

Istituto Nazionale di Fisica Nucleare SEZIONE DI FIRENZE

Serial Powering in the CMS silicon tracker detector for High-Luminosity LHC

15th Trento Workshop on Advanced Silicon Radiation Detectors

> Roberto Seidita, Università e INFN, Firenze on behalf of the CMS Tracker Group

> > Vienna, 19/02/2020

Outline

- Motivation for serial powering
- Implementation for the CMS pixel tracker upgrade

2

- The Shunt-LDO regulator on RD53A
- Main challenges of the system
- Improvements after RD53A

Motivation for Serial Powering

3

Roberto Seidita - Serial Powering in the CMS silicon tracker detector for High-Luminosity LHC

Innertracker challenges at high luminosity

CMS IT upgrade – powering requirements

Advantages of serial powering

- X Direct parallel powering
 - 2 cables per module
 - Total power consumption: $nIV + n^2 I^2 R$

- X POL conversion with DC/DC converters
 - $12V \rightarrow 1.2V$ conversion
 - Not radiation hard enough (150 Mrad max)
 - Component size, hefty material addition

Serial Powering

- 2 cables per chain
- $1.5V \rightarrow 1.2V$ POL conversion
- Total power consumption: $nIV + I^2R$

Serial Powering implementation

CMS IT Phase II

Roberto Seidita - Serial Powering in the CMS silicon tracker detector for High-Luminosity LHC

Chain layout – low voltage distribution

- Constant current supplied to readout chips
- Voltage conversion on ROC, no additional power electronics on modules
- Lower supplied current \Rightarrow reduced dissipation on cables
- Allows for reduced cabling (one line per chain)

module

module

19/02/2020

Chain layout – low voltage distribution

9

Chain layout – high voltage distribution

- High voltage for sensor biasing provided in parallel
- Common return with low voltage line

HV referenced to local chip ground potential

Effective bias voltage changes by up to ~20V between upstream and downstream modules

Mitigated with 2 separate HV lines per chain

10

Power supply layout

- LV: 200W power at ~25V
 - $1.5V \times 12$ modules +7V (MAX) drop on cables
- HV: 1000V, ~20mA (TBD)

19/02/2020

The Shunt-LDO on RD53A

Roberto Seidita - Serial Powering in the CMS silicon tracker detector for High-Luminosity LHC

ROC and SLDO roadmap

Improved performance (Startup, voltage accuracy, ..) New features (Overvoltage/overload protection, ..)

The RD53A readout chip

- Designed by the RD53 collaboration
- RD53A: 3 different front ends for prototyping
- Built in 65nm CMOS technology
- Half size w.r.t. final CMS ROC
- 400x192 pixels (50x50 μm² each)
- Highly radiation resistant (above 500 Mrad)

The Shunt-LDO regulator

- Constant input current is converted to constant voltage on the chip
- Power consumption (digital in particular) highly variable
- Enough current must be supplied to avoid failures
- Need to "burn" excess current

Shunt-LDO solves both issues

- LDO provides constant voltage (~1.2 V) drawing the required current I_{load}
 - Residual current $I_{in} I_{load}$ is shunt
- While *I*_{load} < *I*_{in} the system is seen by the power supply as a constant load ⇒ crucial for a serially powered system

SLDO-some more detail

- Voltage divider + A1-M1 complex ensure $V_{DD} = 2V_{ref}$
- $V_{in} \gtrsim V_{DD} + 0.2V$ needed
- Vin Constant I_{in} long as $I_{load} < I_{in}$ R₃∏ M1 M2 I_{ref} A1 V_{IN} R3/1000 VDD load R3/1000 A2 **D**-A4 V_{in} Vofs $V_{OIIT} = 2 * Vrep$ М3 R1 M7 → Vofs I_{shunt} □ A3 M4 R2 \mathbf{I}_{IN} M5 M6 GND Voltage Regulator Shunt

Shunt determines how chip is seen by PS

•
$$V_{in} = V_{ofs} + \frac{R_3}{1000} I_{in} \equiv V_{ofs} + R_{eff} \cdot I_{in}$$

- Power supply sees a constant load
- Independent form power consumption as

Roberto Seidita - Serial Powering in the CMS silicon tracker detector for High-Luminosity LHC

