AC-LGAD (RSD): Signal formation and design optimization

- What are AC-LGAD (RSD)
- Signal formation
- Laser study
- Reconstruction method
- Results

Nicolò Cartiglia  
INFN - Italy

R. Arcidiacono\textsuperscript{ab}, G-F Dalla Betta\textsuperscript{ae}, G. Borghi\textsuperscript{f}, M. Boscardin\textsuperscript{f}, M. Costa\textsuperscript{ac}, F. Fausti\textsuperscript{ac}, F. Ficorella\textsuperscript{f}, M. Ferrero\textsuperscript{ab}, M. Mandurrino\textsuperscript{a}, J. Olave\textsuperscript{a}, L. Pancheri\textsuperscript{iae}, F. Siviero\textsuperscript{a}, V. Sola\textsuperscript{a}, M. Tornago\textsuperscript{ac}, G. Paternoster\textsuperscript{f}, H. Sadrozinski\textsuperscript{d}, A. Seiden\textsuperscript{d}, M. C. Vignale\textsuperscript{f}

\textsuperscript{a} INFN, \textsuperscript{b} Universita’ del Piemonte Orientale, \textsuperscript{c} Università di Torino, \textsuperscript{d} University of California, Santa Cruz, \textsuperscript{e} Università di Trento, \textsuperscript{f} TIPFA-FBK
AC – LGAD: Resistive Silicon Detectors (RSD)

AC-LGAD are a design evolution of LGAD detectors where the gain layer is not segmented, and the signal is read-out via AC coupling (see TREDI 2015 for details).

The key technological feature that makes this design work is the “resistive n++ layer”, necessary to produce the local AC coupling. For this reason, they are called “Resistive Silicon Detector”, RSD.

The sensors presented here are manufactured at FBK within the RSD project (INFN).

CNM produced AC-LGAD sensors in 2017, Sadrozinski’s talk @ HSTD11, BNL in 2019.

Publications:

Experimental Set-up

- The study presented here are obtained using a “Particular” laser TCT set-up
- Sensors are glued on a 16-channel read-out board.
- The signal of the 4 pads is recorded using an oscilloscope
- The laser is shot in various position via an x-y-z micrometric stage
Act 1: the e/h are drifting and they produce a direct charge induction in the n++ layer (Ramo theorem)

1. The signal is immediately AC-coupled to the metal pad above (if there is one), its shape identical to an equivalent DC LGAD
2. Large signal (gain 10-20): 5 - 10 fC
3. Very fast collection (1 ns)
4. No lateral spread, very vertical E field and drift
RSD Signal formation - II

Act 2: the signal propagates on the n++, firing the near-by pads

1. The n++ is an almost ideal resistive divider
2. Lateral spread controlled by n++ resistivity, metal pad capacitance, pitch, system inductance.
3. The metal AC pads act as “pick-up” electrodes
4. Signal gets smaller and delayed with distance
Act 3: the signal discharges, according to the read-out RC. Small RC have larger and shorter positive lobes (need to discharge the same charge in a shorter time)
Effect of L,C,R on the signal propagation

The n++ layer of RSD is a lossy transmission line, with R, C, and L components. The propagation coefficient is defined as:

\[
\gamma = \sqrt{(r + jwL)(G + jwC)} = \alpha + j\beta
\]

In order to study signal formation, propagation, and attenuation in RSD, sensors with many geometries have been produced (metal-pitch combinations), including strips and large matrices. For example: 

subset of the structures manufactured in the RSD project
Attenuation versus distance

How is the signal attenuated as a function of the distance from the pad?

The amplitude decreases linearly with increasing distance due to the resistivity of the n++ layer.

The amplitude decreases linearly with decreasing angle (angle of view).
Attenuation with distance: resistivity and angle

The 2 sources of attenuation with distance, $V(d)$, can be parametrized as follow:

1) Attenuation due to the resistivity:

$$V(d) = V(0) - \beta \cdot d$$

where

$V(0)$: amplitude at distance $= 0$

$d$: distance from metal

2) Attenuation due to the angle of view:

$$V(d) = V(0) \cdot \frac{l \cdot \sqrt{2}}{l \cdot \sqrt{2} + d}$$

where

$l$: side of the pad

$d$: distance from metal

$$\alpha = \tan^{-1} \frac{l \cdot \sqrt{2}}{l \cdot \sqrt{2} + d}$$
Using the equations in the previous page, we can make a model of the combination of the two type of attenuations

**Effect of decreasing angle**  
**Effect of increasing distance**  
**Combined effects of decreasing angle and increasing distance**
Fitting the data

\[ x = \text{distance} \]
\[ [0] = \text{amplitude} \]
\[ [1] = \text{resistive attenuation with distance} \]
\[ [2] = \text{dimension of the pad, fixed to l}/\sqrt{2} \]

\[ ([0]+[1]*x)\times(\text{atan2([2],[2]+x)}/\text{atan2([2],[2]))} \]

resistive angle

Now we have an analytic model of signal attenuation.
The only unknown is [1], the attenuation with distance.
Effect of geometry on attenuation

The attenuation factor was measured for many geometries. It is dominated by the coupling capacitance: attenuation is higher for sensors where the metal pads cover a large fraction of the area.

\[ y = 0.0136x - 0.0006 \]

- \( y \) is the fractional attenuation in [1/\text{um}]
- \( x \) is the fraction of attenuation per micron

![Graph showing the relationship between fractional attenuation and (Metal/Pitch)^2](image)

- \( W2 \text{ Measured} \)
- \( W2 \text{ Attenuation consistent with fit extrapolation} \)
What is the signal delay as a function of distance?
Laser study: signal delay

The signal is delayed when it propagates in the n++ and not when it does in the metal.
Laser study: total charge vs position

For all geometries, the sum of the signals on the 4 pads is almost constant, weakly dependent on the hit position.

\[ A_{tot} = \sum_{1}^{n} A[i] = const \]

In red: run #

x-axis: run #
Position reconstruction method - I

Each hit position is characterized by a specific set of amplitudes in the pads.

