Performance of 3D-trench silicon sensors designed for high time resolution

M.M. Obertino
University of Turin, INFN
for the TIMESPOT team

TREDI2020: 15° Trento Workshop
17-19 February 2020 - Wien
Developments on future tracking/vertex detectors go in the direction of a full 4D approach ...

Severe requirements for future detector:

- Space and time measuring capabilities at the single pixel level
 - space resolutions below 10 µm
 - time resolutions below 50 ps
- Sustain fluences greater than some 10^{16} n$_{eq}$ cm$^{-2}$
- Very low material budget

Several R&D studies of silicon sensors are ongoing

3D silicon pixel sensors: a very promising technology to be fully explored

3D successfully used in current tracking systems and good candidates for HL-LHC tracker upgrades

→ Radiation hardness proved up to 10^{16} n$_{eq}$ cm$^{-2}$
The TimeSPOT project

Main target:
Develop and realize a demonstrator consisting of a complete reduced size tracking system, integrating ~ 10^3 read-out pixel channels, satisfying the following requirements:

- Pixel pitch: \(\leq 55 \mu m \)
- Radiation hardness: \(10^{16} - 10^{17} n_{eq}/cm^2 \) (sensors) – greater than 1 Grad (electronics)
- Time resolution: \(\leq 50 \) ps per pixel
- Real time track reconstruction algorithms and fast read-out (data throughput > 1 TB/s)

Activities are organized in 6 work packages:
1. 3D silicon sensors: development and characterization
2. 3D diamond sensors: development and characterization
3. Design and test of pixel front-end with timing measurement
4. Design and implementation of real-time tracking algorithms
5. Design and implementation of high-speed readout boards
6. System integration and tests

3 years work program + 1 year possible extension (2018-2021)
3D sensors for timing measurements

PROs

- Possibility to decouple sensor thickness and drift distance
 - large signal amplitude & short collection time
- Lateral electric field and charge collection
 - Signal concentrated in time
 - Time uncertainties from non-uniform ionization (Landau fluctuations) minimized

CONs

- Non-uniform electric field
- Electrodes are partially dead regions
- High capacitance
- Complicated fabrication technology (cost, yield)

Low-field regions in between electrodes of same type
TimeSPOT: 3D pixel with trench electrodes

Different geometries based on hexagonal and square pixel with columnar and trench shaped electrodes designed and simulated (electric field, weighting field and carrier drift velocity, induced instant current).

Configuration with parallel trenches chosen

- Electric field map
- Column geometry
- Trench geometry

- Continuous p^+ trench
- Dashed n^+ trench
- Continuous p^+ trench

Bias electrode (p^+)
Readout electrode (n^+)
TimeSPOT 3D pixel simulation

Electric field map at different V_{bias}

- Total charge deposit for MIP ≈ 2 fC
- Full depletion @ few volts, velocity saturation @ > 30 V
- Pixel capacitance (from simulation) ~ 110 fF

Study carried out using Synopsys Sentaurus TCAD
First 3D-trench batch

3D Test structures

- Single/double pixels
- Pixel strips

Continuous p+ trench
Dashed n+ trench

Structures with different n+ trench width/gap size produced

Schematic design

Two examples:

Timepix compatible device
- 256x256 pixels
- 55 µm pitch
First 3D-trench batch: fabrication technology

Photolithography with stepper

- Minimum feature size 350 nm
- Alignment accuracy 80 nm
- Max exposure area ~2x2 cm²
- Full size reticle for two blocks: Timepix sensor and test structures

Delivered on June 2019
First 3D-trench batch: electrical measurements

18x18 pixel test structures

Measurements on wafer (FBK)

~10 pA/pixel on working devices

Measurements after dicing (Torino and Trento laboratory)

Measured capacitance ~110 fF/pixel (in agreement with simulation)

Full depletion @ ~ 12 V
First 3D-trench batch: response to laser pulses

1030 nm, 200 fs, 40 MHz pulsed laser

5 \mu m diameter laser spot on sensor (20x optics)