Known Issues and challenges of the system

RD53A SLDO

Current sharing and headroom

Current sharing between chips in same module not trivial

- Chips in same module powered in parallel
- Current split determined by V_{ofs} , R_{eff} of each SLDO, startup
- Measured on 4 RD53As in parallel powered with current source

Headroom optimization

- A headroom is provided, i.e. $I_{in} = I_{load}^{max} + I_{headroom}$
- Covers potential current consumption spikes
- Accounts for mismatch in V_{ofs} , R_{eff} between chips

First studies indicate 20% headroom can cover estimated mismatches

19/02/2020

Basic failure scenarios

Open on one chip:

- Remaining chip must take full current
- Power burnt on chip strongly increases
- Operational margin limited by thermal issues and input voltage
- Other modules can operate

Short on one chip:

- Module completely looses functionality
- Other modules in the chain can operate

Stresstests

20

Design limits:

4A, 2V max

Tests have been performed stressing SLDO system on the RD53A chip

- 4.5A, 1.8V (high current) for a week (with cooling)
- 5A, 1.9V (high current) for a week (with cooling)
- 1.8A, 2.2V (high voltage) for a week
- 130000 continuous power cycles at nominal operating point
- One week at nominal operation with 1/4 of wire bonds carrying I_{in} removed
- 3 days at 4.5A with removed wire bonds (with cooling)

No anomalous behavior observed

SLDO design appears sturdy

No info on possible failure modes

Improvements over RD53A SLDO

Roberto Seidita - Serial Powering in the CMS silicon tracker detector for High-Luminosity LHC

The SLDO test chip version C

- New standalone test chip for shunt LDO available in summer 2019
- Includes many improvements w.r.t. RD53A SLDO

Undershunt protection

- If *I*_{load} > *I*_{in} on one chip the regulator fails and the voltage across the module collapses ⇒ whole chain affected
- To prevent this, dedicated circuitry reduces V_{out} in case I_{shunt} gets too low

Improved startup behavior

- Common bandgap regulator for Analog/Digital SLDOs
- Dedicated startup circuit allows for much improved behavior

Overvoltage protection

- Voltage clamp to avoid exceeding 2V input
- Cut off voltage can be set

Dynamic startup behavior

- 4 RD53A chips (i.e. 8 SLDOs) in parallel to emulate quad module
- Current source with 100A/s ramp

RD53A internal SLDOs

Startup behavior shows great improvement, better current sharing

23

Roberto Seidita - Serial Powering in the CMS silicon tracker detector for High-Luminosity LHC

RD53As powered with SLDO test chips C

Conclusions

- Serial powering concept proven to be reliable
- Allows to meet the powering challenges faced by the CMS Phase II pixel tracker
- Many tests have been performed and more are ongoing
- Further improvements w.r.t. RD53A have been implemented and tested in dedicated SLDO test chips
- Quad RD53A modules (with and without sensors) are now available for testing
- RD53B-based CMS-ROC will be available in late 2020
- More studies to be done on the optimization of working points and headroom

Thank you for your attention

Many thanks to D. Koukola, S. Orfanelli, G. Sguazzoni, S. Paoletti, M. Meschini, A. Cassese and the whole CMS-IT crew

19/02/2020

Roberto Seidita - Serial Powering in the CMS silicon tracker detector for High-Luminosity LHC

The HL-HLCupdate plan

Roberto Seidita - Serial Powering in the CMS silicon tracker detector for High-Luminosity LHC

19/02/2020

Chaintopologies

Potential issue with HV

- An issue may arise when HV is off and LV is on
- If HV PS has high ohmic behavior in its off state, difference in local grounds causes leakage currents to flow in downstream module
- Sensor becomes forward biased
- Solved bypassing the HV PS with a diode and/or crowbar

RD53A with SLDOc setup

Irradiation campaign

Shunt-LDO is fully functional after 600Mrad at 0C:

- Output behavior is very stable
- Some variations of input behavior
- Reference voltages change due to internal resistor
 - Improved design in RD53B

Detector-like structure tests

Cooling in- and outlet

(Elinks and readout board not shown)

- Electrical connections similar to final detector
- Aluminum structure with water cooling pipe inside
- Cooling is essential: ~10 W per module are dissipated

