Serial Powering in the CMS silicon tracker detector for High-Luminosity LHC

15th Trento Workshop on Advanced Silicon Radiation Detectors

Roberto Seidita, Università e INFN, Firenze on behalf of the CMS Tracker Group

Vienna, 19/02/2020
Outline

- Motivation for serial powering
- Implementation for the CMS pixel tracker upgrade
- The Shunt-LDO regulator on RD53A
- Main challenges of the system
- Improvements after RD53A
Motivation for Serial Powering
Inner tracker challenges at high luminosity

Increased radiation levels
- Innermost layer at 3 cm from beam
- Up to $2.3 \times 10^{16} \text{n}_{\text{eq}} \text{cm}^{-2}$ fluence
- Total dose of 1.25 Grad max

Higher granularity
- More pixels to read out

Increased hit rate
- Higher bandwidth

65 nm CMOS technology
- 1.2V operating voltage \Rightarrow higher current

Low material budget
- Low mass cabling
- Avoid substantial power loss/voltage drop on cables

Radiation hard components

High current consumption

Limit current on cables
CMS IT upgrade—powering requirements

Powering specific requirements

- 50 kW on detector power
- High current required by ROCs
- 3900 readout modules

More detail on the overall design in the talk by Jory Sonneveld

Serial Powering only viable solution

Low material budget
Advantages of serial powering

Direct parallel powering
- 2 cables per module
- Total power consumption: \(nIV + n^2I^2R \)

POL conversion with DC/DC converters
- 12V → 1.2V conversion
- Not radiation hard enough (150 Mrad max)
- Component size, hefty material addition

Serial Powering
- 2 cables per chain
- 1.5V → 1.2V POL conversion
- Total power consumption: \(nIV + I^2R \)
Serial Powering implementation

CMS IT Phase II
Chain layout – low voltage distribution

- Constant current supplied to readout chips
- Voltage conversion on ROC, no additional power electronics on modules
- Lower supplied current \Rightarrow reduced dissipation on cables
- Allows for reduced cabling (one line per chain)

Voltage drop on cables not an issue in constant current mode

Up to 12 modules per chain
Chain layout – low voltage distribution

- Local GND reference changes along the chain
- Each module comprised of 2 or 4 chips powered in parallel and bump-bonded to a single sensor
- Variations in digital power consumption compensated by shunt
- Separate regulators for analog and digital domains to keep analog part immune from digital activity
Chain layout – high voltage distribution

- High voltage for sensor biasing provided in parallel
- Common return with low voltage line

- HV referenced to local chip ground potential
- Effective bias voltage changes by up to ~20V between upstream and downstream modules
- Mitigated with 2 separate HV lines per chain
- Grand total of 500 serial lines
- 164 “4A” lines for double modules
- 336 “8A” lines for quad modules

- LV: 200W power at ~25V
 - 1.5V × 12 modules + 7V (MAX) drop on cables
 - HV: 1000V, ~20mA (TBD)
The Shunt-LDO on RD53A
ROC and SLDO roadmap

Pixel chips

- FEI4 (130nm)

Dedicated test chips (only regulator)

- 2A SLDO test chip (65nm) ➢ Moved to 65nm technology

2017

- RD53A

2018

- RD53A Quad-modules

2019

- ATLAS ROC
- CMS ROC

2020

- SLDO test chip A
- SLDO test chip B
- SLDO test chip C

- RD53B

Improved performance (Startup, voltage accuracy, ..)

New features (Overvoltage/overload protection, ..)
The RD53A readout chip

- Designed by the RD53 collaboration
- RD53A: 3 different front ends for prototyping
- Built in 65nm CMOS technology
- Half size w.r.t. final CMS ROC
- 400x192 pixels (50x50 μm^2 each)
- Highly radiation resistant (above 500 Mrad)

Linear front end chosen by CMS

Shunt-LDO components on chip bottom
The Shunt-LDO regulator

- Constant input current is converted to constant voltage on the chip
- Power consumption (digital in particular) highly variable
- Enough current must be supplied to avoid failures
- Need to “burn” excess current

Shunt-LDO solves both issues

- LDO provides constant voltage (~1.2 V) drawing the required current I_{load}
- Residual current $I_{in} - I_{load}$ is shunt
- While $I_{load} < I_{in}$ the system is seen by the power supply as a constant load ⇒ crucial for a serially powered system
- Voltage divider + A1-M1 complex ensure \(V_{DD} = 2V_{ref} \)
- \(V_{in} \geq V_{DD} + 0.2V \) needed