10-pixel strip + amplifier board with discrete components (KU board), not optimized for our sensors

Digital CFD on scope [50% Threshold]

\[\sigma_t = \frac{\sigma_{\text{meas}}}{\sqrt{2}} \]

\(\sigma_t \sim 20 \text{ ps} @ \text{MIP equivalent laser signal} \)
First 3D-trench batch: test beam

Several 3D structures test with beam at PSI

(A) Pixel-strip (10 pixels connected on the same read-out pad)
(B) Single and double pixel
(C) Hexagonal (column) pixel device, based on FBK 3D Single Sided Technology

Devices connected to electronics by wire bonding (Al, 25 µm diameter, ~ 5 mm length)
Test beam setup

πM₁ beam line
- π⁺ beam (negligible e⁺ contamination)
- Momentum: 270 MeV/c
- Radius on the spot: $\sigma \sim 1.5$ cm
Test beam setup: system inside the “black box”

DUT front end:
- broadband amplifier board with discrete components

INFN-Ge Front End

KU Front End

Time Taggers:
- Quarz Cherenkov radiator + MCP
- Area: 5x5 cm^2
- $\sigma_t \sim 15$ ps

Beam
Test beam setup: trigger & DAQ

DAQ: Oscilloscope Rohde&Shwarz RTP084 - Sampling frequency: 20 Gsample/s - Bandwidth: 4 GHz (or 8 GHz)

Trigger: Coincidence of MCP2 and Si sensor

Silicon sensor

Beam RF signal (50 MHz)

MCP 1 & 2 (time taggers)

MCP1

MCP2
First 3D-trench batch: test beam results

DUT: Double pixel

INFN-Ge Front End Board
(1 amplification stage, G~30
2 GHz bandwidth)
+ external broadband amplifier
(G=10, 2 GHz bandwidth)

Measurements performed at different V_{BIAS}

<table>
<thead>
<tr>
<th>V_{BIAS} (V)</th>
<th>Nevent</th>
</tr>
</thead>
<tbody>
<tr>
<td>-20</td>
<td>20k</td>
</tr>
<tr>
<td>-50</td>
<td>20k</td>
</tr>
<tr>
<td>-80</td>
<td>3k</td>
</tr>
<tr>
<td>-110</td>
<td>20k</td>
</tr>
<tr>
<td>-140</td>
<td>20k</td>
</tr>
</tbody>
</table>

$V_{BIAS} = -140$ V

MIP MPV ~ 25 mV

FIT: Gaussian (noise) + Landau (signal) + error step function (trigger)

The Max/FWHM ratio is compatible with a Landau distribution of a 150 µm thick silicon
First 3D-trench batch: time resolution (I)

ToA: numerical leading edge discriminator with a fixed threshold $Th=5mV$ (no TOT correction)

Numerical filters to reduce high frequency noise applied

ToA: Numerical CFD with a 35% threshold

$\chi^2 / \text{ndf} = 252.4 / 145$

Yield/200 = 78.91 ± 0.63

$\mu \ [\text{ns}] = -0.5527 \pm 0.0007$

$\sigma_{\text{core}} \ [\text{ns}] = 0.04414 \pm 0.00052$

$\lambda \ [\text{ns}] = 0.1031 \pm 0.0039$

$\text{frac}_{\text{core}} = 0.7517 \pm 0.0123$

$\sigma_t = (44.1 \pm 0.5) \text{ ps}$

$V_{\text{BIAS}} = -140 \text{ V}$

$\chi^2 / \text{ndf} = 367.8 / 124$

Yield/200 = 77.07 ± 0.62

$\mu \ [\text{ns}] = -0.5004 \pm 0.0005$

$\sigma_{\text{core}} \ [\text{ns}] = 0.02874 \pm 0.00035$

$\lambda \ [\text{ns}] = 0.0923 \pm 0.0025$

$\text{frac}_{\text{core}} = 0.6793 \pm 0.0102$

$\sigma_t = (28.7 \pm 0.4) \text{ ps}$

$V_{\text{BIAS}} = -140 \text{ V}$

FIT: $f \cdot \text{Gaus}(\mu, \sigma) + (1-f) \exp(\lambda) \otimes \text{Gaus}(\mu, \sigma)$
First 3D-trench batch: time resolution (II)

\[\sigma_t = (26.9 \pm 0.4) \text{ ps} \]

