 10 ¹⁴ n _{eq} cm ⁻²	6 x 10 ¹⁴ n _{eq} cm ⁻²	3 x 10 ¹⁴ n _{eq} cm ⁻²	3 x 10 ¹⁴ n _{eq} cm ⁻²
Particle Type	protons	neutrons	neutrons	protons
Dose in Surface	900 kGy	6 kGy	3 kGy	450 kGy



jan-ole.gosewisch@kit.edu

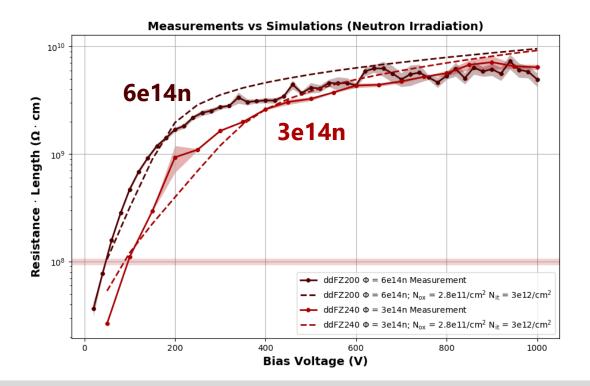
Bulk Defect Model

- Eber model (KIT) for protons and neutrons [5]:
 - Donor level at 0.48 eV
 - Acceptor level at 0.525 eV
- Main difference between proton and neutron model: Introduction rate of defects



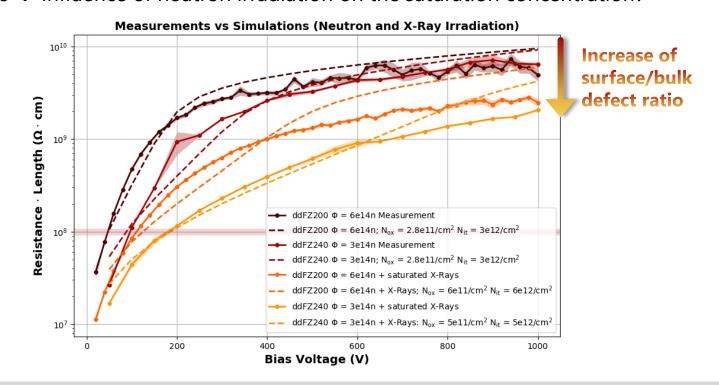
[5] R. Eber, PhD Thesis, IEKP-KA/2013-27

Impact of Bulk Defects on the Surface Properties


- Acceptor and donor states induced into the bulk
- Acceptor trap occupation is higher in the surface region than donor occupation
- Acceptor states are negatively charged when occupied
- Visualisation of the compensation effect due to bulk defects
 - \rightarrow A higher bulk defect concentration shifts the R(V) curve to lower voltages

Defect Fitting – Neutrons

- Irradiation with 6e14 and 3e14 neutrons (6 kGy and 3 kGy)
- Adjusted N_{ox} and N_{it} to fit the measurements \rightarrow Outcome consistent with x-ray irradiation
- Measurements reproducible with the combination of Eber and Perugia model!
- Further irradiation with x-rays \rightarrow Higher surface/bulk defect ratio


Defect Fitting – Neutrons

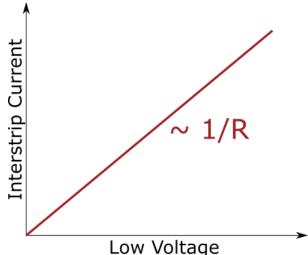
Irradiation with 6e14n, 3e14n, 6e14n + x-rays and 3e14n + x-rays

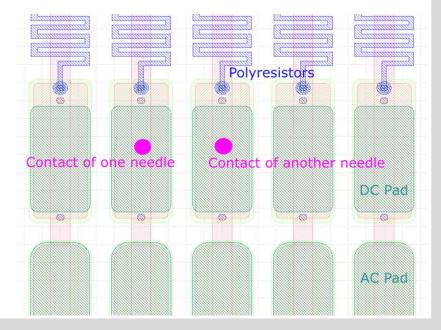
Measurements reproducible with the combination of Eber and Perugia model!

■ N_{ox} and N_{it} had to be adjusted to higher values (x2) for the combination of neutrons and x-rays → Influence of neutron irradiation on the saturation concentration?

Summary and Current Work

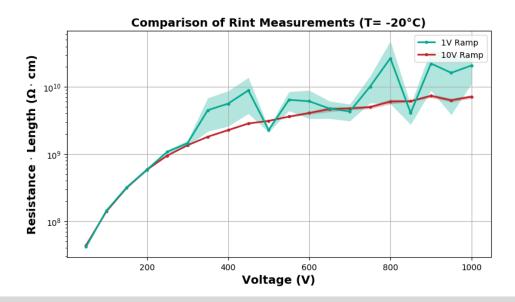
- Irradiation study on sensors without interstrip isolation structures to evaluate the interplay of surface damage and bulk defects
- Before irradiation
 - Electron accumulation layer removed for a certain minimum bias voltage
 - Described correctly with pure fixed oxide charge in the Si/SiO₂ interface
- Replication of the R_{int} measurements after irradiation with
 - fixed oxide charge
 - interface traps (Perugia) representing pure surface damage
 - bulk defects/traps (Eber KIT)
- Current investigations
 - Further evaluation of the fluence scaling of R_{int} for proton irradiation
 - Biased irradiation (so far R_{int} decreased due to biasing as expected)