- Shunt determines how chip is seen by PS
- \(V_{in} = V_{ofs} + \frac{R_3}{1000} I_{in} \equiv V_{ofs} + R_{eff} \cdot I_{in} \)
- Power supply sees a constant load
- Independent form power consumption as long as \(I_{load} < I_{in} \)
Known Issues and challenges of the system

RD53A SLDO
Current sharing and headroom

Current sharing between chips in same module not trivial
- Chips in same module powered in parallel
- Current split determined by V_{ofs}, R_{eff} of each SLDO, startup
- Measured on 4 RD53As in parallel powered with current source

Headroom optimization
- A headroom is provided, i.e. $I_{in} = I_{load}^{max} + I_{headroom}$
- Covers potential current consumption spikes
- Accounts for mismatch in V_{ofs}, R_{eff} between chips

First studies indicate 20% headroom can cover estimated mismatches
Basic failure scenarios

Normal operation

Open on one chip

Short on one chip

Open on one chip:
- Remaining chip must take full current
- Power burnt on chip strongly increases
- Operational margin limited by thermal issues and input voltage
- Other modules can operate

Short on one chip:
- Module completely loses functionality
- Other modules in the chain can operate
Stress tests

Tests have been performed stressing SLDO system on the RD53A chip
- 4.5A, 1.8V (high current) for a week (with cooling)
- 5A, 1.9V (high current) for a week (with cooling)
- 1.8A, 2.2V (high voltage) for a week
- 130000 continuous power cycles at nominal operating point
- One week at nominal operation with 1/4 of wire bonds carrying I_{in} removed
- 3 days at 4.5A with removed wire bonds (with cooling)

No anomalous behavior observed

✓ SLDO design appears sturdy

✗ No info on possible failure modes

Design limits:
- 4A, 2V max
Improvements over RD53A SLDO
The SLDO test chip version C

- New standalone test chip for shunt LDO available in summer 2019
- Includes many improvements w.r.t. RD53A SLDO

Undershunt protection
- If $I_{load} > I_{in}$ on one chip the regulator fails and the voltage across the module collapses \Rightarrow whole chain affected
- To prevent this, dedicated circuitry reduces V_{out} in case I_{shunt} gets too low

Improved startup behavior
- Common bandgap regulator for Analog/Digital SLDOs
- Dedicated startup circuit allows for much improved behavior

Overvoltage protection
- Voltage clamp to avoid exceeding 2V input
- Cut off voltage can be set
Dynamic startup behavior

- 4 RD53A chips (i.e. 8 SLDOs) in parallel to emulate quad module
- Current source with 100A/s ramp

RD53A internal SLDOs

RD53As powered with SLDO test chips C

Startup behavior shows great improvement, better current sharing
Conclusions

- Serial powering concept proven to be reliable
- Allows to meet the powering challenges faced by the CMS Phase II pixel tracker
- Many tests have been performed and more are ongoing
- Further improvements w.r.t. RD53A have been implemented and tested in dedicated SLDO test chips
- Quad RD53A modules (with and without sensors) are now available for testing
- RD53B-based CMS-ROC will be available in late 2020
- More studies to be done on the optimization of working points and headroom
Thank you for your attention

Many thanks to D. Koukola, S. Orfanelli, G. Sguazzoni, S. Paoletti, M. Meschini, A. Cassese and the whole CMS-IT crew
The HL-HLC update plan

Today

Factor ~10 increase in integrated luminosity

Roberto Seidita - Serial Powering in the CMS silicon tracker detector for High-Luminosity LHC
Up to 12 modules per chain
Potential issue with HV

- An issue may arise when HV is off and LV is on.
- If HV PS has high ohmic behavior in its off state, difference in local grounds causes leakage currents to flow in downstream module.
- Sensor becomes forward biased.
- Solved bypassing the HV PS with a diode and/or crowbar.
RD53A with SLDOc setup

Input from current source

Two SLDO test chips power each RD53A (one each for analog/digital domains)
Shunt-LDO is fully functional after 600Mrad at 0C:

- Output behavior is very stable
- Some variations of input behavior
- Reference voltages change due to internal resistor
 - Improved design in RD53B
Detector-like structure tests

- Electrical connections similar to final detector
- Aluminum structure with water cooling pipe inside
- Cooling is essential: ~10 W per module are dissipated