

AUSTRIAN ACADEMY OF SCIENCES

Process Quality Control Strategy for the Phase-2 Upgrade of the CMS Outer Tracker and High Granularity Calorimeter

Viktoria Hinger on behalf of the CMS collaboration

TREDI2020, Vienna, Austria

Process quality control test structures (confocal laser scanning microscopy image)

~ 800 m² silicon for the CMS Phase-2 Upgrade

Tracker: ~ 200 m² Calorimeter endcap: ~ 600 m²

Process quality control: The concept

Efficiency Comparability Sensitivity

Universal set of test structures

The "flute" concept

Process parameters and performance examples Summary and outlook

High-Luminosity LHC requires full upgrade of tracker and calorimeter endcap

LHC / HL-LHC Plan

Production of > 50,000 new silicon sensors

Collision rate increases by a factor 5 Instantaneous luminosity: $7.5 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$ Integrated luminosity: 3000 fb^{-1} by 2037

CMS process quality control strategy

$\sim 200 \text{ m}^2$ silicon in the upgraded outer tracker

~ 200 m² silicon in the upgraded outer tracker

Outer tracker silicon sensors

~ 600 m² silicon in the calorimeter endcap (CE)

CMS process quality control strategy

8

~ 600 m² silicon in the calorimeter endcap (CE)

Electromagnetic compartments (CE-E):

~ 28 silicon sampling layers

Hadronic compartments (CE-H):

- ~ 8 silicon sampling layers
- ~ 14 layers silicon + scintillator
- ~ 30,000 silicon wafers

Silicon sensors for the calorimeter endcap

Different wafer thickness for regions with different fluence

300 μm (float zone)200 μm (float zone)120 μm (epitaxial)

Tracker and HGCAL sensor processes

Vendor quality control Hamamatsu test all sensors

Process quality control

Test centers in Athens, Brown, Perugia, Vienna

Irradiation tests Brown, Karlsruhe

Process quality control

Test centers in Athens, Brown, Perugia, Vienna

Irradiation tests Brown, Karlsruhe

Process quality control

Test centers in Athens, Brown, Perugia, Vienna

Analogous procedure for HGCAL quality control! Requirements for large-scale process quality control

Process quality control relies on test structures

Tracker "Phase-0" process quality control

More problems were spotted with process quality control than during sensor tests!

A universal set of test structures

Array of 2 x 10 contact pads

Facilitates probe card measurements

Inspired by industry

MOS capacitor:

Oxide thickness

Oxide fixed charges ($V_{\rm fb}$)

Differences between 6" and 8" process!

Differences between standard float zone and epitaxial process!

Van-der-Pauw structures:

Resistivity of thin films

Doping concentration

Film thickness

Meander structures:

Bias resistor

Metal sheet resistance

Complementary measure

Field-effect transistors:

Threshold voltage

Sensitive to variations in p-stop parameters

Relates to inter-channel resistance

Field-effect transistors:

Threshold voltage

Sensitive to variations in p-stop parameters

Relates to inter-channel resistance

Initial characterization in 30 minutes

2 standard flutes

Designed for automated measurement with probe card

Access to most relevant process parameters

Substrate resistivity

Oxide quality

Si/SiO₂ Interface

Sheet resistances Inter-strip resistance Summary and Outlook

~ 800 m² silicon and > 50,000 wafers for CMS tracker and calorimeter endcap

Process quality control concept relies on

Universal set of test structures optimized for probe card measurements

Initial analysis in ~ 30 minutes per wafer

Pre-production starts in March 2020

Combined sensor and process quality control and irradiation tests

Thank you for your attention!

Acknowledgements

T. Bergauer, D. Blöch, M. Dragicevic, U. Heintz, V. Hinger, I. Kazas, A. Korotkov, D. Loukas, V. Mariani, F. Moscatelli, P. Paulitsch, F. Pitters

The research leading to these results received funds from the call "Forschungspartnerschaften" of the Austrian Research Promotion Agency (FFG), Austria under the grant no. 860401.

Spares

CMS process quality control strategy

Silicon bulk:

Resistivity Active thickness

Carrier lifetimes

Strips / p-stop:

Doping concentration Implantation depth Interstrip resistance

Silicon bulk:

Resistivity Active thickness

Carrier lifetimes

Strips / p-stop:

Doping concentration Implantation depth Interstrip resistance

Diodes:

4-wire bulk contacts: Substrate resistivity Simple resistance measurement

Dielectric breakdown test structure:

Dielectric strength Voltage ramps Destructive!

Contact chains:

4-wire resistance measurement

gļī

Faulty contacts

Contact resistance

Probe station

Automated probe card measurements using camera

Manual positioner measurements using microscope

Measurement equipment

Switching system:

Keithley 707B main frame, 7072(-HV)

Source Measure Units:

Keithley 2657A, 2410, 237

Electrometer:

Keithley 6485, 6517A/B

7072-HV card

LCR Meter:

Keysight E4980A

Celadon Systems

Custom PCB (includes temperature sensor and test RC circuit)

23 LEMO-00 Triax connectors

Tracker "Phase 0" example: Flat-band voltage and inter-strip resistance Flat-band voltage Inter-strip resistance Flatband Voltage vs. Production Date for STM R int vs. Date of Measurement for STM 40⊢ Flatband Voltage [V] R_int [GOhm] 35 30|-Limit: < 10V25 10 ~ 1000 sensors rejected! 20 15 1 10 Limit: > $1G\Omega$ 0.0 10⁻¹ 0 000 04/02 10/03 07/02 10/02 01/03 04/03 07/03 10/03 07/02 10/02 01/03 04/03 07/03 01/04 04/04 07/04 Production Date month/year] Date [month/year] High flat-band Inter-strip resistance Later batches voltages at below limit above limit STM around March 2002

Tracker "Phase 0" example: Substrate resistivity

Requirement:

 V_{dep} < 400V after 10 years of LHC operation 1.25 < ρ < 3.25 kΩcm for inner tracker thin

sensors by HPK

Agreement:

→CMS accepted all wafers

 \rightarrow Wafers with lower resistivity are used in inner layers