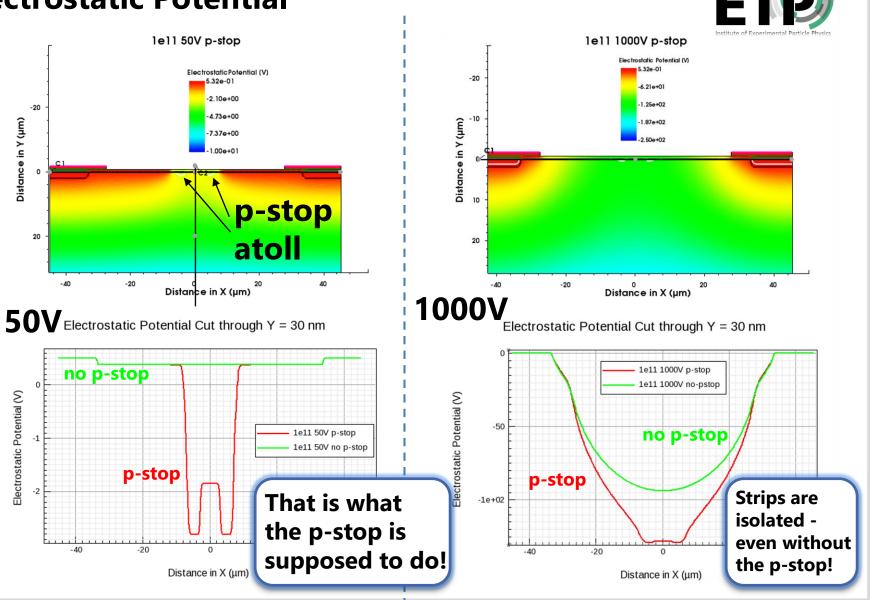



Backup

Measurement Procedure

- Measurement procedure for the interstrip resistance (R_{int}) between two strips:
 - Contact two neighbouring strips and apply a low voltage (ramp) on one
 - Measure the current flow on the other strip
 - Plot current over the applied low voltage
 - Inverse slope equals the interstrip resistance
 - Take R_{int} of several strips (5-10)
 - ightarrow Mean value and standard deviation




Measurement Procedure II

- Voltage ramp between two strips usually to 1 V max
- High leakage current after proton or neutron irradiation
 - \rightarrow Measured current between two strips dominated by strip leakage current
 - \rightarrow High fluctuations
- Illustration of R_{int} scaling with the voltage for a proton irradiated sample
 - \rightarrow Fluctuations are significantly lower with a 10V ramp similar shape \checkmark

Electrostatic Potential

Defect Models

Fixed charge in Si/SiO₂ interface ~ N_{ox}

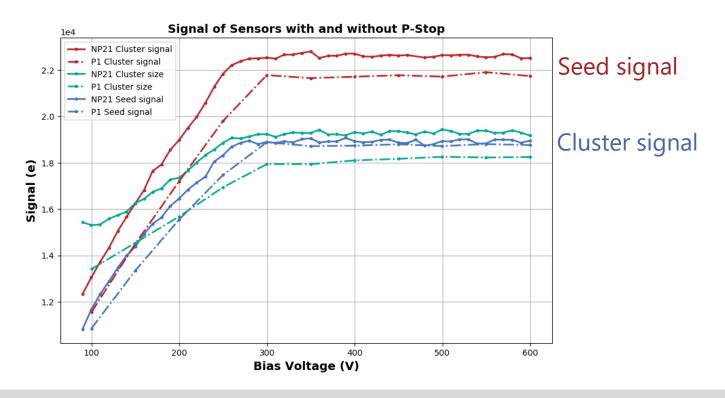
Gaussian (Perugia [4]) interface traps ~ N_{it}

- Gaussian donor: (0.7 ± 0.07) eV eX/hX section 1e-15 (100%)
- Gaussian acceptor 1: (0.4 ± 0.07) eV eX/hX section 1e-15 (40%)
- Gaussian acceptor 2: (0.6 ± 0.07) eV eX/hX section 1e-15 (60%)

Proton defects/traps (Eber [5])

- Deep donor: 0.48 eV eX/hX section 1e-14 (N_d = fluence * 5.598 3.949e14)
- Deep acceptor: 0.525 eV eX/hX section 1e-14 (N_a = fluence * 1.189 + 6.454e13)

Neutron defects/traps (Eber [5)


- Deep donor: 0.48 eV eX/hX section 1.2e-14 (N_d = fluence * 1.395)
- Deep acceptor: 0.525 eV eX/hX section 1.2e-14 (N_a = fluence * 1.395)

^[4] F. Moscatelli et al., IEEE Transactions on Nuclear Science, 2017, Vol. 64, Issue: 8, 2259 - 2267 [5] R. Eber, PhD Thesis, IEKP-KA/2013-27

Signal Comparison without Irradiation

- Comparison of the signal properties of a sensor with p-stop (dot-dashed line) and without any isolation structure (continuous line)
- Cluster size multiplied by 10000 for visibility
- Outcome: No significant difference \rightarrow both useable!