It is possible to associate to each x-y point the relative importance of the signal in each pad: $A[0]/A_{tot}$, $A[1]/A_{tot}$, $A[2]/A_{tot}$, $A[3]/A_{tot}$.

In this case (0.09, 0.18, 0.18, 0.55)
Position reconstruction method - I

Channel 0

Channel 1

Channel 2

Channel 3

N. Cartiglia, INFN Torino, TREDI, Wien, 18/02/2020
Using the attenuation model, the fraction of the total amplitude seen in each pad for every x-y point can be calculated.

In this example, 4 values: (0.5, 0.2, 0.1, 0.2) are associated to the x-y point.

The analytic model allows computing a look-up table containing for each x-y point the relative signal amplitude of every pad.
Position reconstruction method: the recipe

Recipe:

- For each hit, calculate the total amplitude summing all pads: $A_{tot} = \sum A[i]$
- Calculate the relative amplitudes $\left(\frac{A[i]}{A_{tot}}\right)_{Meas}$ seen in each pad.
- Use the look-up table to find which x-y bin minimize the quantity:
  \[
  \chi^2 = \sum_{1}^{4} \left[ \left(\frac{A[i]}{A_{tot}}\right)_{Meas} - \left(\frac{A[i]}{A_{tot}}\right)_{calc} \right]^2
  \]
- Perform a local interpolation around the minimum.

$\chi^2$ values for 4 different laser shots (sensor geometry: 100-metal 200-pitch)
The reconstructed position is the bin with the minimum $\chi^2$ value
Laser study: position resolution

Shooting the laser in many positions, the "single point precision" and the "overall precision" can be evaluated. This is done by comparing the position reconstructed using the look-up table to the known laser position. Two examples:

**Geometry:**
- 100 Metal, 200 pitch
  - Single point precision: 6 micron
  - Global precision: 10 micron
- 200 Metal, 500 pitch
  - Single point precision: 10 micron
  - Global precision: 18 micron
Laser study: time resolution

An estimate of the RSD time resolution is obtained in the following way:

1) Determine the hit position using the look-up table
2) Correct for the propagation delay between the hit position and each pad
3) Compute the amplitude weighted time centroid (assume no jitter on the laser shot)

**Geometry:**

<table>
<thead>
<tr>
<th></th>
<th>100 Metal, 200 pitch</th>
<th>200 Metal, 500 pitch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single point precision:</td>
<td>20 ps</td>
<td>20 ps</td>
</tr>
<tr>
<td>Global precision:</td>
<td>24 ps</td>
<td>30 ps</td>
</tr>
</tbody>
</table>
Design optimization

Position and time resolutions are optimized when several pads see a signal. Let’s examine signal sharing in 3 designs with equal pitch (500 micron).

For small metal pads, the signal is shared among many pads, however the amplitude seen by each pad is small.

For large metal pads, the signal is very attenuated and sharing is limited.

Best performance is obtained when at least 4 pads see an amplitude well above the noise level.
**Conclusions**

- AC-LGADs (RSD) are silicon sensors working on the principle of charge sharing.
- Charge sharing is obtained using a delayline-like lossy system (and not drift lines).
- RSDs employ the LGAD mechanism for charge multiplication.
- They have a uniform response, no dead area between pads. This design is well suited for very small pitch.

- Charge sharing allows reaching the same spatial precision of traditional silicon detector using a factor of 5-10 larger pitch (in bump-bonding design, this allows a lot of space for electronics):
  \[ \sigma_{position} = 10 \, \mu m \] for 200-micron pitch, \[ \sigma_{position} = 20 \, \mu m \] for 500-micron pitch.
- Time resolution, obtained using information from multiple pads, is at the level of (or better) traditional LGAD sensors: \( \sigma_{time} = 25 - 30 \, ps \).
- Signal delay happens only in n++, not in metal: for best results use round and not square metal pads.
  \[ \Rightarrow \text{First ever polka dot detector} \]

**Next steps:**
- More testing of other geometries, strips...
- Beam test.
- Irradiated samples have been received last week, need to check the stability of the sensors’ parameter.
Acknowledgement

We kindly acknowledge the following funding agencies, collaborations:

- INFN - Gruppo V
- Horizon 2020, grant UFSD669529
- Horizon 2020, grant no. 654168 (AIDA-2020)
- U.S. Department of Energy grant number DE-SC0010107
- Dipartimenti di Eccellenza, Univ. of Torino (ex L. 232/2016, art. 1, cc. 314, 337)
- Ministero della Ricerca, Italia, PRIN 2017, progetto 2017L2XKTJ – 4DinSiDe
- Ministero della Ricerca, Italia, FARE, R165xr8frt_fare
Example of the analytic prediction of the signal attenuation

\[
A(d) = (A(0) - \beta \ast d) \cdot \tan^{-1}\left(\frac{l/2 \ast \sqrt{2}}{l/2 \ast \sqrt{2} + d}\right)
\]

\[
\tan^{-1}\left(\frac{l/2 \ast \sqrt{2}}{l/2 \ast \sqrt{2}}\right)
\]
Delay and attenuation are connected in the dispersion relationship:

higher attenuation is coupled to higher delay

➔ The two smallest geometries are somewhat different.

?? Why so much delay for small gaps?
Laser study: signal delay

The delay slope is computed for every geometry

Geometry 50-100: Delay linear with distance
Slope: 2.4 ps/um

Geometry 200-500: Delay linear with distance
Slope: 0.55 ps/um