Si-sensor time resolution after deconvolving the MCP time resolution

Combination of 3 main effects:
- Spurious signals (algorithm and in-time EMI noise)
- Partial charge deposit (neighbour un-read pixels)
- Weak field spots
Future production

New 3D-trench batch:
- design completed
- production at FBK almost ready to start
- foreseen delivery: second half of 2020

- New (and old) devices will be extensively tested in laboratory (with laser and β-source)
- Test beam @ PSI in December 2020
- Irradiation campaign will be carried out in 2020

R. Mendicino, ‘3D trenched-electrode sensors for charged particle tracking and timing’ NIMA 927 (2019)
Conclusion

- First measurement of timing performance of 3D Silicon pixel sensors based on parallel trench electrodes: time resolution below 30 ps
 - Measurement still limited by the front-end electronics
 - New trench electrode design represents a significant step forward towards the optimization of the timing performance of 3D silicon sensors
- Design of the second batch of 3D sensor complete; delivery foreseen in 2020
- Improved dedicated electronics (both discrete components and 28-nm CMOS ASIC) under development
Backup slides
Laser setup @INFN Cagliari

- 1030 nm, 200 fs, 40 MHz pulsed laser
- Pulse-picker to select pulses from 40 MHz to 1 MHz
- Monomode fiber to microscope
- 5x and 20x optics
- Optical filters for light intensity attenuation
- Microscope with IR camera
First 3D-trench batch: test beam “online” results

<table>
<thead>
<tr>
<th>Test structure</th>
<th>Front-end type</th>
<th>(\sigma_t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel strip</td>
<td>KU* modified prod. 1 – unshielded</td>
<td>40 – 50 ps</td>
</tr>
<tr>
<td>Single pixel</td>
<td>KU modified prod. 1 – unshielded</td>
<td>35 ps</td>
</tr>
<tr>
<td>Hexagonal column (FBK DS process)</td>
<td>KU modified prod. 1 – unshielded</td>
<td>(~ 60 \text{ ps (preliminary)})</td>
</tr>
<tr>
<td>Double pixel</td>
<td>GE** board SiGe BJT + BB amp – shielded</td>
<td>< 30 ps</td>
</tr>
<tr>
<td>Single pixel</td>
<td>GE board SiGe BJT + GALI – shielded</td>
<td>Bad (Oscillations)</td>
</tr>
<tr>
<td>ATLAS Phase2 50x50 with poly connection</td>
<td>KU modified prod. 1 – unshielded</td>
<td>High values (>100 ps) (preliminary)</td>
</tr>
<tr>
<td>Diamond 110</td>
<td>KU modified prod. 2</td>
<td>(~ 320 \text{ ps . Worse S/N ratio})</td>
</tr>
<tr>
<td>Diamond 55</td>
<td>KU modified prod. 2</td>
<td>(~ 230 \text{ ps . Worse S/N ratio})</td>
</tr>
</tbody>
</table>

A. Lai – HSTD12 (Hiroshima) – Dec2019
TimeSPOT readout chip

Front-End ASIC prototype on 28nm CMOS technology with full pixel readout chain.

55-pitch pixel integrating CSA+Disc+TDC

«High» power (7.2 µA)
«Low» power (4.1 µA)

\[\sigma_j \sim 30 \text{ ps (simulation)} \]

- Input stage → Charge Sensitive Amplifier (CSA) with sensor leakage current compensation
- Discriminator → Leading Edge with discrete-time offset compensation
- 1 TDC per channel based on all-digital architecture

First prototype produced with the mini@sic approach (1.5x1.5 µm² chip): 3 TDC, 8 CSA+Leading Edge Discriminator, 1 DAC

Measured jitter ~60 ps
A second modified version will be submitted in mid 2020